Muscle Mechanics

Goals:

- 1. Muscle Mechanics
- 2. EMG
- 3. Kinematics

The Motor Unit

- smallest subunit that can be controlled
 - innervated separately by motor neurons
 - synaptic junction in ventral root of spinal cord
 - 3-2000 muscle fibers

Recruitment of Motor Units

- muscle have finite number of motor units
 - each unit is controlled separately
 - excitation is all or nothing!

motor neuron action potential \rightarrow muscle twitch

How to increase tension?

- 1. increase rate of stimulation
- 2. stimulate more motor units \rightarrow **motor recruitment**

Size Principle

Size of newly recruited motor units increase with tension level

Smaller motor units fire first!

What about when tension is decreasing?

Other way around larger units stop first.

Max firing rates: 120 Hz

Winter, 2009

Types of Motor Units

Tonic Units - smaller slow-twitch motor units

- rich in mitochondria
- highly capillarized
- high capacity for aerobic metabolism
- low peak tension
- long time to peak
- Phasic Units larger fast-twitch motor units
 - less mitochondria
 - poorly capillarized
 - rely on for anaerobic metabolism
 - larger peak tension
 - short time to peak

The Muscle Twitch

- smallest unit of tension
- Model as impulse response of second order
 critically damped system (isometric voluntary contraction)

$$F(t) = F_0 \frac{t}{T} e^{-t/T}$$

- F_0 constant representing maximum tension
- T constant representing time till max tension

Where does this come from?

Experimentally determined in-vivo. Recall general second order system:

$$\ddot{y}(t) + 2\zeta\omega_n \dot{y}(t) + \omega_n^2 y(t) = K\omega_n^2 u(t)$$

Milner-Brown, 1972

Sustained muscle tension? Repeated twitches \rightarrow tetanus

windward.hawaii.edu

Muscle Force-Length Characteristics Consider active element (contractile element)

- maximum force at resting length
- max cross bridges! \rightarrow max tension!
- \bullet max length \rightarrow no cross bridges
- \bullet min length \rightarrow cross bridge interference

Winter, 2009

Consider active and parallel passive elements

- connective tissue surrounding contractile element influences the force-length curve
- acts like an elastic band
- nonlinear force-length relationship

Winter, 2009

Consider active, parallel and series elements

- isometric contractions
- \bullet internal shortening \rightarrow length stays constant \rightarrow tension build up in series component

Muscle Force-Velocity Characteristics

Concentric Contraction

- concentric \rightarrow shortening (positive work)
- tension decreasing as it shortens
 - loss in tension due to cross-bridges in the contractile element
 - fluid viscosity of contractile and parallel elements
- Hill model this thermodynamically in 1938

$$(P+a)(V+b) = (P_0+a)b$$

 P_0 – max isometric tension

a - coefficient of shortening heat

$$b - a \frac{v_0}{P_0}$$

$$V_0$$
 – max velocity

This equation relates force-velocity, but only isotonic near resting length

Eccentric Contraction

- eccentric \rightarrow lengthening (negative work)
- think of this as mechanical breaking
- much harder to find experimentally

Winter, 2009

Muscle Force-Velocity-Length Characteristics

Winter, 2009

Muscle Models

- complete models (cross-bridge) have many parameters and can be hard to simulate, e.g, Huxley-based models
- most of the time we are interested in models from a 'system dynamic' perspective: input
 output relationship

Hill type muscle models

- simple, lumped parameter dimensionless model
- can captures input-output behavior
- assumes force generated by single fiber

Millard, 2013

$$\dot{a} = f(u, a)$$

$$f_o^{\mathrm{M}} \left(a \mathbf{f}^{\mathrm{L}} (\tilde{\ell}^{\mathrm{M}}) \mathbf{f}^{\mathrm{V}} (\tilde{v}^{\mathrm{M}}) + \mathbf{f}^{\mathrm{PE}} (\tilde{\ell}^{\mathrm{M}}) \right) \cos \alpha - f_o^{\mathrm{M}} \mathbf{f}^{\mathrm{T}} (\tilde{\ell}^{\mathrm{T}}) = 0$$

Millard, 2013

Electromyography

Motor Unit Action Potential (MUAP)

- muscle tissue conducts electrical potentials
- electrodes placed on top (surface) or inside (indwelling) the muscle can record the algebraic sum of (MUAP)

Sequence of events

- 1. action potential from motor neuron arrives at motor plate
- 2. triggers neurotransmitter (ACh) to be released
- 3. depolarization of postsynaptic membrane
- 4. MUAP starts at Z-line
- 5. spreads along traverse tubular system (EMG sees this)

Winter, 2009

Cross-talk

- overlapping electrode region
- test with cross-correlation

Processing

Winter, 2009

Force estimates for isometric contractions

Winter, 2009