Session 2, Lecture 1, Tissue background

<u>Tissue</u>

:

- Two main components
- 1. Cells
- 2. Extracellular Matrix

• ECM Functions

Previously known as an inert ground substance

• Two main forms

Basement membrane:

Stromal matrix:

• Molecular composition

ECM is composed mainly of glycoproteins and proteoglycans, many of which are able to bind to specific sites on other ECM glycoproteins so that the matrix becomes a highly crosslinked gel

<u>Histology</u>

: The study of tissue, especially their structure and arrangement

Pathology

: The study of the causes and effects of diseases, diagnostic or forensic purposes

Hisopathology

Examples of DCIS double immunostained for ER and HER2 protein. ER expression is denoted by brown nuclear staining and HER2 overexpression is represented by red staining of the cell membrane.

- (a) ER-positive/HER2-negative
- (b) ER-negative/HER2-positive
- (c) ER-negative/HER2-negative
- (d) ER-positive/HER2-positive.

Four types of Tissue

• Epithelium

A sheet-like layer of cells

Types of Epithelium

Function:

- 1.
- 2.
- 3.
- 4.

• Connective tissue

Most abundant tissue type in the body

Possessing a great blood (not tendons, ligaments, and cartilages)

Various properties based on the amount, type, and arrangement of ECM (fiber, proteoglycans, glycoproteins)

Function:

Many specialized types

• Muscular tissue

Function:

Type:

- 1. Smooth muscle
- 2. Skeletal muscle
- 3. Cardiac muscle
- Nervous tissue

Brain, spinal cords, nerves

:

Cardiac sympathetic axons subepicardium of the ventricular wall of the developing mouse heart

Next week

We will look at the soft tissue from an engineering point of view

Soft tissue

Structural Properties

- 1.
- 2.
- 3.