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J. Physiol. 213(6) : 1532-l 544. 1967 .-Elasticity of living soft 

tissues is strongly nonlinear. Based on experimental results on 
rabbits’ mesentery, a theoretical framework is presented in 
which the elastic properties of soft tissues can be described. It is 
shown that the mathematical formulation works well also in 
reducing published data on the series element of the heart and 
striated muscles, and the skin. In simple elongation the tensile 
stress is nearly an exponential function of the strain in the 
lower stress range. Based on this fact, it is shown that although 
we are dealing with the finite deformation of highly nonlinear 
materials, the elastic property of soft tissues in tension can be 
expressed quite simply in most cases. It is necessary, however, 
to give up the usual practice of trying to characterize the 
elasticity of a tissue by a representative Young’s modulus, 
because this modulus varies over a very wide range, which is 
often zero at vanishing stress, and increases linearly as the 
stress increases, and therefore is meaningless unless the exact 
stress level is specified. New physical constants recommended 
are : the slope and curvature at the origin of the curve of d T/dX 
vs. T, where T stands for tension and X stands for the extension 
ratio, and the tensile stress T*, (based on the original cross- 
sectional area) at a specific value of the extension ratio A*. 

stress; strain; stress-strain-history law; constitutive equations 

T HERE ARE MANY PROBLEMS in physiology whose solu- 
tions require a detailed knowledge of the mechanical 
properties of the tissues involved. Hence the stress-strain 

relationship of living tissues is of fundamental interest. 
For example, when one speaks of hemodynamics, wave 
propagation in blood vessels, the distensibility of arteries 
and veins, etc., the normal and abnormal stress-strain 
relationship of the blood vessels and the surrounding 
tissues must be known. An understanding of the elastic 
property of blood vessels mav serve as a tool for diagnosis . 
in pathology. Information on mechanical action is neces- 
sary for a systems analysis of the autoregulation of blood 
flow, or of the contraction of the heart, or for an intelli- 
gent application of artificial prosthetics, etc. 

Much work has been done on this problem, and con- 
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siderable amount of experimental data has been pub- 
lished, see the review by Frasher (9), and other authors 
( 1, 4, 5, 12, 24, 34), but a degree of vagueness and un- 
certainty prevails. The main difficulty lies in the custom- 
ary use of infinitesimal theory of elasticity to the media 
which normally exhibit finite deformations. The high 
degree of nonlinearity in the stress-strain relationship of 
living tissues is known to most authors, but a theoretical 
framework in which experimental results can be im- 
bedded is lacking. The use of the concepts of the linear 
theory of elasticity to a highly nonlinear material leads 
to a certain inadequacy in data presentation. The practi- 
cal difliculty of experimenting with small specimens of 
living tissue, and the limited ranges over which variables 
could be introduced in a given experiment, further cloud 
the issue. It seems obvious that a clarification of the 
basic approach would be worthwhile at this time. 

The objective of this paper is to discuss the nonlinear 
stress-strain-history relationship in large deformations2 
of living tissues. The word “history” is added here to 
signify the dependence of stress on the history of strain, 
as is usually the case for biological materials. A frame- 
work is proposed which will be useful for quantitative 
research. Our method is theoretical, although in search 
for simplicity we shall be guided by experimental data. 
However, it is not the purpose of the present article to 
detail the biological data. Our scope is limited to the 
analytical aspects. 

One may ask what is the merit of the theoretical 
approach? The answer is threefold: I) To facilitate data 

2 The classical linear theory of elasticity is strictly applicable 

only to infinitesimal strains (under the geometric requirement that 
the strain-displacement relations may be linearized), and only 
within the range of applicability of the Hooke’s law. For engineer- 
ing materials (metals, alloys, concrete, wood, structural plastics) 
these limitations are not severe, because the range of applicability 
of Hooke’s law for the materials is limited to within the so-called 
“proportional limit,” or, if that limit is too small, to the so-called 
“defined yield stress,” which is conventionally set at a maximum 
strain of 0.002, or 0.2a/0. Strains beyond this range are “large” to 
engineers. It is remarkable that a theory of such severe restrictions 
has been sufficient for the design of most engineering structures. In 
contrast, we consider in this paper strains (extensions) of order 
100% or more for the mesentery membranes, 30-70% for blood 

vessels, 10-4070 for the skin, 140% for isolated striated muscle 
fiber and myosin fibres, and 5% for papillary heart muscles. These 
are indeed large compared with the familiar in structural engineer- 
ing. 
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collection and data analysis. I f  an experimental curve 
can be characterized mathematically by a few param- 
eters, then these parameters can be tabulated and be 
used to correlate the mechanical property of the tissues 
with other physical and physiological parameters, such 
as age, sex, injury, temperature, chemical environment, 
etc. 2) To derive three-dimensional stress-strain-history 
law under finite deformation. Such a law is needed for the 
analysis of any practical boundary-value problems, but is 
not yet available. Since it is very difficult to experiment 
with biological materials in three-dimensional stress 
fields, it is natural to turn to theoretical formulation and 
then derive solutions to appropriate problems which can 
be tested experimentally. In other words, a theoretical 
study may be used to formulate critical experiments to 
\-alidate the basic hypotheses. 3) To unify different types 
of experiments, such as the static (very slow) elasticity, 
dvnamic elasticity (finite strain rate), stress relaxation 
u;lder fixed strain, creep deformation under fixed stress, 
strain-cycle hysteresis, and cyclic stress fatigue. A correct 
theoretical formulation should bring out the unity 
among these experiments. Only the formulation that is 
consistent with all the experimental results can be ac- 
cepted. 

A complete theoretical formulation is too long to be 
presented in one paper. The present article is concerned 
with one-dimensional stress field only. Extensions to 
three dimensions will be based on these one-dimensional 
results. 

One of the results that will be shown in this paper is 
that the elastic stress for the mesentery is essentially an 
exponential function of the extension ratio. It follows 
that Young’s modulus (or, more strictly, the tangential 
modulus, i.e., the slope of the tangent to the stress-strain 
cur\-e, as opposed to the secant modulus, the slope of a 
line joining the origin to a point on the curve) varies 
exponentially with the strain. This variation is very 
broad : Young’s modulus is almost zero at small strain 
but increases exponentially as the strain increases. There- 
fore it is meaningless to sav what Young’s modulus of a , 
tissue is unless a strain level (or equivalently, a stress) is 
stated. For example, for the mesentery membrane 
You~ly’s modulus can be anything between 0 and 5 X 
1 O6 dCnes/cm2, , and it is obviously necessary to specify at 
what point on the curve a slope is quoted for the number 
to have any meaning whatever. 

This nonlinearitv must have been obvious to all 
workers in the field: Many authors remarked about the 
fact that Young’s modulus of soft tissues becomes larger 
and larger as strain increases. But when a numerical 
value is quoted, (for example, see 9, 24, 34) usually a 
single Young’s rnodulus is given without an accompany- 
ing statement about the levels of stress and strain. An 
excuse for this situation perhaps is that the physiologist 
has a “typical” or “average” condition of the tissue in 
mind, and the quoted modulus refers to such a state. 
But without a suitable quantitative definition of the 
typical conditions, the vagueness and confusion of such 
an approach is obvious. 
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As an alternative, some authors publish entire experi- 
mental curves. The difficulties of this approach are two- 
fold: 1) cumbersome documentation, 2) no simple way 
to correlate these curves with other physical and physio- 
logical parameters. To overcome these dificulties we 
offer a second alternative: to characterize these experi- 
mental stress- strain curves by a mathematical expression 
which contains two or three parameters, and can be 
used for systematic study of the tissue under varied COII- 

ditions. We shall show that for the mesentery the rnost 
important parameter is the slope of the dT/dX vs. T 
curve at the origin, where T stands for stress (specifically, 
the “Lagrangian” stress, obtained by dividing tensile 
load bv the original cross-sectional area) and X stands for 
the eitension ratio (deformed length divided by the 
original length of specimen). This parameter, designated 
by the symbol a, happens to be dimensionless, (so that it 
has the same value in the cgs as in any other measuring 
systems), and is especially suitable a measure for the 
nonlinearity of the stress-strain law, (because the value of 
a is zero for all materials that obey the linear Hooke’s 
law.) 

Together with the exponential index a, an additional 
parameter T* (h*) specifies the whole elasticity curve. 
Here T* is the stress at a specific extension ratio X*. 
Theoretically it is sufficient to choose any point ( T”, X*) 
on the stress-strain curve, but in practice it is advan- 
tageous to chose T* and A* at a point which may be 
judged particularly significant from the point of view of 
physiology. In this way the physiological judgment of the 
experimenter can be recorded simply, precisely and with- 
out ambiguity, yet in a manner that will not jeopardize 
the presentation of the entire curve. 

Further improvement of the accuracv of the elasticity 
curve presentation can be accommodatkd by taking into 
account the curvature of the d7’/dX vs. T curve. For- 
mulas for these improvements are presented in the paper. 
When these formulas are applied to the published data 
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FIG. 1. Sketch of the mesentery specimen for tension test. 
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on muscles and skin, reasonable agreement is obtained. 
Therefore it seems plausible that the mathematical form 
can be used for a fairly wide range of tissues. 

Finally, we must specify the limitations of the math- 
ematical expression. Again this can be made precise by 
a) an analytical presentation of the history-dependent 
part of the stress-strain relationship, 6) by a statement of 
the range of X within which the exponential law ap- 
plies, and beyond which the curve flattens out, the 
material yields and fails. 

The discussions above should justify the analytical 
approach as applied to one-dimensional experiments. 
However, in true perspective the value of the analytical 
approach lies in the analysis of two- and three-dimen- 
sional stress fields. It is to the general stress field that the 
analytical a .pproach becomes truly nontrivi .al. 

TENSILE TEST .OF THE RABBIT MESENTERY 

In an earlier study of the distensibility of the capillary 
blood vessels in the mesentery of the rabbit, the contribu- 
tion of the surrounding tissue was evaluated by measuring 
the elasticity of the mesentery membrane in torsion, ( 13). 
It was shown that the shear modulus depends on the 

strain, so that the materia l is high1 y nonlinear. As an 
extensi .on of thi .s approach, a te nsion test was performed 
in which the mesentery membranes were taken from 
rabbits of approximately 3 kg wt, and tested in tension 
in the Instron testing machine. The tension-test program 
was more comprehensive, providing results suitable for 
theoretical treatment, and will be described in some 
detail below. 

The test specimens were obtained as follows: The 
mesentery was spread out fl .at on a platform m the 
natural dimensions defined bY the surro unding in testines 
and large blood vessels, to which no restraint other than 
gravity and friction on the platform was imposed (see 

Fig, 1). This was approximately the configuration under 
which most of the microcirculation measurements in the 
mesentery were made (35, 36), and it was also the extent 
to which the membrane was stretched in the torsion test 
( 13). It will become clear from what is to be described 
below that the mesentery membrane was actually highly 
stretched in this configuration. The tensile stress was 
not small (of the order of lo6 dynes/cm2) but owing to 
the comparative thinness of the tissue (about 6 X low3 
cm), the-resultant force (of order 6 g/cm) was not large 
enough to move the intestines and large blood vessels. 
An area of the membrane free from fat and large blood 
vessels was selected. A special cutter which consisted of 

two parallel razor blades 1 cm apart was then dropped 
on this membrane, cutting two paralled slits 3.66 cm 
long. On lifting the cutter it was seen that the mesentery 
shrank immediately away from the cuts, leaving two 

large lenticular holes. The strip that was left at the center 
was then tied with fine silk threads at both ends and cut 
free. Again it shrank in length. The size of the final speci- 
men was much smaller than that defined by the spread- 

out intestine. 

I.0 1.5 

LENGTH, cm 

2.5 

Relaxed length of specimen 

FIG. 2. Load-deflection curve of a rabbit mesentery in tension, 
The state corresponding to the naturally spread-out mesentery is 
marked by the small circle. The point lo marks the relaxed length of 
the specimen. 

Small hooks were attached to the specimen and the 
specimen was mounted onto the Instron testing machine 
(see Fig. 1). The machine has a load cell with a full 
scale range of O-10 g, which can be changed electroni- 
cally to scales of 2, 10, or 50 g, with a nominal error less 
than kO.5 70. The base can be moved at constant specific 
rates up and down. The recording pen moves horizon- 
tally in proportion to the load. The paper moves on 
drums rotating at chosen speeds. Altogether a great 
flexibility in the choice of strain and the strain rate can 
be obtained. 

The excised mesentery was used as a tension specimen. 
As a folded thin membrane, the traction acting on the 
face of the membrane was zero. Since the lateral sides 
were free to deform, no stress was induced in a direction 
normal to the axis of tension. The only disturbing in- 
fluence came from the ties at the ends. The influence of 
this evidently localized residual stress was unknown, 
but will be assumed to be negligible in view of the con- 
siderable length of the specimen. 

TENSILE EXPERIMENTAL RESULTS 

A variety of load-deflection curves was obtained. 
Typical results are shown in Figs. 2-7. 

Figure 2 shows the load-deflection curve of a specimen 
when the rate of strain imposed was 0.254 cm/min. The 
ordinate shows the load in grams. The abscissa shows the 
deflection in centimeters. (The coordinates of the In- 
stron records were interchanged in order to conform to 
the normal convention used in load-deflection curve 
presentation.) Note that the specimen was lo = 1.22 
cm. This length was obtained by optical measurement 
of the specimen suspended in the saline, with a small 
hook tied to the lower end of the specimen with a 
silk thread. The weight of the hook and thread in 

saline was 8 mg. Hence the specimen was not entirely 
free, but was subjected to a stress of approximately 420 
dynes/cm2. Such a load would be too small to be seen 
in the scale of Fig. 2, but its influence on the relaxed 
length lo was unknown. If the specimen were left com- 
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curves. Rabbit mesentery. Loading and un- 
0.254 cm/rnin. The large loop shows the first 
specimen was then stressed to an intermediate 
small amplitude was performed. Note the dif- 

ference in slope of the small dynamic loops from the large one and 
from each other. 

pletely free, it woul .d float and “PPe ar curved 
line. Although the length of such a floating 

in the sa- 
specimen 

could be measured photographically, such a procedure 
was not followed because of its lack of precision. Hence 
the basic problem of determining the length lo was 
yet unsolved, and must be given further attention in 
the future. 

When the specimen was stretched from lo to Zi = 2.54 
cm, the corresponding tension induced was very small; 
in fact it was not readable in the chart illustrated in Fig. 
2. Extension beyond II = 2.54 cm, however, induced a 
rapidly increasing tension. The load- deflection relation- 
ship was definitely nonlinear. A small circle in Fig. 2 
marks the state corresponding to the naturally spreadout 
mesentery. This point was located by the measured 
length Lph of the specimen before it was cut. It is seen 
that considerable tensile stress must have existed in the 
specimen in this state which was often used in micro- 
circulation observations, such as those reported in Zwei- 
fach (35, 36). 

Figure 3 shows typical hysteresis curves of the speci- 
men strained at a rate of ho.254 cm/min. The large 
loop shows the first complete cycle. It is seen that hvstere- , 
sis existed, but was not very large. The nature of hystere- 
sis in tension was very similar to that of the torsion tests 
reported in reference 13. Although it is not shown in Fig. 
3, a completely unloaded specimen (free from the test 
machine but with the small hook attached as mentioned 
above) gradually returned to the length lo. In other 
words, the length lo was well defined, and there was no 
doubt that the material was elastic between lo and II, 
although the modulus of elasticity was very small in 
that range. 

The small loops in Fig. 3 were obtained by restressing 
the specimen to an intermediate point and performing a 
cycleof small amplitude at the same strain rate. Note the 
difference in slope of the small dynamic loops from the 
large one and from each other. 

The effect of strain rate on the hysteresis is illustrated 
in Fig. 4. The curve marked “high” was produced at a 

strain rate 10 times faster than that marked “low.” It is 
seen that the hysteresis loops did not depend very much 
on the rate of strain. 

In Figs. 3 and 4 the extension (abscissa) was measured 
from an arbitrary point. Logically the extension should 
be measured from the relaxed length lo, but if this were 
done the origin would be located far to the left and the 
scale of the figure would be too small. Therefore, for the 
convenience of experimenting on hysteresis, an arbitrary 
starting point was taken. 

Figure 5 shows a stress-relaxation curve. The specimen 
was strained at a constant rate until a tension 7i was 
obtained. The length of the specimen was then held 
fixed and the change of tension with time was plotted, 

Examination of a large number of such relaxation 
curves showed that the total amount of relaxation (i.e., 
Tl-T,) was roughly proportional to the total load Tl. 

Figure 6 shows the change in the stress-strain curve 
under repeated loading and unloading at a fixed rate of 
strain between two fixed limits of extension. In Fig. 6 
the strain rate was ~tO.254 cm/min, and the stroke was 
0.17 1 cm. The decrease of peak tension with the number 
of cycles resembled the relaxation curve of Fig. 5. 

Finally, Fig. 7. shows the load-deflection curve, with a 
reduced scale for the coordinates, of a specimen strained 
up to failure. The failure was rather gradual. The ulti- 
mate strain at failure was large. The specimen failed by 
tearing at some unpredictable points. 

In all these experiments the specimens were suspended 
in a physiological solution at room temperature. Cooling 
the fluid to 40 F did not change the load-deflection curve 
substantially. Exposure of the specimen to dry air, how- 
ever, resulted in drastic changes in its mechanical prop- 
erty. Drying increased the tension at a fixed strain. 

ELASTIC AND HISTORY-DEPENDENT PARTS OF 

THE STRESS-STRAIN RELATIONSHTP 

To reduce the individual observations described in the 
previous section into objective constitutive equations, it 
is first necessary to consider the material nonhomoge- 
neity and directional anisotropy. In the first place the 
mesentery membrane is covered with two layers of 
mesothelial cells with a total thickness about 6 X 10e4 
cm, i.e., about 10 ‘7/o of the total thickness. The properties 
of the mesothelial cells are expected to be different from 
the bulk of the gel. However, lack of information pre- 
vents us from saying anything further about this. 

Electron microscopic investigation of the mesentery 
shows that it is composed of randomly oriented collagen 
fibres buried in a gel. Hence in elements of dimension of 
the order of 100 A the medium is certainly nonhomo- 
geneous. However, for elements with a linear dimension 
of order 10 1-1 the local nonhomogeneity will be averaged 
out and may be ignored. Hence, for the purpose of 
assessing the distensibility of the blood vessels, it is per- 
missible to consider the medium as homogeneous. 

It is almost axiomatic that biological material is anisot- 
ropic. However, again no quantitative information is 
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FIG. 4. Hysteresis curves of rabbit mesentery obtained at dif- 
ferent strain rates. The high rate was 10 times that of the low rate. 
Only slight change in hysteresis curves was obtained. Some of the 
small difference is due to fatigue, some is due to strain rate. 

available. It is hoped that the analysis of the present 
paper will lav the foundation for setting up a framework 
for future data collection with respect to anisotropy. 

It is evident from the curves shown in Figs 2-7 that the 
stress-strain relationship for the mesentery and the 
arteries is nonlinear, that the stress does not depend on 
the strain alone, but also on the strain history. Let the 
stress-strain relationship be separated into two parts: an 
elastic part and a history-.dependent part. The elastic 
part defines a unique stress-strain relationship, i.e., the 
“elasticity” of the material. The history-dependent part 
is time dependent ; it is related to the hysteresis, stress 
relaxation, creep, and other nonconservative phenomena. 
Thus we may write: 

4 = F[e(t)] + F’[r (t - T) ; t, T] U) 

where c (t) is the tensile stress at time t referred to the 
deformed state, e(t) is the tensile strain at time t, F[&)] 
is a function of the strain e at time t; whereas 
F’[t(t - 7); t, 71 is a function of the entire history of the 
strain, c(t - 7). The first elastic term F[c( t)] represents 
a thermodynamically reversible part of the stress-strain 
relationship. The second term represents a thermodynam- 
ically irreversible processes. The first term states that 
at any instant of time t there is an elastic stress a*(t) = 
F[c(t)] corresponding to the strain t(t) at that instant. 
This correspondence is instantaneous, regardless of past 
history. The second term tells the influence of the past 
history. 

It is difficult to represent the history-dependent por- 
tion of the stress-strain law analytically. The fact, as 
shown in Fig. 4, that the hysteresis loop is almost in- 
dependent of the strain rate reflects a phenomenon which 
is well known in engineering structural analysis. It dispels 
at once the belief, popular in the literature, that the 
irreversible portion of the stress-strain law of biological 
material is linear viscoelastic. Indeed, many papers have 
been published listing the viscosity coefficients of tissues, 
arterial walls, etc. However, if the material were linear 
viscoelastic the hysteresis loop would vary with the strain 
rate. In fact, for damping of the Rayleigh viscous type 

the area of the hysteresis loop in a periodic motion would 
be directly proportional to the frequency, i.e., with the 
strain rate. This is certainly not the case found in bio- 
logical experiments. 

To account for the peculiar result that the hysteresis . 
curves are rather insensitive to the strain rate, we 
have to assume either a nonlinear viscoelastic model 
or a model with a continuous relaxation spectrum. 
Analvtically one can draw on past experience gained in 
the theory of aircraft vibration and flutter, in which a 
similar situation known as “hysteretic” damping occurs 
(see for example, ref. 11, p. 217, 227, 264, 375,447-479 
and references contained there in; see also Becker (2, 3) 
for a similar phenomenon in ferromagnetism). The 
unfortunate part about this type of damping is that thus 
far a simple analytical representation has been found only 
for harmonic oscillations. For transient motions Neubert 
(23) has shown that an approximate model can be ob- 
tained by a generalized Kelvin model with an infinite 
number of springs and dashpots representing a con- 
tinuous distribution of relaxation spectrum. 

Leaving the history-dependent portion of the stress- 
strain law to a separate article, we shall confi ne the rest 
of this pa .per to the elastic portion of the constitutive 
equation. Although strictly speaking such a separate 
treatment is not permissible, because unless we know 
both parts we will not be able to separate the measured 
total stress into elastic and inelastic parts. However, such 
a separate treatment has practical merits since not only is 
the elastic portion the main part (80 or 90 70 of the total) 
of the stress response, but also it is the much simpler 
portion, known with much greater precision and con- 
fidence than the history-dependent part. 

ELASTIC EQUATION FOR THE MESENTERY 

Let us now consider the reduction of the experimental 
data within the framework of equation 1. We speak of 
stress and strain. In an infinitestimal deformation these 
concepts are well known. In a finite deformation the 
description of these quantities has to be handled with 
care. Stress refers to force per unit area, but which area? 
An area of material composed of the same molecules 
changes with deformation. If  a surface force is divided by 
the area in the deformed state, and is resolved into com- 

ponents along a system of coordinates imbedded in the 
deformed state, then the stress is referred to as Eulerian. 
If  the term “deformed state” in the preceding sentence 
is replaced by an “initial” or a “reference” state, the 
stress is said to be Lagrangian. Similarly, a strain tensor 
describes the change of the metric between two states, 
the initial and the deformed, and several definitions can 
be chosen. The matter is fairly complex and cannot be 
described without lengthy treatment ( 12, 14, 15, 22, 25). 

A uniform extension may be described as follows. Let a 
fixed rectangular Cartesian system of coordinates (x, y, t) 
be used to define the unstrained body. We consider a de- 
formation in which a unit cube in the unstrained body 
whose sides are parallel to the axes is deformed into a 
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FIG. 5. Relaxation curve. Rabbit mesentery. The specimen was 
stressed at a strain rate of 1.27 cm/min to the peak. Then the 
moving head of the testing machine was suddenly stopped so that 
the strain remained constant. The subsequent relaxation of stress is 
shown. 

cuboid of dimesions &, )\ 2, X3 parallel to the X, y, z axes, 
respectively. The coordinates of the particles in the 
strained body may be referred to a fixed Cartesian set of 
axes (E, 7, <) which coincide with the axes (x, y, z) so 
that: 

5 = x1x, rl = hy, (2) 

For this uniform extensional deformation the strain 
components may be written in the matrix form (see 14, p. 
80, and note that yij = Gij - gij). 

The volume of the unit cube becomes X&X3 after 
deformation. The constancy of volume is expressed as a 
condition of incompressibility 

Following the general practice in cardiovascular research, 
we shall consider the mesentery incompressible. Hence, 
on specializing equation 2 to describe a simple tension, for 
which gsa: = const, cVY = cZZ = 0, we have 

X~X~X3 = 1, x2 = x3 (5) 

so that 

x2 = x3 =I 

dx, 

(6) 

We shall write X for Xr in this case, 

length of specimen under strain I 
x = =- 

unstrained length ZO 
(7) 

The corresponding tensile strain is 

12 E = y11 = >gx” - 1) = 35 - - 1 
( > Z02 

(8) 

The cross sectional area of the specimen is decreased 
during extension by the ratio h& = I/ X. Hence if the area 
at the unstrained state is Ao, and the total tensile force is 
P, then the Eulerian stress in tension is 

P P 
d =- 

A =xX= TX (9) 

Thus the simple tension can be described by a single 
component of stress g and a single extension ratio X. 

In our experiments withrabbit mesentery, the specimen 
at the completely relaxed state was difficult to handle, 
and the measurements of the cross-sectional area of the 
specimen were made only when the mesentery was spread 
out on a platform under the dimensions defined by the 
intestine and large blood vessels. Let this state be indi- 
cated by a subscript ph. At this state in our tests the width 
of the specimen was 1 cm, the thickness of the rabbit 
mesentery was 60 X 10V4 cm & 5 % (see ref. 13). Hence 
the area Aph = 60 X low4 cm2. The values of Xph, the 
ratio of the length before cutting to the cut-and-relaxed 
length, ranged over 2.0-3.2 for the 20 specimens ex- 
amined. Of course, A0 = &,hAph. 

-Now we can analyze the elastic part of the stress-strain 
equation for the rabbit mesentery. According to equation I 
the reversible portion of the elastic response can be ob- 
tained from an infinitely slow process of loading. How- 
ever, since such an idealized experiment is impossible, we 
must derive the elastic relation from dynamic results. A 
simple procedure is as follows. For a given strain rate, a 
relaxation experiment is performed in which the speci- 
men is loaded at the specified rate and then held fixed 
and the stress history is measured. Let the asymptotic 
stress be Ta (see Fig. 5). An examination of many such 
curves indicates that T, is proportional to the peak 
stress 7’1. We assume that T, is the stress that would have 
been obtained had the load been applied slowly. Hence 
if the dynamic stress was reduced by the factor T,/Tl, 
the result would correspond to the elastic curve. This 
procedure was followed and the results will be discussed 
below. 

The most striking feature of the elasticity of a living 
tissue as seen from Fig. 2 is the very small stress in re- 
sponse to a fairly large strain. In Fig. 2 an extension up to 
about 100 % of the relaxed length yields only a small, 
unmeasurable tension. However, for, X greater than 2 the 
stress rises rapidly, and indeed, exponentially. 

When the elastic curve is determined from a typical 
hysteresis curve such as the one shown in Fig. 3, (using 
the segment corresponding to loading or increasing 
strain), the slope of the curve can be computed. Figure 8 
shows an example of the slope of the elastic tension- 
deflection curve, dT/dX, plotted against the elastic 
tension T. It is seen that a remarkable correlation exists. 
As a first approximation we shall fit the experimental 
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8r I curve by a straight line: 

dT 
-= 
dX aT, (1 <-x < Ay) (10) -- - 

An integration gives 

11 11 11 11 11 11 11 1'11 
0 2 4 6 8 IO 12 14 16 

TIME, MINUTES 
where c is an integration constant. I f  7’ = T* when X = 
X*, then 

III -I RABBIT MES. 

L,=O.864, Lph =2.?7cm 

STRAIN RATE i0.254cm/min 

OSC. SfROKE AMP. 0.17lcm 

1’ 
G - eaX* 

= T* 

FIG. 6. Fatigue curve. Rabbit mesentery. The specimen was 
first stressed to a peak, then a cyclic strain between two fixed dis- 
placements was imposed. All loading and unloading were at a 
constant rate of 0.254 cm/min. Note the reduction of stress ampli- 
tude in cycling. 

T= T*7ea(x-xf) 
.' 

(1 < x < x,) (13) - - 

On substituting equation 9 into 13 we obtain 
The corresponding results are : 

TEL??- 
C + beaX ’ 

(1 < x < A,) (18) - - 
The range of applicability of these equations is the range 
in which equation 10 is valid, which is indicated in the 
parentheses in equations 13 and 14, with A.,, denoting the 
upper limit of validity. 

By’equation 8, the stress-strain relationship is obtained : 

exp (aA) 
u 

%+bexp(aX)’ 
(1 2 x < A,> (20) - 

The strain energy per unit volume of the undeformed 
tissue, w(x), is equal to the work do ne by the load: 

b 

1 
1 + - eax 

c 
W(x) = bQ log 7 , 

1 +-ea 
C 

(1 < x 5 A,) (21) - 

1 1 
wx> =- 

Ao lo s 
T(Z)Aa dl 

z. 

The strain energy may be expressed in terms of the 
strain E by replacing X with 41 + 2~ in equation 16 and 
21. W(E) is considerably more complex in appearance 
than W(X). Thus there is no particular advantage in 
expressing the strain energy in terms of C. 

To illustrate the usefulness of these formulas we have 
drawn in Fig. 8 a curve given by equation 17 with lo = 
0.864 cm, a = 12.4, b = - 7.29 X 10m4 cm2/dyne. A good 
fit of the reduced result of Fig. 3 can be obtained by 
taking T*Ao = 7.0 gm, X* = 3.21 = X,, a = 12.4, b = 
7.29 x 10-4, A0 = 1.93 X 10B2 cm2. Thus the nonlinear 
elasticity law of the mesentery is well represented by four 
parameters. 

It should be noted that T as given in equation 13 or 18 
does not vanish unless X * 00. By definition, however, we 
must have T = 0 when X = 1, which defines the un- 
strained state. Hence a modification is necessary in order 
to account for this initial condition. This can be done by 
adding a small constant p to equation 10 or 17. For 

llo x 

s 

‘1 1 

=I,; 1 
,pX dX= - - [& - ea] 

A0 ca 
(16) 

T* 
=- [ea(X-A*) - ea(l--X+)1, 

a 
(1 <x<x,) - - 

These simple relations are remarkable indeed. In 
mechanics, nonlinear material of an exponential type did 
not seem to have attracted any attention. Now it appears 
that the exponential type of materials is natural in the 
biological world. 

A better fit to the elastic curve of the rabbit mesentery 
can be obtained by a quadratic 
equation 10: 

expression instead of 

dT 
- = aT(1 - bT) 
dA 

(17) 
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ID - 9 RABBIT MES. 
Lo=0 864, Lph=2.77 cm 

STRAIN RATE 0.254 cm/min 

t I I I I I I I 

0 0.2 0.4 0.6 0.8 I. 0 1.2 1.4 

EXTENSION, cm 

FIG. 7. Failure curve. Rabbit mesentery. The specimen was 
stressed to failure. Note change of scale from Fig. 3. Failure ap- 
peared to be a gradual tearing. 

example, replace 10 by 

dT 
- au- -I- P) 

dX- 

ref. 15, p. 299), then the Eulerian tensile stress in simple 
elongation is given by 

and the Langrangian stress, by 

(26) 

When X --+ 1, the zero factor must be of the form (X - 
l/ X2) if the strain energy has no singularity at the unde 
formed state, i.e., if NV/Nr, d IV/d& are finite and con- 
tinuous at X = 1. Adopting this zero factor, we modify 
equation 11 as follows: 

T 1 
= const X - - ( 1 @ix 

x2 
(28) 

then 

1 
T + p = - eaX 

C 
(2-3) 

Evaluating the constant with the condition T = T* 
when X = X*, we obtain 

(22) 

Tf T = T* when X = A* then , 

T= (T* + @)p(X--X*) - p (24) 

Hence T = 0, X = 1 implies 

T*e-a(A*-1) 

p=, 
_ e-a (X*-l) 

(25) 

A small intercept a@ on the vertical axis does seem to 
exist in Fig. 8, but as a whole such a modification is quite 
unimportant. 

Sate that a rapid decrease of tension T is obtained for 
X < X*. The tension is reduced loo-fold (i.e., to T*/lOO) 
if the exponent a(X* - X) = 4.604, whereas a 1 ,OOO-fold 
reduction is obtained if the exponent is 6.9. As an exam- 
ple, for a certain specimen, we have lo = 1.27 cm, and 
,4o d7’/‘dZ = 47.25 g/cm at X* = 2.1, AJ* = 7 g, 
then a = (120 x 0.5)/7 = 8.57, and tension of 0.07 g 
is obtained if X* - X = 4.60418.57 = 0.537; i.e., when 
x = 1.563. 

An alternative to the p factor introduced in (22) is to 
introduce a polynomial factor which vanishes at X = 1. 
Guidance for such a modification can be obtained from 
the general theory of elasticity. It can be shown fairly 
easily that if the strain energy function W( x1, X2, X3) of an 
isotropic incompressible elastic body is expressed in terms 
of the strain invariants 11 and 12 (see Green and Adkins, 

T* 
T=------- 

1 
x* - 7 

(1 < x < A,) (29) - - 

By differentiation, 

dT 3x2 2 
-= T 
dX 

a+--- 
x3-1 x 1 

it is seen that a no longer has the same simple meaning as 
a, the slope of the dT/dX vs. T curve. However, the 
exponential factor in equation 29 is so powerful that as far 
as the mesentery is concerned, equations 29 and 30 plot 
out to be almost the same curves as those of equations 13 
and 10, respectively, with only a slight difference between 
a and tit. In the arteries, for which X* is of order 1.6 and 
the significant range of X is 1 to 2, the polynomial factor 
introduced in equation 29 become very important. 

The same factor may be introduced into the more 
accurate formula 18 to obtain the Lagrangian stress 

(1 <x<x,) (31) - - 

where 

C =[(A*---!-#+-b]ea* (32) 

and the Eulerian stress 
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FIG. 8. Tangential elastic modulus from hysteresis curves (~peci- 
nwz 3). Young’s modulus (the slope of the load-deflection curve) of 
the rabbit mesentery plotted against the tension T. Note that the 
Young’s modulus is not a constant as the linear theory assumes. 
For this figure, LO = 0.865 cm, A0 = 1.93 X low2 cm2, Xph = 3.21, 

T = 51.8 P dynes/cm2. 

The comparison between these formulas, 13, IR, 24, 
29, 31, and their appropriateness in the light of experi- 
mental results on other tissues, will be discussed in the 
section below. For the mesentery they are all applicable, 
with negligible differences between them. 

0 

King and Lawton (2 1) discussed the elasticity of body 
tissues in terms of statistical thermodynamics in analogy 
with polymer theory; hence it is of interest to compare the 
property of the mesentcry with that of the rubbery 
material. We note that the molecular theory for rubber- 
like material yields as a first approximation a strain 
energy function of the form 

w = C(& - 3), I1 = x12 + x22 + x32 (34) 

Hence the stress 

1 
CT = 2C x2 - - ( ) x 

(35) 

which is the polynomial factor in equation 26 (see Treloar, 
33). This same polynomial factor characterizes also a 
class of galvanized rubber known as the Mooney-Rivlin 
material, (see ref. 15, p. 26), for. which the strain energy 
function is simply 

Y. C. B. FUNG 

w = Cl u 1 - 3) + c,(r, 1 1 - 3)) 12 = - 1 x12 + x,z + x;3 (36) 

where Cl, C:! are constants, and the Eulerian stress in 
simple elongation is 

The Lagrangian stress is 

T=,(,-$I+;) 

(37) 

A more complex rubbery material was investigated by 
Rivlin and Saunders, (see ref. 15, p. 287 ff.), who pro- 
posed the strain energy function 

w = C(& - 3) + f (12 - 3) (39) 

where f( 12 - 3) is some function of the second invariant. 
The absence of the characteristic exponential factor of 

equation 29 from equations 33’ and 38 indicates that the 
mensentery is entirely different from vulcanized rubber. 

APPLICATION TO OTHER TISSUES 

The stress-strain law of the mesentery and blood vessels 
has much in common with other soft tissues. In the litera- 
ture, definitive results on simple elongation are known 
for the skin, the tendons, and the muscles. Some of these 
will be reviewed below. Many other soft tissues, such as 
the lung, bladder, etc., have nonlinear load-deflection 
relationships that appear similar to what we have shown 
above, but experimental results on these whole organs 
cannot be compared with the results of simple elongation 
experiments. 

Muscle. According to Hill ( 16-19), active muscle can 
be considered in terms of an active contractile element 
arranged in series with a passive (series elastic) element. 
The series element is functionally, but not necessarily 
structurally, separated from the contractile element. At 
rest, the contractile element is thought to be highly 
extensible and the resting tension is attributed primarily 
to another elastic component arranged in parallel with 
the contractile and passive elements named above. When 
activated, the contractile element develops tension and 
shortens at such a velocity that the power (rate of doing 
work) rapidly reaches a constant. As the contractile ele- 
ment shortens, the passive element is extended. The 
tension in the muscle is determined by the shortening of 
the contractile element, elasticity of the series elastic 
element, and the external end condition (whether fixed 
or moving). To separate and to measure these two ele- 
ments require, of course, great ingenuity. 

Aubert (1) has verified Hill’s ideas and presented the 
exponential form P = PO ~-z/zo as the load-extension 
relation for the series element of the sartorius muscle. 
Here I is the instantaneous length of the muscle. Jewel1 
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and Wilkie’s (20) result on the frog’s striated muscle 
(sartorius) was summarized by the equations 

P = 7 &IO.313 - 6 when P < 15 g wt 
P = 70 I - 9.2 whenP> 15gwt 

Thus the exponential form of the stress-strain law has 
been known for some time with respect to the series 
element of the muscles. 

Heart muscles. Quantitative studv of the series (passive) 
elastic element of the heart muscle provides another 
example of the straight line relationship between dP/dZ 
and P, (or d T/dX vs. T). Sonnenblick’s (30) result on 
cat’s papillary muscle is reproduced in Fig. 9. whose 
similarity with Fig. 8 is evident. The integrated load- 
deflection curve, as shown in Fig. 9 (right) does not go 
through the origin. This is necessarily the case if no 

modification such as those suggested in equation 24 or 29 
were made. In the case of heart muscle the initial inter- 
cept may be identified with the preload. The diffculty of 
establishing the initial muscle length must be appreciated. 
Sonnenblick (30) determined it by applving a small ini- 
tial force (40 g/cm2 as against the developed isometric 
force of 600 g/cm?). III view of the mesenterv results, we 
believe that the details of the load-extension curve at 
small X may very well have been masked by this small 
initia.1 load. 

Sonnenblick found that the dT/dX vs. T curve is was 

0.2 

FIG. 9. The dP/dX vs. P plot 
the P vs. X plot of the cat papil- 
lary muscle obtained by Sonnen- 
blick (30). P = total tension. 
Note the similarity between these 
curves and those in Figs. 2 and 8. 
Interchange abscissa and ordinate 
in the right-hand figure before 
comparing with Fig. 2. 

independent of the initial muscle length. The series 
elastic element stretched to an amount of 8-10 % of initial 
muscle length during the development of maximum 
isometric force (600 g/cm2). (In a most recent revision 
(26), it was shown that the earlier data did not give full 
correction to the elasticity of the testing equipment. 
When proper corrections were made the figure on the 
stretching of the series elastic element of the cardiac 
muscle was reduced to 4-5 %) 

Muscle jbers and myosin jZaments. Dubuisson and Mon- 

nier (8) studied the elastic properties of myosin filaments. 
Their data are shown in Fig. 10. I;; refers to freshly 
prepared myosin filaments placed in water buffered by 
phosphate (concentration 0.015~) solution to pH 7.00 
(normal pH of muscle at rest). A7 refers to aged myosin 
filaments (aged 25 days at laboratroy temperature and 
exposed to daylight) at pH 7.00. F5.5 and As.5 refer to 
fresh and aged filaments placed in water buffered to 
pH 5.5 (the isoelectric point). Also shown in Fig. 10 are 
Buchthal’s data (7) for a tetanically contracted single 
striated muscle fiber (shown by X) and a resting striated 
muscle fiber (shown by A). We tried to fit Dubuisson and 
Monnier’s data with the theornetical equation 29 with the 
following constants : 

for L&: X* = 1.60 a = 0.61 T* = 8.45 
for Fs.5: x* = 1.40 a’ = 0.01 T* = 4.40 
for F7: x* = 2.20 a = 0.01 T* = 3.60 
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- EO(29) 
-- EQ (13) 

which Ridge and Wright gave the following load-exten- 
sion relations (when converted to our notations) : 

48 

40 

phase 1: (O-100 g) : X = x + y log T 
T= &r-Z) /I/ 

phase 2: (loo-1,000 g): X = c + kTb 
phase 3: yielding and failure 

A  

where X, y, c, k, 6 are constants. The equation for the first 
phase may be identified with our equation 11. The second 
and the third phases are also similar to what we have 
shown in Fig. 7. However, whereas the second phase is 
relatively small in the mesentery, it is predominant in the 
skin. 

DISCUSSION 

8 

From the point of view of mechanics, the next impor- 
tant step is to generalize the one-dimensional equations 
to three dimensions. This will be presented in a separate 
paper. 

I  .  0 1.4 1.8 2.2 2.6 

EXTENSION L/Lo 

The specific results of the exponential elastic response 
and the exponential relaxation function are applicable to 
the mesentery and arteries only when the stresses are 
sufficiently small. Under unlimited stresses the specimen 
deviates from these laws and ultimatelv fails. 

FIG. 10. Tension-elongation curves of myosin filament by 
Dubuisson and Monnier (8); F7, fresh filament placed in pH 
7.00; A,, aged filament in pH 7.00; Fs.5, fresh filament placed in 
pH 5.50; &A, aged filament in pH 5.50. Buchthal’s (7) data for 
isolated striated muscle fiber stretched during tetanic contraction, 
and at rest. Solid curves, eq 29. Dotted curve, eq. 13. 

The curves corresponding to equahn 29 with these con- 
stants are plotted as solid lines in Fig. 10. The fit is rea- 
sonable, but some deviations exist. For Buchthal’s 
tetanically contracted fiber the same constants as & 
apply. For his resting muscle fiber the following equation 
13 applies : 

T = 34.3 e-1O.3(X-l.6O) 

This is shown as a dotted curve in Fig. 10. For Buchthal’s 
data in Fig. 10 the ordinate should be regarded as tension 
in milligrams instead of kilograms per square centimeter 
as labeled. 

King and Lawton (21) showed that a good fit to the 
F, curve in Fig. 10 for X in the range l-2 is obtained by 
the following equation derived from a statistical theory of 
polymer molecules : 

T = 3.02 (A2 + f)-2’5(h - !-) kg/cm2 (40) 

Beyond X = 2, King and Lawton’s formula deviates 
greatly from the experimental data. 

Skin. A typical load-extension curve for the skin from 
the abdomen of a 2-day-old male was given by Ridge 
and Wright (27), and reproduced in Fig. 11. This curve 
was obtained at a constant rate of 0.508 cm/min. The 
extension process could be divided into three phases, for 

Aside from the usual measurements of the dimensions 
of the tension test specimen, it is important to obtain the 
relaxed length of the specimen, i.e., the length la, when 
the specimen is unstressed. The extension ratio A is based 
on lo- 

The necessity of obtaining the natural relaxed state 
becomes evident when one tries to generalize the results 
of simple elongation to three-dimensional laws. For 
example, in simple elongation of the mesentery there 
exists a limiting large strain (of order 100-200 % elonga- 
tion) below which the stress is essentially zero. In a three- 
dimensional stress field, there exist an infinite number of 
states of large strain (combinations of tensile strains and 
shear strain) within which the stress is negligibly small. 
One might think that any one of these strain states may 
be taken as a starting point for a stress-strain law, but if 
one did this the result will be very confused or cumber- 
some. The only state that has a unique claim as a starting 
point is the fully relaxed natural state. This is the natural 
unstrained state which fortunately exists for a soft tissue. 
However, how can we determine this state in a living 
tissue? I have no simple answer to this question. It is one 
of the most difficult questions to answer in biological 
experiments, and it is one that deserves the closest atten- 
tion. 

We note that, in general, the resting configuration of a 
soft tissue in the body is not the unstrained state. Anyone 
with the experience of cutting a major artery will find the 
vessel shrink away from the cut. The spreading hole in 
the cut mesentery as shown in Fig. 1 is another example. 

CONCLUSION 

A formulation of the stress-strain law applicable to 
simple elongation tests of some soft tissues is presented. 
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FIG. 11. Ridge and Wright’s (27) load-extension curve of skin 
from the abdomen of Z-day-old male. Test has been carried to 
yielding and shows three phases. Gauge length = 1 .O cm. 

This formulation may be used in the lower stress range. 
Since the proposed law is about the simplest possible that 
includes the known features of large deformation, it is 
suggested that other living tissues be tested against the 
same law in order to establish whether and how modifica- . 
tions are necessary. 

For the mesentery, the series element of the heart 
muscle, and the skin at lower stress range, the elastic 
tension is approximately an exponential function of the 
extension ratio. Significant stress occurs only under a 
finite deformation. In the mesentery, an extension more 
than doubling the natural unstrained length of the 
specimen is necessary before significant stress response 
occurs. 

According to these facts, it is elementary, but perhaps 
important, to point out that the usual practice of present- 
ing a Young’s modulus of elasticity for a blood vessel is 
meaningless. Young’s modulus of a living tissue varies 
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