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We aim to provide you some familiarity with these tools, but the presentation is
far from complete.

Aswedescribed before, there are three parts to a problem in continuum mechan-
ics: kinematics, equilibrium, and constitutive behavior. So, let us take each one
in turn.

Equilibrium implies conditions on stress

In our discussion of stress and equilibrium, let us first introduce a notation system

for stress. In our examples, we defined stress conceptually to be the distributed y
force per unit area through a given test plane. In the example, the location of the

test plane was obvious. Now we want to create a general definition and notation X
system associated with our x-, y-, z-coordinate system. To specify the orientation

of the test plane, we will make use of the normal vector to the plane. z

Next consider the resultant force denoted by S (Figure 3.23). The x refers to  Figure 3.23 Forces on an imaginary
the cut-plane we selected, which has a surface normal aligned in the x-direc- cut-plane in the y-z-plane.

tion. Like any vector, 8 can be broken into its three components, S, ,S,.,S;,.

So, for this face, we have three potential stresses, one associated with each of

the components of Sy. To express the components of stress, we need a double

subscript notation system with the first referring to the direction of the cut-

plane normal, and the second referring to the direction of the internal force

acting through that plane. Now we have everything we need to define the stress

components in this coordinate system. For a cut-plane oriented perpendicular

to the x-direction,

S, (3.39)

Similarly, for the other components for the x-cut-plane

Sy, S (3.40)
Ty = lim and 7, = lim —.
as0 A A= A
And for the y-cut-plane
3 3.41)
7., = lim S"‘, O, =lim ) and 7, = lim Sy, (
’ A A ToA=0 A=0 A
and for the z-cut-plane
.S, .S, .S, (3.42)
T, = lim , Ty =lim = and o, =lim —*.
A= A A0 A A= A

Now that we have a consistent notation system, let us see what equilibrium can
tell us about stress. Remember that the equilibrium condition is a condition on
forces. Specifically, for a nonaccelerating body, the forces must sum to zero.
Imagine a small piece of material within a general solid body, and consider the
forces on the infinitesimal element as shown (Figure 3.24). We assume that the
dimensions of the element are dx, dy, and dz respectively. Each face has one nor-
mal force and two shear forces. However, because the element is vanishingly
small, we can approximate the force on the faces far from the origin as a function
of the force on the closer face and its derivative. Taking the first term in a Taylor
series,

dS.(x) 4.

dx

S (x+dx) =S, (x)+- (3.43)
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Figure 3.24 All the forces on a small ds,
element of volume oriented with Szz + 3 2dz
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Now we simply sum the forces in the x-, y-, and z-directions in turn:

X dsl 7
fo =0= (—Sxx + 8x, + -ds—‘dx] +| =Sy + S+ oy |+ (—sz, +Si + ds ‘-dz)
dx dy dz

_ dSx, _ -, dSy, ds:,
ny =0= ("'Sxy + 8¢, + -d-x—dx)+( Sy, + 8, + dy dy)+ (—Sz., + Sz + dz dz)

z =0= _S"r+sxz+ “dx |+ _SV7+S-"1+ —d +(—SZ; +S'l,;+ ’.-dZ).
Zf ( dx ) ( dy y) ' dz
(3.44)

Notice that the first two terms in each quantity in parentheses cancel. Next, we
can divide each row by the infinitesimal volume (dx dy dz) and simplify

(dsx‘) [dsyx] (dszx)
dx dy + dz -0

+
dydz dxdz dxdy
(dsx,] (ds_v,) (ds)
3.45
dx + dy + dz -0 ( )

dydz dxdz dxdy

(&), (%) (%)
dx + dy + de =0.

dydz  drxdz  dxdy

Now, notice that in each term we have a differential area. In each case, this differen-
tial area does not depend on the derivative in the numerator. Therefore, we can write

B—
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df S, +1(sy,)+i S« _o

dx\dydz ) dy\dxdz) dz|\dydz

d{ S, ) d( S, ), d S,

= +— =0 3.46
dx{ dydz dy(dxdz) dz{ dydz (3.46)
d( 8 |, d ( Sy. ) daf S ) _,

dxl dydz ) dy\dxdz) dz\dydz)

The differential area for each term in parentheses is the area normal to the respec-
tive force vector component. Therefore, each of these terms is simply our defini-
tion of stress. The equilibrium equations then take the following remarkably

simple form:

do, doy X do. _ 0
dx dy dz

doyy + doy, + doy _ 0
dx dy dz

d_o?u;+go-ﬁ+%=0_
dx dy dz

(3.47)

Example 3.4: Symmetry of stress

Our free-body analysis of the resultant forces on an
infinitesimal element can tell us one other important
fact about stress. Notice that the equilibrium equation is
the result of requiring the forces to sum to zero. What
about the moments? Remember that in a body thatis not
accelerating, the moments about any arbitrary axis must
also sum to zero. In our example, calculate the moments
about an axis passing through the center of the element
in the x-direction (Figure 3.25).

Summing moments implies
Y M, =0=>28,, +25:, =0
or Sy, = S:,. In terms of stress
J.J.a,,dxdy =J‘J.0'y,dxdy Of Oy =0y,

Likewise for the y- and z-axes, we obtain
Oy =0y and On =0g.

This important property of stress is that it must be
symmetric for any nonaccelerating body. Because

Kinematics relate strain to displacement

there is no additional information in the Gy, © 2, and
0,y terms they are typically replaced by Oxy, Oxz and
Oyz respectively.

Sz,

|

— S,

Figure 3.25 The forces on a small two-dimensional
element.

What is strain? The equations that relate strain and displacement are the kine-
matic equations and serve as the formal definition of strain. Unlike in our simple
examples above, these are general equations that characterize the deformation of




72  CHAPTER 3: Solid Mechanics Primer
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Figure 3.26 An imaginary line in the
X-direction embedded in the
material being analyzed.

aphysical body. We begin our discussion by assuming we have specified a deform-
able body in a coordinate system specified x, ¥, and z. There is a deformation at
each point in the body given as i, v, w, the displacements in the x-, y-, and z-direc-
tions respectively.

Let us start by defining normal strains. Imagine a general body undergoing a small
deformation. We can define a test line within the body in the undeformed condi-
tion and ask what happens to it during the deformation (Figure 3.26). We are
going to consider every possible deformation and orientation of the test line in
turn, but, for now, we assume that the test line is oriented along the x-direction.
The ends of the test line are denoted by A and B, and are able to displace
independently.

Now we need to determine how much the test line is elongated. In general, this
will be a function of u, v, and w. However, if the deformations are “small” the
extension of the test line is dominated by u. The strain quantity we are defining
here is the so-called infinitesimal or small deformation strain. Technically, it is
known as the Cauchy strain. The extension of the line is given by up - ug and the
average strain in the testline is simply the change in length over the original length
(ua - up)/(xa - xg) = Au/Ax. The strain at any given point can now be defined as
the average strain in the test line as the length of the line shrinks to zero:

ew Lim 2%, (3.48)
Ax—0 Ax

which is the definition of the derivative. To specify that we are referring to the dis-
placement in the x-direction of a test line originally oriented along the x-axis,
strain components are typically denoted with two subscripts,

du
Ex = ——. 3.49
dx (3.49)
Similarly in the y- and z-directions,
£ = dv
WO
d
Y (3.50)
22z dz .

Now we consider the shear strain. Perhaps the most logical thing to do would be
to define them as similar to normal strains. We could define

Eqy =—. (3.51)
However, there is a problem with this approach. Strain defined in this way is not

symmetric, because in general,

dx dy’ '

It will simplify things greatly to define strain as symmetric, and this can be easily
achieved by taking our definition of shear strain to be

1{dv du
Ey = z(dx + dy ), (3.53)

which preserves the symmetry condition, because Exy = Eyx Exz = Ezx AN £y = £y,

To clearly distinguish normal and shear strains, the symbol y is sometimes used
for the components of the shear strain. The notation y refers to the engineering
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strain defined in our pure shear and torsion examples. It differs from the contin-
uum strain ¢ by a factor of two, that is, ¥,y = 26, ¥z = 26y, and ¥y, = 2€y,.

The constitutive equation or stress-strain relation
characterizes the material behavior

How are strain and stress related? As we have noted, the equations that relate
stress and strain are the constitutive equations. These are the equations that cap-
ture the behavior of the material. They will change depending on the material
being considered. Earlier in this chapter, we introduced Hooke’s law in the one-
dimensional case, o = Ee. Let us see if we can generalize Hooke’s law to describe
the material behavior of a three-dimensional, isotropic, linearly xy elastic solid. In
fact, we have already described three parts of Hooke’s law in simple example
cases. We described the uniaxial behavior o = Eg, the transverse contraction due
to Poisson’s ratio £, = —ve,, and the shear behavior 7 = Gy. Now, let us see if we
can figure out the general case. If we are given a set of six stresses (three normal
stresses and three shear stresses) can we figure out the set of six strains? In other
words, what are the 36 (6 x 6) coefficients that must multiply the stresses to get
the strains. Note, it is easier to determine the coefficients that multiply the stresses
to get the strains, because the situations in which the material’s properties were
defined were given with several components of stress being zero. Because we are
describing a linear material, we can simply apply each of these behaviors in our
new notation system and add them up. We know from our example and definition
of Young'’s modulus, when we hold all other stresses to be zero and apply a stress
in a normal direction, the coefficient multiplying the strain in the same direction
is 1/E. This gives us three of our coefficients.

Now, what can Poisson’s ratio tell us? If the stress is applied in the x-direction, it
tells us that the normal strain in the y- and z-directions are -v times the strain in
the x-direction. However, we already know that strain is 1/E times the applied
stress. This gives us six more coefficients. For shear strain, we know that for an
applied pure shear stress, the normal strains and the shear strains in the other
directions are all zero. This gives us 24 more coefficients that must be zero. Finally,
we know from the relationship between shear strain and shear stress (1/G) the
final three coefficients we need. We can write the general form of the equations:

Eg= 113 [0 —VOy —v0,.], Vo =(1/G)Ty

1
£y = js[_va“ + 0y — V0|, Yu=[1/G)T, (3.54)
&, = %[—vaxx - vo,, + 0'21], Yy = (1/G)7y,.

Notice that there are three material constants (E, v, G) in Equation 3.54, though
only two of these are independent constants. The shear modulus can be expressed
in terms of Young’s modulus and Poisson’s ratio (the proof of this is left to you),
G=E/2(1+V).

‘Therefore,
1 2(1+v)
Ex = E[O'xx VO, —VO.], Ty= g T
1 21+ V) -
Ey = E[—vaxx +0y —VOu ] Ta= S e (3.55)
1 2(1+v
€= [-VOu — VO +0n], Ty = LE-——) Yya-
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These equations can be inverted to yield the more traditional form of stress as a
function of strain:

Ox = _Em[(l ~V)Ex + Ve, + ve,z] = E ‘e
(1+v)(1-2v) nven] Ty =
2 E
Oy = (1 + v)(l - 2v)[ven + (1 - v)é‘w + ven:' T = 2_(1 +T/)_ Y (3.56)
2 E
On = m[vsu + Ve +(1- V)E”] Ty = 201+ 67'yz.

Vector notation is a compact way to express equations
in continuum mechanics

Writing out in detail and manipulating the continuum equations of solid mechan-
ics can become quite cumbersome, therefore many compact forms of notation
have been introduced. One very powerful and extensively used system is known
as Voigt notation or vector notation. In this approach, the components of stress
and strain are organized into vectors,

( 3 (

O Exx
Oy €y
(o %% E.

o={""1 and e={ "\, (3.57)

Txy £
Txz 14
Ty 7y2J

Using this notation the stress-strain relationship Equation (3.55) is simply

SR
Oxx
Oy
) Oy [ _ E
Ty | (1+v)(1-2v)
()
Ty,
(1-v) v v 0 0
v (1-v) v 0 Ex
v v (1-v) 0 Ey
— 872
0 0 0 (—1 ZV—) 0 0 s or O=CE¢
2 £
0 0 0 0 (1-2v) 0 V=
2 }/YZJ
0 0 0 0 0 (1-2v) |
i 2 |

(3.58)
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( or £€=Do

(3.59)

Nota Bene: Lamé constants allow a compact form of Hooke's law

Equation 3.58 can be expressed in a more compact form.

[am h +2u A A 0 0 0 {exx
Oy A A+2u A 0 0 0|ley
10z e A A A+ 2[1 0 0 0 €z
Twy 0 0 0 2t 0 0 ||ey
T 0 0 0 0 2u O |lee
Ty 8520 0 0] 0 0 2u|leg]
where
- Ev
& (1+v)(1- 2v)
and
- _E
A v

note that » and A are known as the Lamé constants.
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Advanced Material: Coordinate rotations

Itis important to note that the vector notation we use is a
notational system only. We arrange the components of
stress and strain in a vector to make them easy to manipu-
late. However, stress and strain are not mathematically
vectors. As you remember, a vector is a quantity that has
both magnitude and direction, like force, deformation, or
velocity. An implication of this is that a vector maintains
its magnitude and direction from one coordinate system
to another. This implies that the components of a vector
must behave in a very specific way in terms of how they
relate to one another when expressed in different coordi-
nate systems. Assume that we have two (orthogonal) coor-
dinate systems, one specified by the vectors x, Y,andzand

P T ————

another specified by another set of vectors x’, Y,and 7 (x,
¥,z and %', y/, and 2’ are known as basis vectors). Also,
define the angle between any of these vectors to be Oy,
By, etc. A rotation matrix Q can be defined such that

cos(6)  cos(fy) cos(6)
Q=|cos(6) cos(6,) cos(6yx') |
cos(6x) cos(6,) cos(6,.)

Then any vector can be expressed in the new coordinate
system by multiplying the vector expressed in the old




