18 1 Tntroduction -- .
Exercises

1.1 [20] Make a chronology of major events in the development of industrial
rohots over the past 30 years. See References.

1.2 [20] Make a chart showing the major applications of indusirial robots
(e.g., spot welding, assembly, etc.) and the percentage of installed robots
in use in cach application area. Your figure should be similar to Fig. 1.2,
but be based of the most recent data you can find. See References.

1.3 [20] Make a chart of the major industrial robot vendors and their market
share, either in the U.3. or worldwide. See references section.

1.4 [10] In a sentence or two, define: kinematics, workspdce, trajectory.

1.5 [10) In a sentence or fwo, define: frame, degree of freedom, position
control.

1.6 [10] In a sentence or two, define: foree control, robot programming lan-
guage.

1.7 [i0] In a sentence or two, define; structural stiffess, nonlinear control,
and off-line programming.

1.8 [20] Make a chart indicating how labor costs have risen over the past 20
years.

1.9 [20] Make a chari indicating how the computer performance/price ratio
has increased over the past 20 years.

1.10 [20] Make a chart showing the major users of industrial robots (e.g.,
aerospace, automotive, etc.) and the percentage of installed robots in use
in each industry. Your figure should be similar to figure 1.3 but be based
on the most recent data you can find. See references section.

Programming Exercise (Part 1)

Familiarize yourself with the computer you will use to do the programming
exercises at the end of each chapter. Make sure you can create and edit files,
and compile and execute prograIns.

SPATIAL
DESCRIPTIONS AND

2.1 Introduction

Robotic manipulation, by definition, implies that parts and tools will be
joved around in space by some sort of mechanism. This naturally leads
to the need of representing positions and orientations of the parts, tools,
of the mechanism itself. To define and manipulate mathematical
quantities which represent position and orientation we must define
oordinate systems and develop conventions for representation. Many
he ideas developed here in the context of position and orientation
will form a basis for our later consideration of linear and rotational
ocities as well as forces and torques.

We adopt the philosophy that somewhere there is a universe
rdinate system to which everything we discuss can be referenced.
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We will describe all positiohs and orientations with respect to the
universe coordinate system or with respect to other Cartesian coordinate
systems which are {or could be) defined relative to the universe system.

2.2 Descriptions: positions, orientations, and frames

A description is used to specify attributes of vatious objects with
which a manipulation system deals. These objects are parts, tools, or
perhaps the manipulator itself. Tn this section we discuss the description
of positions, orientations, and an entity which contains both of these

descriptions, frames.

Description of a position

Once & coordinate system is established we can locate any point in the
universe with a 3 x 1 position vector. Because we will often define
many coordinate systems in addition to the universe coordinate systemi;
vectors must be tagged with information identifying which coordinate
system they are defined within. In this book vectors are written with
a leading superscript indicating the coordinate system to which they
are referenced (unless it is clear from context), for example, A P. This

means that the.components: of 24 P.have numerical values which.indicate..

distances-along:the-axes” of {4} Each of these distances along an
axis can be thought of as the result of projecting the vector onto the
corresponding axis,

FIGURE 2.1 Vector relative to frame example.

Figure 2.1 pictorially represents a coordinate system, {A}, with
three mutually orthogonal unit vectors with solid heads. A point 4P
is represented with a vector and can equivalently be thought of as
a position in space, or simply as an ordered set of three numbers.
Individual elements of a vector are given subscripts z, y, and z:

K [pw} '
P=1py]- (2.1)

P

In summary, we will describe the position of a point in space with a
position vector. Other 3-tuple descriptions of the position of points, such
as spherical or cylindrical coordinate representations are discussed in the
exercises at the end of the chapter.

Description of an orientation

Often we will find it necessary not only to represent a point in space
but also to describe the orientation of a body in space. For example,
if vector 4P in Fig. 2.2 locates the point directly between the fingertips
of a manipulater’s hand, the complete location of the hand is still
. not specified until its orientation is also given. Assuming that the
- manipulator has a sufficient number of joints™ the hand could be oriented
arbitrarily while keeping the fingertips at the same position in space. In
order to describe the orientation of a body we will attach a coordinate
system to the body and then give a description of this coordinate system
‘relative to the reference system. In Fig. 2.2, coordinate system {B} has
been attached to the body in a known way. A description of {B} relative
to {A} now suffices to give the orientation of the body.
-+ Thus, positions of points are described with vectors and orientations
“of bodies are described with an attached coordinate system. One way to
‘describe the body-attached coordinate system, {B}, is to write the unit
vectors of its three principal axes! in terms of the coordinate system {A}.
We denote:the unit-vectors. giving. the principal-directions:ofico:.
rdinate system{ B} as X5, Y, and Ly When written-in- terms:of
vordinate system: {4} they. are called: A Xy, .A?B.-,.-and.--_:f‘}. ZgeIt will be
onvenient if we stack these three unit vectors together as the columns
f a 3% 3 matrix, in the order AXp, AV, AZ 5. We will call this matrix a
‘atation:matrix;and beecause this: particular rotation: matrix: describés
; relative:to: { A}; wesname: it with-the:notation:2R. The choice of
ding sub- and superscripts in the definition of rotation matrices will

‘*:How many are “sufficient” will be discussed in Chapters 3 and 4.

- t_;: is often convenient to use three, although any two would suffice since
e third can always be recovered by taking the cross product of the two given.

2.2 * Descriptions: pdsitibné, orientationsi,.- and frames’ |2_1|
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{A}

FIGURE 2.2 Locating an object in position and orientation.

become clear in following sections.

a 11 Tiz Tz
_ A% AT A% —
gR= Xpg Yp Zg|=1try Toz Tos|-
a1 Ts2 Taz

In summary, a set of three vectors may be used to specify an orientation.
For convenience we will construct a 3 X 3 matrix which has these
three vectors as its columns. Hence, whereas the-position..ef.a. point
is.represetited “with:a:veector;-the.orientation.of a.body is represented
with.a.matrix:<In Section 2.8 we will consider some other descriptions
of orientation which require only three parameters

We can give expressions for the scalars r;; in (2.2) by noting that
the components of any vector are simply the pro;ectlons of that vector

onto the unit directions of its reference frame. Hence, each:component-of,
ﬁ'R-' in(2:2) can:be:written asthe dot:productiof a:pair. of unit vectors as:

. Rp-Xa Y5-Xa Zp-X,
Xp Za Yp-Zs Zp-Z,

§R=|:AXB AYB AZi= Xy-¥y ¥B.¥A Zy- Yy

For brevity we have omitted the leading superscripts in the rightmost
matrix of (2.3). In fact the choice of frame in which to describe the unit

vectors is arbitrary as long as it is the same for each pair being dotted. -

Since the dot product of two unit vectors yields the cosine of the angle
.often. referred to:as: directmn ‘cosines.

Further inspection of {2.3) shows that the rows of the matrix are
the unit vectors of {A} expressed in {B}; that is,

o 5 X7
AR=|4%p AVp AZp|=| BV (2.4)
BZ‘?{

transpose of {2 3) that is,
BR= 4R". (2.5)

" This suggests that the inverse of a rotation matrix is equal to its
* transpose, a fact which can be easily verified as

AxT
ART 4R = AYT AXy, Ayp AZp|=1,, (2.6)
AZB
. where I3 is the 3 x 3 identity matrix. Hence,
#R= R = §R" (2.7)

- Indeed from linear algebra [1] we know that the inverse of a matrix
with orthonormal columns is equal to its transpose. We have just shown
this geometrically.

Description of a frame

he information needed to completely specify the whereabouts of the
manipulator hand in Fig. 2.2 is a position and an orientation. The point
n the body whose position we describe could be chosen arbitrarily,
however: For convenience, the point whose position we will describe
is: chosen as the origin of the body-attached frame. The situation of a
p081t1011 and an orientation pair arises so often in robotics that we define
1 entity called a frame, which is a set of four vectors giving position and
) ientation information. For example, in Fig. 2.2 one vector locates the
fingertip position and three more describe its orientation. Equivalently,

e description of a frame can be thought of as a position vector and
1, totation matrix. Note that a frame is a coordinate system, where in
ldition to the orientation we give a position vector which locates its
i_ifl relative to some other embedding frame. For example, frame {B}

2.2 Descriptions: positions, orientations; and frames [ 23 |
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FIGURE 2.3 Example of several frames.

is described by 4R and 4Pgppg, where APpore is the vector which
locates the origin of the frame {B}:

{B} = {ER: APB()RG} : (2.8)
In Fig. 2.3 there are three frames that are shown along with the universe
coordinate system. Frames {A} and {B} are known relative to the
universe coordinate system and frame {C} is known relative to frame
{4}.

In Fig. 2.3 we introduce a graphical representation of frames which
is convenient in visualizing frames. A frame is depicted by three arrows
representing unit vectors defining the principal axes of the frame. An
arrow representing a vector is drawn from one origin to another. This

vector represents the position of the origin at the head of the arrow in ‘

terms of the frame at the tail of the arrow. The direction of this locating
arrow tells us, for example, in Fig. 2.3, that {C} is known relative to
{A} and not vice versa.

In summary, a frame can be used as a description of one coordinate
system relative to another. A frame encompasses the ideas of repre-
senting both position and orientation, and so may be thought of as
a generalization of those two ideas. Positions could be represented by

a frame whose rotation matrix part is the identity matrix and whose .

position vector part locates the point being described. Likewise, an
orientation could be represented with a frame whose position vector
part was the zero vector.

2.3 Mappings: changing descriptions from frame to frame |A|

2.3 Mappings: changing descriptions from frame
to frame

In a great many of the problems in robotics, we are concerned with
expressing the same quantity in terms of various reference coordinate
systems. The previous section having introduced descriptions of posi-
tions, orientations, and frames, we now consider the mathematics of
mapping in order to change descriptions from frame to frame.

Mappings involving translated frames

In Fig. 2.4 we have a position defined by the vector BP. We wish to
express this point in space in terms of frame {A}, when {A} has the
same orientation as {B}. In this case, {B} differs from {A} only by a
translation which is given by 4 Ppopa. 8 vector which locates the origin
of {B} relative to {A}.

Because both vectors are defined relative to frames of the same
orientation, we calculate the description of point P relative to {A},
AP, by vector addition:

A P = B P + A PEQRG- (2‘9)
. Note:that: only:in:the speecial:case of equivalent orientations miay we'add ..

- vectors.which.are.defined.in:terms:of different frames;.

GURE 2.4 ‘Translational mapping.

A
PF’ = Tﬁfa" JSF' - F\P& PR ) gt ER =3
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Tn this simple example we have illustrated mapping a vecior from
one frame to another. This idea of mapping, or changing the description
from one irame to another, is an extremely important concept. The
quantity itself {(here, a point in space) is not changed; only its description
is changed. This is illustrated in Fig. 2.4, where the point described
by BP is not translated, but remains the same, and instead we have

computed a new description of the same point, but now with respect

to system {A}.

We say that the vector 4 Pyype defines this mapping, since all the
information needed to perform the change in description is contained
in APpope (along with the knowledge that the frames had equivalent
orientation).

Mappings involving rotated frames

Section 2.2 introduced the notion of describing an orientation by three
unit vectors denoting the principal axes of a body-attached coordinate
gystem. For convenience we stack these three unit vectors together as
the columus of & 3 x 3 matrix. We will call this matrix a rotation matrix,
and if this particular rotation matrix describes {B} relative to {A}, we
name it with the notation %R.
" “Note that by our definition, the columns of a rotation matrix all
have unit magnitude, and further, these unit vectors are orthogonal. As
we saw earlier, a consequence of this is that
AR= ER™* = ER". (2.10)
Therefore, since the columns of R are the unit vectors of {B} written
in {A}, then the rows of AR are the unit vectors of {A} written in {B}.
Qo a rotation matrix can be interpreted as a set of three column
vectors or as a set of three row vectors as follows:

BT
Xa
— BT
= | By7

BZ};
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4R (2.11)

As in Fig. 2.5, the situation will arise often where we know the definition
of a vector with respect to some frame, {B}, and we would like to know
its definition with respect to another frame, {A}, where the origins of
the two frames are coincident. This computation is possible when a
description of the orientation of {B} is known relative to {A}. This
orientation is given by the rotation matrix éR, whose columns are the
unit vectors of {B} written in {A}.

Tn order to calculate 4 P, we note that the components of any vector
are simply the projections of that vector onto the unit directions of its

{B} {A}
23 ZA [ ]
Bp
Yp
» ¥,
X,
et

© FIGURE 2.5 Rotating the description of a vector.

frame. The projection is calculated with the vector dot product. Thus
we see that the components of AP may be calculated as

(2.12)

~In order to express (2.12) in terms of a rotation matrix multiplica-
on, we note from (2.11) that the rows of R are FX ,, BY,,and BZ,.
:-SQ (2.12) may be written compactly using a rotation matrix as

Ap= 4R PP

‘quation (2.13) implements a mapping—that is, it changes the descrip-
ion of a vector—from P, which describes a point in space relative to
13 il_lto AP, which is a description of the same point, but expressed
ative to {A}.

We now see that our notation is of great help in keeping track of
p‘pings and frames of reference. A helpful way of viewing the notation
-'_he_LVe introduced is to imagine that leading subscripts cancel the
__i;.'lg_ superscripts of the following entity, for example the Bs in (2.13).

9.3 Mappings: changing descriptions from frame to frame |27

o (2.18)0
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P FXAMPLE 2.1

Figure 2.6 shows a frame { B} which is rotated relative to frame {A}
ahout Z by 30 degrees. Here, Z is pointing out of the page.

Writing the unit vectors of {B} in terms of {4} and stacking them
as the columns of the rotation matrix we obtain

0.866 —0.500 0.000 7
AR= 10500 0866 0.000]. (2.14)
0.000  0.000 1.000
Given
0.0
Bp=|20t. : (2.15)
0.0
We calculate 4P as
~1.000
Ap= 4RBP= 1.732 | . (2.16)
0.000

Here gR acts as a mapping which is used to describe BP relative to
frame {A}, 4P. As introduced in the case of translations, it is important
to remember that, viewed as a mapping, the original vector P is not
changed in space. Rather, we compute a new description of the vector

relative to another frame. u
Bp
(B 14}
B
YB ?i}A

FIGURE 2.6 {B} rotated 30 degrees about Z.

Mappings involving general frames

frame; { B and-we wonld-like to-know: itsdeseription with:respect:to
.another frame; {4} We now consider-the -general case of miapping:Here
the origin, of frame {B} is not. coincident with. that. of frame={:A}- but
hasa general vector offset: The vector that-lecates {8 }'s-origin is called

Giy_en-.-:EB-,':we*--Wish' to-compute: AP ag-in-Figs 2T
We can first change PP to its description relative to an intermediate
frame which has the same orientation as {A}, but whose origin is
coincident with the origin of {B}. This is done by premultiplying by 4R
as in Section 2.3. We then account for the translation between origins
by simple vector addition as in Section 2.3, yielding

AP= ERPP+ "Pporg. A2

. Bquation (2.17} describes a general transformation mapping of a vector
. from its description in one frame to a description in a second frame. Note
' the following interpretation of our notation as exemplified in (2.17): the
. B’s cancel leaving all guantities as vectors written in terms of A, which
may then be added.

The form of (2.17) is not as appealing as the conceptual form,

Ap= 41 Bp (2.18)

That is, we would like to think of a mapping from one frame to another
as all operator in matrix form. This aids in writing compact equations as

RE 2.7 General transform of a vector.

2.3 Mappings: changing descriptions from frame to frame &I

APyanae Mo {BY i rotated with respect to {A} a8 described by 4 R
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weil as being conceptually clearer than {2.17). In order that we can write
the mathematics given in (2.17)} in the matrix operator form suggested
by (2.18), we define a 4 x 4 matrix operator, and use 4 x 1 position
vectors, so that (2.18) has the structure

(2:19)

That is,

1. A “1" is added as the last element of the 4 x 1 vectors.
2. Arow “[000 1] is added as the last row of the 4 x 4 matrix.

We adopt the convention that a position vector is 3 x L or 4 x 1
depending on whether it appears multiplied by a 3 x 3 matrix or by a
4 x 4 matrix. It is readily seen that (2.19) implements

AP= GREP+ A Ppope

1=1 {2.20)

The 4 x 4 magrix in (2.19) is called a-homegeneous:transform.
For our purposes it can be regarded purely as a construction used to cast
the rotation and translation of the general transform into a single matrix
form. In-otherfields of study it can be séd t6 comprite perspective and

scaling. operations:(when-the last-rowis-other than-4070"0 1], or the
rotation-matrix-is not otthenormat): The interested reader should see [2].

Often we will write equations like (2.18) without any notation
indicating that this is & homogeneous representation, because it is
obvious from context. Note that while homogeneous transforms are
useful in writing compact equations, a computer program to transform
vectors would generally not use them because of time wasted multiplying
ones and zeros. Thus, this representation is mainly for our convenience
when thinking and writing equations down on paper.

Just as we used rotation matrices to specify an orientation, we will
use transforms (usually in homogeneous representation) to specify a
frame. Note that while we have introduced homogeneous transforms in
the context of mappings, they also serve as descriptions of frames. The
description of frame {B} relative to {4} is 47.

I X AMPLE 2.2

Figure 2.8 shows a frame {B} which is rotated relative to frame {A}
about Z by 30 degrees, and translated 10 units in X 4, and 5 umts in
V,. Find AP where BP = [3.0 7.0 0.0]7.

2.3 Mappings: changing descriptions from frame to frame li_l

FIGURE 2.8 Frame {B} rotated and translated.

The definition of frame {B} is

0.866 —0.500 0.000 10.0
0.500  0.866 0.000 5.0

AT 2.21
BT= 10000 0000 LOOD 0.0 (2:21)
0 0 0 1
Given
3.0
Bp—=|70]. (2.22)
0.0
‘We use the definition of {B} given above as a transformation,
9.098
Ap= 4T Bp= 112562|. = (2.23)
0.000
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2.4 Operators: translations, rotations, transformations

The same mathematical forms which we have used to map points
between frames can also be interpreted as operators which translate
points, rotate vectors, or both. This section illustrates this interpretation
of the mathematics we have already developed.

Translational operators

A translation moves a point in space a finite distance along a given
vector direction. Using this interpretation of actually translating the
point in space, only one coordinate system need be involved. It turns
out that translating the point in space is accomplished with the same
mathematics as mapping the point to a second frame. Almost always, it
is very important to understand which interpretation of the mathematics
is being used. The distinction is as simple as this: When a vector is
moved “forward” relative to a frame, we may consider either that the
vector moved “forward” or that the frame moved “backward.” The
mathematics involved in the two cases is identical, only our view of the
situation is different. Figure 2.9 indicates pictorially how a vector 4P,
is translated by a vector 4. Here the vector 4@ gives the information
needed to perform the translation.

FIGURE 2.9 Translation operator.

The result of the operation is a new vector 4 P,, calculated as

Apz - AP1 + AQ- (224)
To write this translation operation as a matrix operator, we use the
notation

4P, = Dgla) * Py, (2.25)

where g is the signed magnitude of the tramslation along the vector
direction ¢. The D, operator may be thought of as a homogeneous
transform of the special simnple form:

1 0 0 g,
01 0 ¢

Doldd=1g o 1 4| (2.26)
600 1

where q,, g,, and g, are the components of the translation vector ¢}

and ¢ = /@2 + ¢2 + ¢2. Equations (2.9) and (2.24) implement the same

mathematics. Note that if we had defined PP, (instead of 4 Pgope)
in Fig. 2.4 and had used it in (2.9) then we would have seen a sign change
between (2.9) and (2.24). This sign change would indicate the difference
between moving the vector “forward” and moving the coordinate system
“hackward.” By defining the location of {B} relative to {A} (with
APporc) Wwe cause the mathematics of the two interpretations to be
the same. Now that the “Dg” notation has been introduced, we may
also use it to describe frames, and also as a mapping.

Rotational operators

Another interpretation of a rotation matrix is as a rotational operator
which operates on a vector 4P, and changes that vector to a new vector,
APz, by means of a rotation, R. Usually, when a rotation matrix is shown
as an operator no sub- or superscripts appear since it is not viewed as
relating two frames. That is, we may write
Ap,= R4P,. (2.27)
Again, as in the case of translations, the mathematics described in (2.13)
~and in (2.27) is the same; only our interpretation is different. This fact
" also allows us to see how to obtain rotational matrices which are to be
:used as operators:
i The rotation matriz which rotates vectors through some rotation, R,
48 the same s the rotation matriz which describes a frame rotated by R

2.4 Operators: translations, rotations, transformations 33
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Although a rotation matrix is easily viewed as an operator, we
will also define another notation for a rotational operator which clearly
indicates which axis is being rotated about:

AP, = Ry (0) Py (2.28)

In this notation “Ry ()" is a rotational operator which performs a
rotation about the axis direction K by an amount ¢ degrees. This
operator may be written as a homogeneous transform whose position
vector part is zero. For example, substitution into (2.11) yields the
operator which rotates about the Z axis by 8 as

cosf] —sinfd 0 O

sin § cosf 0 0
Ru(0)=1", 0 1 1 (2.29)

0 0 01

Of course, to rotate a position vector we could just as well use the
3 x 3 rotation matrix part of the homogeneous transform. The “Rg”
notation, therefore, may be considered to represent a 3 x 3 or a 4 x 4
matrix. Later in this chapter we will see how to write the rotafion matrix
for a rotation about a general axis, K.

B FXAMPLE 2.3

Figure 2.10 shows a vector 4 P,. We wish to compute the vector
obtained by rotating this vector about Z by 30 degrees. Call the new
vector 4 P,.

The totation matrix which rotates vectors by 30 degrees about Z
is the same as fthe rotation matrix which describes a frame rotated
30 degrees about Z relative to she reference frame. Thus the correct
rotational operator is *

0.866 —0.500 0.000
R;{(30.0) = | 0500  0.866 0.000} {2.30)
0.000  0.000 1.000
Gliven
0.0
AP = 2.0} (2.81)
0.0

We calculate 4P, as

—1.000
AP, = R,;(30.0) P, = 1.7321 . = (2.32)
0.000

AP2

FIGURE 2.10 The vector A p) rotated 30 degrees about z.

Equations (2.13) and (2.27) implement the same mathematics. Note
that if we had defined R (instead of §R) in (2.13} then the inverse
of R would appear in (2.27). This change would indicate the difference
between rotating the vector “forward” versus rotating the coordinate
system “backward.” By defining the location of {B} relative to {4}
(with 4 R) we cause the mathematics of the two interpretations to be
the same.

Transformation operators

As with vectors and rotation matrices, a frame has another interpre-
tation as a transformation operator. In this interpretation, only one
coordinate system is involved, and so the symbol 7' is used without
sub- or superscripts. The operator T rotates and translates a vector Ap,
to compute a new vector, AP,. Thus

Ap,= T 4P, (2.33)

Again, as in the case of rotations, the mathematics described in (2.18)
and in (2.33) is the same, only our interpretation is different. This fact

- also allows us to see how to obtain homogeneous transforms which are
' to be used as operators:
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The transform which rotates by R and translates by Q is the same
as the transform which describes a frame rotated by R and translated by
Q relative to the reference frame.

A transform is usually thought of as being in the form of a homoge-
neous transform with general rotation matrix and position vector parts.

R X AMPLE 2.4

Figure 2.11 shows a vector 2 P;. We wish to rotate it about Z by 30
degrees, and translate it 10 units in X 4, and 5 units in V,. Find 4P,
where 4P, = [3.0 7.0 0.0]T.

The operator T, which performs the translation and rotation, is

0.866 -0.500 0.000 10.0
0.500  0.866 0.000 5.0

T=1o000 0000 1000 00} (2.34)
0 0 0 1
Given
3.0
Ap, = |70]. (2.35)
0.0
We use T' as an operator:
9.098
Ap,= T4P, = |12.562 | . (2.36)
0.000
4
d
/
7/
ap, / RYP,

» }?A

FIGURE 2.11 The vector APl rotated and translated to form APZ.
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Note that this example is numerically exactly the same as Example 2.2,
but the interpretation is quite different. L]

2.5 Summary of interpretations

We have introduced concepts first for the case of translation only, then
for the case of rotation only, and finally for the general case of rotation
about a point and translation of that point. Having understood the
general case of rotation and translation, we will not need to explicitly
consider the two simpler cases since they are contained within the general
framework.

As a general tool to represent frames we have introduced the
homogeneous transform, a 4 x 4 matrix containing orientation and
position information.

We have introduced three interpretations of this homogeneous trans-
form:

1. It is a description of a frame. AT describes the frame {B} relative
to the frame {A}. Specifically, the columns of 4R are unit vectors
defining the directions of the principal axes of {B}, and APeora
locates the position of the origin of {B}.

2. Tt is a transform mapping. 4T maps °P — AP.
It is a transform operator. T operates on AP, to create A P,.

From this point on the terms frame and transform will both be used
to refer to a position vector plus an orientation. Frame is the term favored
when speaking of a description, and fransform is used most frequently
when use as a mapping or operator is implied. Note that transformations
are generalizations of translations and rotations, so we will often use the
term transform when speaking of a pure rotation (or translation).

2.6 Transformation arithmetic

In this section we look at the multiplication of transforms and the inver-
sion of transforms. These two elementary operations form a functionally
complete set of transform operators.
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Compound transformations
In Fig. 2.12, we have “P and wish to find Ap.

Frame {C} is known relative to frame {B}, and frame {B} is known
relative to frame {A4}. We can transform P into BP as
Bp= BT °p (2.37)
And then transform PP into AP as
Ap= 4T 5P (2.38)
Combining (2.37) and (2.38) we get the following, not unexpected result:
Ap= 4T BT P, T (2.39)
from which we could define
AT = 4T ET. (2.40)
Again, note that familiarity with the sub- and superscript notation

makes these manipulations simple. In terms of the known descriptions
of {B} and {C}, we can give the expression for AT as

e
[
il

(2.41)

I
I
sRER { 5R PPoore +  Ppora
|
)
|
|
|

FIGURE 2.12 Compound frames: each is known relative to previous.

2.6 Transformation arithmetic Lﬁ?__l

Inverting a transform

Consider a frame {B} which is known with respect to a frame {A};
that is, we know the value of 47. Sometimes we will wish to invert
this transform, in order to get a description of { A} relative to {B}; ie.,
B BT. A straightforward way of calculating the inverse is to compute the
mverse of the 4 x 4 homogeneous transform. However, if we do so, we
are not taking full advantage of the structure inherent in the transform
It is easy to find a computationally simpler method of computing the
inverse which does take advantage of this structure.

To find BT we must compute § R and BP, g, from $R and # Ppgpe.
First, recall from our discussion of rotation matrices that

BR= 4RT. (2.42)
Next, we change the description of 4 Pgppe into {B} using Eq. (2.12):
E (APBORG} = 5R *Paopc + FPaore (2.43)
Since the left-hand side of Eq. (2.43) must be zero, we have
BPyong =— AR * Ppopg = — 5HT *Poone. (2.44)
Using (2.42) and (2.44) we can write the form of §7 as
l
ART | RT AP
|

(2.45)

Note that with our notation,
SBr— 411

Equation (2.45) is a general and extremely useful way of computing the
inverse of a homogeneous transform.

B EXAMPLE 2.5

Figure 2.13 shows a frame {B} which is rotated relative to frame
{A} about Z by 30 degrees, and translated four units in X 4, and three
units in ¥,. Thus, we have a description of 47" Find §7.

The frame deﬁnmg {B} is

0.866 —0.500 0.000 4.0
0.500  0.866 0.000 3.0
T= 10000 0000 1.000 006! (2.46)

0 0 0 1

[
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(B}
Vs 2,
{Al
¥4
Xy
FIGURE 2.13 {B} relative to {A}.
Using (2.45) we compute
0.866 0.500 0.000 —4.964
—0.500 0.866 0.000 —0.598
B .
AT=| gooo oooo 1000 00 | " (2.47)
0 0 0 1

2.7 Transform equations

Figure 2.14 indicates a situation in which a frame {D} can be expressed
as products of transformations in two different ways. First,

up— Y7 5T, (2.48)
but also as
vr= Y1 BT §T. (2.49)

We may set these two descriptions of %T equal to form a transform
equation:
Up AT = %1 ET 3T (2.50)
Transform equations may be used to solve for transforms in the case of
n unknown transforms and n transform equations. Consider (2.50) in
the case that all transforms are known except gT. Here we have one
transform equation and one unknown transform; hence, we easily find
its solution as

Bp= YT YT AT §T 4. . (2.51)

2.7 Transform equations &

{D}

{c}

FIGURE 2.14 Set of transforms forming a loop.

Figure 2.15 indicates another similar situation.

Note that in all figures we have introduced a graphical representation
of frames as an arrow pointing from one origin to another origin. The
arrow’s direction indicates which way the frames are defined: in Fig. 2.14,
frame {D} is defined relative to {4}, but in Fig. 2.15 frame {A} is
defined relative to {P}. In order to compound frames when the arrows
line up, we simply compute the product of the transforms. If an arrow
po'mts the opposite way in a chain of transforms, we simply compute its
inverse first. In Fig. 2.15 two possible descriptions of {C} are

br= Y1 Tt ET (2.52)
and
er= 3T erT. (2.58)
Again, we might equate (2.52) and (2.53) to solve for, say, 41"
Qr= §T 8T gT ' AT (2.54)
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tCh

o

FIGURE 2.15 Example of a transform equation.

B EXAMPLE 2.6

Assume we know the transform 27 in Fig. 2.16, which describes
the frame at the manipulator’s fingertips {T'} relative to the base of the
manipulator, { B}. Also, we know where the tabletop is located in space
relative to the manipulator’s base because we have a description of the
frame {5} which is attached to the table as shown, £T. Finally, we know
the location of the frame attached to the bolt lying on the table relative
to the table frame, that is, 2. Calculate the position and orientation
of the bolt relative to the manipulator’s hand, 57T

Guided by our notation (but, it is hoped, also by our understanding)
we compute the bolt frame relative to the hand frame as

Er= E7-'E7iT. W (2.55)

2.8 More on representation of orientation w

FIGURE 2.16 Manipulator reaching for a bolt.

2.8  More on representation of orientation

So far, our only means of representing an orientation is by giving a
3 x 3 rotation matrix. As shown, rotation matrices are special in that all
columnns are mutually orthogonal and have unit magnitude. Further, we
will see that the determinant of a rotation matrix is always equal to +1.
Rotation matrices may also be called proper orthonormal matrices
where “proper” refers to the fact that the determinant is +1 (nenproper
orthonormal matrices have a determinant of —1).

It is natural to ask whether it is possible to describe an orientation
with fewer than nine numbers. A result from linear algebra known as
Cayley’s formula for orthonormal matrices [3] states that for any
proper orthonormal matrix, R, there exists a skew-symmetric matrix,

S, such that

R=(I;~8) '(I;+9), {2.56)
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where I is a 3 x 3 unit matrix. Now a skew- symmetric matrix (i.e.,

S = —87) of dimension 3 is specified by three parameters (s (849 5y,8,) as
0 —-s. s

S=1 s, 0 —s, . (2.57)
—8y Sz 0

Therefore, an immediate consequence of formula (2.56) is that any 3 x 3
rotation matrix can be specified by just three parameters.

Clearly, the nine elements of a rotation matrix are not all indepen-
dent. In fact, given a rotation matrix, R, it is easy to write down the
six dependencies between the elements. Imagine R as three columns, as
originally introduced:

R= [x Y Z} (2.58)

As we know from Section 2.2, these three vectors are the unit axes of
some frame written in terms of the reference frame. Since each is a unit
vector, and since all three must be mutually perpendicular, we see that
there are six constraints on the nine matrix elements:

1X]= 1,

¥ =1,

1Z] = 1,
PIr (2.59)
X-zZ=0,

V.Z2=0

1t is natural then to ask whether representations of orientation can be
devised such that the representation is conveniently specified with three
parameters. This section will present several such representations.

Whereas translations along three mutually perpendicular axes are
quite easy to visualize, rotations seem less intuitive. Unfortunately,
people have a hard time describing and specifying orientations in
three-dimensional space. One difficulty is that rotations don’t generally
commute., That is, 4R BR is not the same as R ZR.

2.8 More on representation of orlentation 45

Bl EXAMPLE 2.7

R Consider two rotations, one about Z by 30 degrees and one about
X by 30 degrees.

0.866 —0.500 0.000
RZ(SD)—{O.SUO 0.866 0.00{)} (2.60)
0.000  0.000 1.000
1.000 0.000  0.000
Rx{ao)_{o.ooo 0.866 —0.500} (2.61)
£.000 0.500  0.866
0.87 —0.43  0.25
R,(30) Ry (30) = | 050 ©.75 —0.43}
0.00 050 087
(2.62)

0.87 —0.50 (.00
0.25 043 087

# Ry (30) Rz (30) = [0.43 0.75 —0.50

This is not surprising since we use matrices to represent rotations and
multiplication of matrices is not commutative in general. L]

Because rotations can be thought of either as operators or as descrip-
tions of orientation, it is not surprising that different representations
are favored for each of these uses. Rotation matrices are useful as
operators. Their matrix form is such that when multiplied by a vector
they perform the rotation operation. However, rotation matrices are
somewhat unwieldy when used to specify an orientation. A human
operator at a computer terminal who wishes to type in the specification
of the desired orientation of a robot’s hand would have a hard time to
input a nine-element matrix with orthonormal columns. A representation
which requires only three numbers would be simpler. The following
sections introduce several such representations.

X-Y-Z fixed angles eoll, PITCH, SAL AN ELES

One method of describing the orientation of a frame {B} is as follows:
Start with the frame coincident with a known reference frame {A}.

First rotate {B} about X, by an angle v, then rotate about Y, by an
angle 8, and then rotate about Z, by an angle o.

Each of the three rotations takes place about an axis in the fixed
reference frame, {A}. We will call this convention for specifying an ori-

entation X-Y-Z fixed angles. The word “fixed” refers to the fact that
; the rotations are specified about the fixed (i.e., non-moving) reference
frame (Fig. 2.17). Sometimes this convention is referred to as roll, pitch,
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FICURE 2.17 X-Y-Z fixed angles. Rotations are performed in the order
RX(’Y): RY{IGL RZ(O‘)'

yaw angles, but care must be used, as this name is often given to other
related but different conventions.

The derivation of the equivalent rotation matrix, ARxyz(7. B, 0),is
straightforward because all rotations occur about axes of the reference

frame: oD b 1 N
i B PR
ARyvyz(1.8,0) = Rzlo) By(B) Hx(v)
coe —sa 0 ed 0 sg| |1 O ]
=|sa ca 0 ¢ 10 0 ey —sv],
06 1 —s5 0 510 sy ov

(2.63)
where ca is shorthand for cosa and s for sina, ete. It is extremely
important to understand the order of rotations used in (2.63). Thinking
in terms of rotations as operators, we have applied the rotations (from
the right) of Rx(7), then Ry (3), and then Ry(a). Multiplying (2.63)
out, we obtain

cacl casBsy — sacy casBey + sasy
BRxvz(T, B 0) = | sach  sasPsy 1+ cacy sasfoy — cosy (2.84)
—sf cBsy ey

Keep in mind that the definition given here specifies the order of the
three rotations. Equation {2.64) is correct only for rotations performed
in the order: about X'A by v, about f’A by 3, about ZA‘by .

The inverse problem, that of extracting equivalent X-Y-Z fixed
angles from a rotation matrix is often of interest. The solution depends
on solving a set of transcendental equations: there are nine equations and

three unknowns if (2.64) is equated to a given rotation matrix. Amongst

equations and three unknowns. Let

A 11 Tiz Tis T
SBxvz(1,0,0)= |11 Taz Tos = (2.65)
- Ta1 Taz Tas

From (2.64) we see that by taking the square root of the sum of
the squares of 7, and ry; we can compute cos 3. Then, we can solve
for 4 with the arc tangent of —ry, over the computed cosine. Then, as
Jong as c¢f3 # 0 we can solve for a by taking the arc tangent of ry; /of3
over 7, /¢, and we can solve for -y by taking the arc tangent of rgy /e

over Tg3/ch.
In summary:

-

AP

o = Atan2{ry; /e, ri,/c8),

v = Atan2(rqq /e, raa/ch),

where Atan2(y,z) is a two-argument arc tangent function.”

Although a second solution exists, by using the positive square root
in the formula for 3, we always compute the single solution for which
-90.0° < 4 < 90.0°. This is usually a good practice, since we can then
define one-to-one mapping functions between various representations of
orientation. However, in some cases, calculating all solutions is important
(more on this in Chapter 4). If 3 = £90.0° {so that ¢ = 0), the solution
of (2.66) degenerates. In those cases, only the sum or the difference of o
and v may be computed. One possible convention is to choose o = 0.0
in these cases, which has the results given below.

If 3 = 90.0°, then a solution may be calculated as

A =90.0°,
a = 0.0. (2.67)

v = Atan2(ry3,722),

* Atan2(y,z) computes tan_l('g) but uses the signs of both z and y

to determine the quadrant in which the resulting angle lies. For exambple,
“Atan2(—2.0, —2.0) = —135°; whereas Atan2(2.0,2.0) = 45°, a distinction
_.which would be lost with a single-argument arc tangent function. As we are
“frequently computing angles which can range over a full 360°, we will make
use of the Atan2 function regularly. Note that Atan2 becomes undefined when
‘both arguments are zero. It is sometimes called a “4-quadrant arc tangent,”
+and some programming language libraries have it predefined.

8 = Atan2(—rsy, A/ 1% +131), ﬁ B

the nine equations are six dependencies, so essentially we have three -

2.8 More on representation of orientation |i|
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I¥ 8 = —90.0°, then a solution may be calculated as
8 = —90.07,

a=0.0 (2.68)

v = —Atan2{ryz,722),

Z-Y-X Euler angles

Another possible description of a frame {B} is as follows:

Start with the frame coincident with a known frame {A}. First rotate
{B} about Z 5 by an angle o, then rotate about Yp by an angle 3, and
then rotate about Xy by an angle .

In this representation, each rotation is performed about an axis of
the moving system {B}, rather than the fixed reference, {A}. Such a
set of three rotations are called Euler angles. Note that each rotation
takes place about an axis whose location depends upon the preceding
rotations. Because the three rotations occur about the axes Z , v, and
f( we will call this representation Z-Y-X Euler angles.

Figure 2.18 shows the axes of { B} after each Euler angle rotation is
applied. Rotation & about 2 causes X to rotate into X', and Y to rotate
into Y’, and so on. An additional “prime” gets added to each axis with
each rotation. A rotation matrix which is parameterized by Z-Y-X Fuler
angles will be indicated with the notation Rz x: (e, B8,7). Note that
we have added “primes” to the subscripts to indicate that this rotation
is described by Euler angles.

b

UE<:>
2o

FIGURE 2.18 Z-Y-X Euler angles.
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With reference to Fig. 2.18, we can use the intermediate frames {3’}
and {B"} in order to give an expression for §Rz:y x:{c, §,7). Thinking
of the rotations as descriptions of these frames, we can immediately write

! 1
#R= 7R 5:R E R, (2.69)

where each of the relative descriptions on the right-hand side of (2.69)
is given by the statement of the Z-Y-X Euler angle convention. Namely,
the final orientation of {B} is given relative to {A} as

ERZ'Y'X':' Rz{a) Ry (B) Rx(v)

cae —sa 0 ¢ 0 s8 1 0 0 (2.70)
saa ca 0 0 1 0 0 ¢y —-sv|,
0 0 1 —s8 0 ¢f 0 sy oy

where e = cos o and ser = sin o, ete. Multiplying out, we obtain

cacl casBsy — sacy casPoy+ sasy
2Rpvyix (o, 8.7) = lsacﬂ sasfsy + cocy  sasfcy — coas'y] . (2.71)
—sf cBsy ey
Note that the result is exactly the same as that obtained for the same
three rotations tdken in the opposite order about fixed axes! This
somewhat nonintuitive result holds in general: three rotations taken
about fixed axes yield the same final orientation as the same three
rotations taken in opposite order about the axes of the moving frame.
Since (2.71) is equivalent to (2.64), there is no need to repeat
the solution for extracting Z-Y-X Euler angles from a rotation matrix.
That is, (2.66) can also be used to solve for Z-Y-X Euler angles which
correspond to a given rotation matrix.

Z-Y-Z Euler angles

Another possible description of a frame {B} is as follows:

Start with the frame coincident with a known frame {A} First rotate
{B} about Zp by an angle «, then rotate about ¥y by an angle 3,
and then rotate about Zg by an angle 7.

Note that since rotations are described relative to the frame we are
moving, { B}, this is an Euler angle description. Because the three rota-
tions occur about the axes Z Y, and Z we will call this representation
Z-Y-7Z Euler angles.

Following a development exactly as in the last section we arrive at

- the following equivalent rotation matrix:

M cacfey — sasy  —cacféy — sacy  casf
ARy plo, 8,7) = | sacBey + casy —sacfsy+caey sasf | . (2.72)
—~sfey sfsy cf
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The solution for extracting Z-Y-Z Fuler angles from a rotation
matrix is stated below.
Given

Ta1 Taz Ta3 (2.73)

T31 T3z Taa

4 11 Tia Tis
GRzviz{a,B,y) =

If sind # 0, then

A = Atan2(y/r3; +733,733),

o = Atan2(rys/s0, ria/88), (2.74)
v = Atan2(rsq/sf, —ra1/sf).
Although a second soluiion exists, by using the positive square root

in the formula for 3, we always compute the single solution for which
0.0 < 8 < 180.0°. If B = 0.0 or 180.0°, the solution of (2.74) degenerates.

In those cases, only the sum or the difference of o and ~ may be’

cormputed. One possible convention is to choose o = 0.0 in these cases,
which has the results given below.
If 3 = 0.0, then a solution may be calculated as

3= 0.0,
o =00, (2.75)
7y = Atan2(—ryp,711)-

If 8 = 180.0°, then a solution may be calculated as
8 = 180.0°,

a =00, (2.76)

7y = Atan2{ris, —711)-

vt}

. o , ; L'T {,ff 3 4{;,%
Other angle set conventions PO 5 ot

In the preceding subsections we have seen three conventions for specify-
ing orientation, X-Y-Z fixed angles, Z-Y-X Euler angles, and Z-Y-Z Euler
angles. Each of these conventions requires performing three rotations
about principal axes in a certain order. These conventions are examples
of a set of 24 conventions which we will call angle set conventions. Of
these, 12 conventions are for fixed angle sets, and 12 are for Euler angle
sets. Note that because of the duality of fixed angle sets and Euler angle
sets, there are really only 12 unique parameterizations of a rotation

2.8 More on representation of orientation

matrix using successive rotations about principal axes. While there ig
often. no particular reason to favor one convention over another, since
various authors adopt different ones, it is useful to list the equivalent
rotation matrices for all 24 conventions. Appendix B (in the back of the
book) gives the equivalent rotation matrices for all 24 conventions.

Equivalent angle-axis

With the notation Ry {30.0) we give the description of an orientation
by giving an axis, X, and an angle, 30.0 degrees. This is an example
of an equivalent angle-axis representation. If the axis is a general
direction (rather than one of the unit directions) any crientation may be
obtained through proper axis and angle selection. Consider the following
description of a frame {B}:

Start with the frame coincident with a known frame {A}. Then rotate
{B} about the vector *X by an angle f according to the right-hand
rule.

Vector K is sometimes called the equivalent axis of a finite rotation.
A general orientation of {B} relative to { A} may be written as 4R(K, 0)
or Ry (#) and will be called the equivalent angle-axis representation.*
The specification of the vector 4K requires only two parameters because
its length is always taken to be one: The angle specifies a third param-
eter. Often we will multiply the unit direction, K , with the amount of
rotation, @, to form a compact 3 x 1 vector description of orientation,
denoted by K (no “hat”). See Fig. 2.19.

When the axis of rotation is chosen as one of the principal axes of
{A}, then the equivalent rotation matrix takes on the familiar form of
planar rotations:

(1 0 1]
Ry (8) 0 cosf -—sind |, (2.77)
|0 sinf  cosé |
[ cos® 0 sinf 1
Ry (8) o 10 |, (2.78)
|~sinf 0 cosd |
[cos® —sinf 0]
R, (&) singé cosf 0 (2.79)
0 0 1]

i Tha.t. s.uch a K and 4 exist for any orientation of {B} relative to {A} was
shown originally by Euler, and is known as Euler's theorem on rotation [3].

51
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FIGURE 2.19 FEquivalent angle-axis representation.

Tf the axis of rotation is a general axis, it can be shown (see Exercise
2.6} that the equivalent rotation matrix is
[ k kv +c8 R lyv8 —k st kgk, vl + k86
Ry (8) = | kpk vl + k88 . k ko0 -+ cd  kyk vl — ks8]
kokovf — ks kyk,v0+kos0 K.kl +of
Where cf — cosf, s0 = sin 0, 78 = 1 — cos, and 4K = [k, k, k,]"- The
sign of @ is determined by the right-hand rule with the thumb pointing
along the positive sense of AK.

Equation (2.80) converts from angle-axis representation to rotation
matrix representation. Note that given any axig of rotation and any
angular amount, we can easily construct an equivalent rotation matrix.

The inverse problem, namely that of determining K and 8 from
a given rotation matrix, is left as an exercise (Exercises 2.6, 2.7). A
pertial result is given below {3]. If

(2.80)

4 T11 Tiz Ta
GRy(8)= |ra1 T2z T2s | {2.81)
a1 Taz Tas
then
# = Acos (Tﬂll T T2z + 733 - 1)
2
{2.82)

. 1 Taz — Ta3
K= ggng [T Tar)

a1 — 712

This solution always computes a value of § between 0 and 180 degrees.
For any axis-angle pair (4 K, ) there is another pair, namely (——AIE' , —8)
which results in the same orientation in space, with the same rotatim;
matrix deseribing it. Therefore in converting from a rotation matrix into
angle-axis representation, we are faced with choosing between solutions.
A more serious problem is that for small angular rotations, the axis
becomes ill-defined. Clearly, if the amount of rotation goes to zero, the
axis of rotation becomes completely undefined. The solution given by
(2.82) fails if § = 0° or § = 180°. See Exercise 2.7.

EXAMPLE 2.8

A frame { B} is described as follows: initially coincident with {A} we
rotate {B} about the vector 2K = [0.707 0.707 0.0]T (passing through
the origin) by an amount § = 30 degrees. Give the frame description
of {B}.

Substituting into (2.80) yields the rotation matrix part of the frame
description. Since there was no translation of the origin the position
vector is [0 0 0]T. So:

0933 0.067 0.354 0.0
A 0.067 0.933 -0.35¢ 0.0
B —0.354 0354 0.866 0.0} " (2.83)

0.0 0.0 0.0 1.0

Up to this point, all rotations we have discussed have been about
axes which pass through the origin of the reference system. If we
encounter a problem for which this is not true, we may reduce the
problem to the “axis through the origin” case by defining additional
frames whose origins lie on the axis, and then solving a transform
equation.

£
B EXAMPLE 2.9

_ A frame { B} is described as follows: initially coincident with {A} we

- rotate {B} about the vector AR = [0.707 0.707 0.0]", passing through
the point 4P = [1.0 2.0 3.0], by an amount § = 30 degrees. Give the
frame description of {B}.

Before performing the rotation, {A} and {B} are coincident. As
shf)wn in Fig. 2.20, we define two new frames, {A’} and {B'}, which are
‘coincident with each other and have the same orientation as {A} and
{B} respectively, but are translated relative to {A} by an offset which
-places their origins on the axis of rotation. We will choose

1.0 00 00 1.0
6.0 1.0 00 2.0
0.0 00 10 30
0.0 00 0.0 1.0

A
AT= (2.84)

2.8 More on representation of orientation 53
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=

(B} 47

A
{4} (B}

FIGURE 2.20 Rotation about an axis which does not pass through the
origin of {A}. Initially, {B} was coincident with {A}.

Similarly the description of {B} in terms of {B'} is

1.0 00 0.0 -1.0
B 00 1.0 00 -20 (2.85)
B 0.0 0.0 10 -30]|"°

0.0 0.0 00 10

Now, keeping other relationships fixed, we can rotate {B'} relative to
{A’}. This is a rotation about an axis which passes through the origin, so
we may use (2.80) to compute {B’} relative to {A}. Substituting into
(2.80) yields the rotation matrix pars of the frame description. Since
there was no translation of the origin, the position vector is [0 0 0jT.
So we have

0.933 0.067 0354 0.0

: 0.067 0.933 -03h4 0.0

4T = . 2.86

w7 =1 _0354 0354 0866 00 (2.86)
0.0 00 0.0 1.0

Finally, we can write a transform equation to compute the desired frame,

Ar= 4T AT ET, (2.87)
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which evaluates to

0.933 0.067 0.3564 -1.13
0.067 0933 0354 113
—0.354 0354 0.866 0.05
0.000 0.000  0.000 1.00

2T = (2.88)

A rotation about an axis which does not pass through the origin causes
a change in position, plus the same final orientation as if the axis had
passed through the origin. Note that we could have used any definition
of {A'} and {B'} such that their origins were on the axis of rotation.
Qur particular choice of orientation was arbitrary, and our choice of the
position of the origin was one of an infinity of possible choices lying along
the axis of rotation. Also, see Exercise 2.14, a

Euler parameters

Another representation of orientation is by means of four numbers called
the Euler parameters. Although complete discussion is beyond the
scope of the book, we state the convention here for reference.

In terms of the equivalent axis K = (ko k, kz]T and the equivalent
angle #, the Euler parameters are given by

e
€, =k, sin 3

é
€y = k, sin 3

, (2.89)
eg =k, sin 3
8
€4 =COS 5

1t is then clear that these four quantities are not independent, but that
At teltel=1 {2.90)

must always hold. Hence, an orientation might be visualized as a point
on a unit hypersphere in four-dimensional space.

Sometimes, the Euler parameters are viewed as a 3 x 1 vector plus
a scalar. However, viewing them as a 4 x 1 vector, the Euler parameters
are also known as a unit quaternion.

The rotation matrix, R,, which is equivalent to a set of Euler

. parameters is given as

1— 262 — 262 2epeq —e3e,) 2(er€a + €6y)
R, = | 2(ec1ey +e364) 1 —262 — 268 2(eges —€16y) | - (2.91)
eiez ~ €3€q) Aegey +e16,) 1 — 262 — 263
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Given a rotation matrix, the equivalent Euler parameters are

€ = Taa — Taa
464
ey = 7"134* 31
€4
€5 = a1 —Tiz (2.92)
dey

1
€5 = 5\/1_'“"11 +Ta2 + Ta3

Note that {2.92) is not useful in a computational sense if the rotation
matrix represents a rotation of 180 degrees about some axis, since €, goes
to zero. However, it can be shown that in the limit all the expressions in
(2.92) remain finite even for this case. In fact, by noting the definitions
in (2.89), it is clear that all ¢; remain on the interval [-1,1].

Taught and predefined orientations

In many robot systems it will be possible to “teach” positions and
orientations using the robot itself. The manipulator is moved to a desired
loeation and this position is recorded. A frame taught in this manner
need not necessarily be one to which the robot will be commanded to
return; it could be a part location or a fixture location. In other words,
the robot is used as a measuring tool having six degrees of freedom.
Teaching an orientation like this completely obviates the need for the
human programmer to deal with orientation representation at all. In the
computer the taught point is stored as a rotation matrix, or whatever,
but the user never has to see or understand it. Robot systems which
allow teaching of frames using the robot are thus highly recommended.

Besides teaching frames some systems might have a set of predefined
orientations like “pointing down” or “pointing left.” These specifications
are very easy for humans to deal with. However, if this were the only
means of describing and specifying orientation, the system would be
very limited.

2.9 Transformation of free vectors

We have been concerned mostly with position vectors in this chapter. In
later chapters we will discuss velocity and force vectors as well. These
vectors will transform differently because they are a different fype of
vector.

In mechanics one makes a distinction between the equality and the
equivalence of vectors. Two wvectors are equal if they have the same

2.9 Transformation of free vectors |5_7|

dimensions, magnitude, and direction. Two vectors which are considered
equal may have different lines of actions, for example, the three equal
vectors in Fig 2.21. These velocity vectors have the same dimensions,
magnitude, and direction, and so are equal according to our definition.

Two vectors are equivalenl in o certein copacity if each produces
the very same effect in this capacity. Thus, if the criterion in Fig. 2.21
is distance traveled, all three vectors give the same result and are
thus equivalent in this capacity. If the criterion is height above the xy
plane, then the vectors are not equivalent despite their equality. Thus,
relationships between vectors and notions of equivalence depend entirely
on the situation at hand. Furthermore, vectors which are not equal may
cause equivalent effects in certain cases.

We will define two basic classes of vector quantities which may be
helpful.

A line vector refers to a vector which, along with direction and
magnitude, is also dependent on its line of action as far as determining
its effects is concerned. Often the effects of a force vector depend upon
its line of action {or point of application), and so it would be considered
a line vector,

A free vector refers to a vector which may be positioned anywhere
in space without loss or change of meaning provided that magnitude
and direction are preserved.

For example, a pure moment vector is always a free vector. If we
have a moment vector, PN, which is known in terms of {B}, then we

Va
Vs :

Vi

P o

>

_IGURE 2.21 Equal velocity vectors.
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calculate the same moment in terins of frame {A} as

AN= AREN (2.93)
That is, since all that counts is the magnitude and direction {in the case
of a free vector), only the rotation mairix relating the two systems is
used in transforming. The relative locations of the origins does 1ot enter

into the caleulation.
Likewise, a velocity vector written in {B}, BV, is written in {4} as

Ay = 4R PV (2.94)
The velocity of a point is a free vector, s0 all that is important is its
direction and magnitude. The operation of rotation (as in (2.94)) does
not affect the magnitude, and accomplishes the rotation which changes
the description of the vector from {B} to {A}. Note that, # Ppop which
would appear in a position vector transformation, does not appear in
a velocity transform. For example, in Fig. 2.22, if By = BX , then
AV = 5Y.

Velocity vectors and force and moment vectors will be more fully
introduced in Chapter 5. ‘

{B} ~ ~
Yg Y4

v

L

24

—» Xy (A}
X4
7n

FIGURE 2.22 Transforming velocities.

210 Computational considerations

The availability of inexpensive computing power is largely responsible
for the growth of the robotics industry; yet for some time to come
officient computation will remain an important issue in the design of &:
manipulation system.

While the homogeneous representation is useful as a conceptual
entity, typical transformation software used in industrial manipulation
systems does not make use of them directly since the time spent multi-
plying by zeros and ones is wasteful. Usually, the computations shown
in (2.41} and (2.45) are performed, rather than the direct multiplication
or inversion of 4 x 4 matrices.

The order in which transformations are applied can make a large
difference ir: the amount of computation required to compute the same
quantity. Consider performing multiple rotations of a vector, as in

APp= 4RERGR”P (2.95)

One choice is to first multiply the three rotation matrices together, to

form ’ER in the expression ’

AP= 4RPP (2.96)

Forming IA)R from its three constituents requires 54 multiplications and

36 additions, Performing the final matrix-vector multiplication of (2.96)

requires an additional 9 multiplications and 6 additions, bringing the
total to 63 multiplications, 42 additions. .

If instead we transform the vector through the matrices one at a
time, i.e.,

‘p= ARERGRPP

AP: }%R(B}RC’P

Ap= 4p

the total computation requires only 27 multiplications and 18 additions
._'eSS than half the computations required by the other method. ,
- Of course, in some cases, the relationships 4R, ZR, and € R may
be constant, and there may be many D P. which need to be transformed
1nto AP, In this case, it is more efficient to calculate 5 R once and then
use it for all future mappings. See also Exercise 2.16. ’

2.10 Computational considerations 59
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3 EXAMPLE 2.10

Give a method of computing the product of two rotation matrices,
QR Z R, using less than 27 multiplications and 18 additions.

Where L, are the columns of ZR, and C, are the three columns of
the result, compute '

él = ﬁR f‘l!
Gy = BR Ly, (2.98)
és - él X 02)

which requires 24 multiplications and 15 additions. a
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Exercises

rotated about X4 by ¢ degrees. Give the rotation matrix which accom-
plishes these rotations in the given order.
[15] A vector P is rotated about v, by 30 degrees and is subsequently
rotated about X 4 by 45 degrees. Give the rotation matrix which accom-
plishes these rotations in the given order.

2.1 [15] A vector AP is rotated about Z,4 by 6 degrees and is subsequently

!_J?n\ [16] A frame {B} is located as follows: initially coincident with a frame
{A} we rotate { B} about Z 5 by 8 degrees and then we rotate the resulting
frame about X by ¢ degrees. Give the rotation matrix which will change
the description of vectors from ZP to 4 P.

@ [16] A frame {B} is located as follows: initially coincident with a frame

{A} we rotate {B} about Zp by 30 degrees and then we rotate the
resulting frame about X by 45 degrees. Give the rotation matrix which
will change the description of vectors from BP to AP.

2.5 [13] 4R is a 3 x 3 matrix with eigenvalues 1, et=t and e~ ", where
i = /1. What is the physical meaning of the eigenvector of 41
associated with the eigenvalue 17 '

2.6
2.7

2.8

2.10 Exercises

{21] Derive equation (2.80).

[24] Describe (or program) an algorithm which extracts the equivalent
angle and axis of a rotation matrix. Equation {2.82) is a good start,
but make sure your algorithm handles the special cases of § = 0° and
g = 180°.

[20] Write a subroutine which changes representation of orientation from
rotation matrix form to equivalent angle-axis form. A Pascal-style proce-
dure declaration would begin:

Procedure RMTOAA(VAR R:mat33; VAR K:vec3; VAR theta: real);

Write another subroutine which changes from equivalent angle-axis
representation to rotation matrix representation:

Procedure AATORM(VAR K:vec3; VAR theta: real: VAR R:mat33);

Run these procedures on several cases of test data back-to-back and
verify that you get back what you put in. Include some of the difficult
cases!

[27] Do Exercise 2.8 for roll, pitch, yaw angles about fixed axes.
[27] Do Exercise 2.8 for Z-Y-7 Fuler angles.

[10] Under what condition do two rotation matrices representing finite
rotations commute? A proof is not required.

[L4] A velocity vector is given by

10.0
By = {200
30.0
Given
0.866 —0.500 0.000 11.0
Aq . |0-500 0.866 0.000 ~3.0
B 0.000  0.000 1.000 9.0/[°
0 0 0 1

compute AV,

[21] The following frampq clheﬁnitions are given as known. Draw a frame dia-
gram (like that of Fig. 2.15) which qualitatively shows their arrangemment.
Solve for BT.

[0.866 —0.500 0.000 11.0 ]
yr = 0.500  ©.866 0.000 -1.0
0.00¢  0.000 1000 80 |’
|0 0 0 1 ]
[1.000 0.000  0.000 0.0
By 0.000 €866 —0.500 10.0
0.000 0.500 0.866 —20.0|°
K 0 0 1]
0.866 —0.500  0.000 —3.0
or - 0.433  0.750 —0.500 -3.0

0250 0433 0.866 3.0
0 0 ] 1
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APPENDIX A:
TRIGONOMETRIC

Formulas for rotation about the principle axes by ¢:

M1 0 0

Ry(6)= |0 cos# —sinf |, {A.1)
|0 sinf cosf
[ cos§ O sing]

R (0h = 0 1 0 |, (A.2)
| —siné 0 cosf |
[cos# —sind 0]

R;(0)= | sinf cos® 0. (A.3)

0 o 1]

Identities having to do with the periodic nature of sine and cosine:

siné = —sin{—8) = — cos(f + 90°} = cos{# — 90°),

cos § = cos(—~f) = sin(4 + 90°) = — sin(f ~ 90°). (A4)

0.0

The sine and cosine for the sum or difference of angles 6; and f:

cos(fq + ) = €12 = €102 — 5189,

)

sin(f; + 0y) = 812 = €183 + 516y,

cos(B; — fy) = cyco + 8182, (A-5)
)

gin{fd; — 03) = 5103 — €193

The sum of the squares of the sine and cosine of the same angle

is unity:
204570 =1. (A.8)

If a triangle’s angles are labeled a, b, and ¢, where angle a is opposite
side A, and so on, then the “law of cosines” is

A% = B* + % — 2BCcosa. (AT)

The “tangent of the half angle” substitution:

taﬂe
%= -
23
1ﬁ 2
cosf = T2 +Zz, (A.8)
ginf = 2u 5-
14w

To rotate a vector () about a unit vector K by 6, use Rodriques’

formula:
Q' = Qeosf+sinf(K x Q) + (1— cosB)(K - QK. (A.9)

See Appendix B for equivalent rotation matrices for the twenty
four angle set conventions, and Appendix C for some inverse kinematic

identities.

441



APP

DIX B:

THE 24 ANGLE SET
CONVENTIONS

The twelve Eunler angle sets are given by

ey ~cfisy 50
sasfey +easy  —sasfsy + cacy  —sach
| —cosfey + sasy  casfsy + soey cac

Ryryrgile, B,y) =

clcy —sf efsy
Ryigiye{a, B,7) = | casBey+ sasy coc casBsy — saey
| saesfey — casy  sacf saessy

4

sasfisy + cacy sasfey —ecasy sach]
Ryt xrgr(0n8,7) = cBsy cfice —sf8
casfBsy — sacy casfey +sasy  cacd |

RY’Z’X’(QHB?’Y) =

szxfyf(a:ﬁ:'Y) =

szyfx'(ﬂa.ga’)‘) =

RXfY'X"(aarBafy) -

Rxﬂzlx"(anﬁ:"/) =

RY’X'Y’(a1 ,8,7) =

RY’Z’Y’(aa ﬁa')’) -

RZ’X’Z"(&!!@:—}/) —

Rz'y’z'(a:ﬁ:”f) =

[ cacf  —casfey + sasy
53 cfiey
| —saef sasBey + casy

cersfsy + soey |
—cfsy
—sasfsy + cocy |

 sasficy + casy |
—casfey + sasy
cfey

casfsy — saey  cosfoy + sasy
sasfsy+ cacy sasfey —casy

cacfoy — sasy  —cac3sy — sacy

[—sasBsy +cacy —sac
casfsy + sacy  cocf
L —cfsy 83
[ cach
sacf
| —s8 cBsy
T 83s7y
sas3  —saefsy 4 cocy
| —casfF cacfsy + socry
3 -s8cy
casf
saesf3

[ —sacBsy + cacry
cacey + sacy
sdsy

[ cacBey — sasy
sacley + casy
L WSIBC’T

sacfey + casy  —sccfsy + coery |

[ —sacBsy + cacy  sasf
s0sy cf

| —cacfsy — sacy  casf

[ cocfoy — sasy  —casf
sfey ef

| —sacBey — casy sasf

The twelve fixed angle sets are given by

nyz(%ﬁ:a) =

Rxzv(7.8,0) =

cacl coasfsy — sacy
saecl  sasfsy + cocy
—sf cisy
cac  —casBoy + sasy
0 cfey
—sae  sasfoy + casy

ey

sficy
—sacfey — cosy
cacfey — sasy

5038

sachey + casy |
—a8cy
coacfey — sasy |

cacﬁs*y + saey |
sf3sy
—saclsy + cocl? |

—sacfey —casy  sasB |
cacfBoy —- sasy  —casf

sfey B

—cacfisy — sacy  casf
—sacBsy + cacy  sasf
538y cf

casfey + sosy
sasfey — casy

cBey

casfsy + sacy
g3y
—sasf3sy + cocy




L‘% Appendix B: the twenty-four angle set conventions

RYXZ(FYH@: a) =

By zx(7.8,0)=

Rexv(v.8.0)=

Bevx(v8,a)=

casBsy + sacy
L —cBsy
cicy
casfey + sasy
| saesfery — cosy

[ sasBsy + coery
cfsy
| cas sy — sacy

[ chey
sasfey + casy

[ —scesfBsy + cacy

| —casBey + sasy

caci  —cosfBey + sasy

—sach  sasfey + casy
83 chey

cacl  casfsy — saey
saef sosfsy

—s0 cfisy }

cfeca -5

sasfey — casy  sach
casfdey + sasy  cacl

—sasBsy -+ cacy —sach

—cfsy 58
casfisy + sacy  cach

APPENDIX

C:
ERSE

SOME INV!

EMATIC

KINE

5] s0sy

s3cy
Bxyx{7.0,0) = | sasB —sachsy+ cacy —sacfey — casy
| —casf  cocBsy+sacy  cacBey — sasy

e —sfey sf3sy
Byzx{(v.8,a)= | casB cacfey — sasy —cacfsy — sacy
sasf  sacBey+casy —sacBsy+ cacy |
[ —sacdsy +cacy  sasp sacfey + casy |
Ry xv(v.0,a) = 58s7y cf3 —sfey
| —eacfsy — sowey  casB cocfey — 508y |
[ cacBey — sasy  —casB cacfsy + sacy The single equation
RYZY(’YJﬂaa} = SBC—Y Cﬂ Sﬁ37
| —sacfey —casy  sasf  ~sacfsy + caef3 o =a
[ —soedsy + cacy  —sacficy — casy sasﬁ has fwo solutions given by
Ryxz(v, B0} = | cacBsy+sacy  cacBey— sasy  —casf # = +Atan2 ( 1-a? G) B e PJ'}_OLC |
L sBey spey of ) R
) | Likewise, given
cacfey — sasy —cacsy — saey  casB
Reyvz(B8,0) = | sacfcy + casy —sacflsy + cacy  sasf cos§ = b, (©% |
L —sfey sfBsy cf l

there are two solutions given by o
§ = Atan2 (b,im). penions)C4)
If both (C.1) and {C.3) are given, then there is a unique solution given by

,

# = Atan2 (o b}. (C.5}

o
Fyp il
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A@J Appendix C: some inverse kinematic formulas

Th_e transcendental equation

acosf + bsinf =0, (C.6)
has the two solutions

8 = Atan2 (a,—b), (C.7)
and

# = Atan2(—q,b}. (C.8)
The equation

acosf + bsind = ¢, {C.9)

which we solved in Section 4.5 using the tangent of the half angle
substitutions, is also solved by

6=Amam@imMNVﬁ+w—&Q. (C.10)
The set of equations

acos —bsinf = ¢,

asinf + beos 8 = d, (c.11)
which were solved in Section 4.4 also are solved by
# = Atan2 (ad — bc, ac+ bd) . (C12)

acCuracy
actuator space
actuator vector
affixments

AL

- algebraic solution

alternating-current
(AC) motors

"analytic representation

angle set conventions
angle axis

angular velocity matrix
angular velocity vector
anthropomorphic
anti-aliasing

armature

articulated manipulator
artificial constraints
assembly strategy
automnatic coercion
automatic robot placement
automatic scheduling
autonomous

back emf constant

back face elimination
backlash

ball bearing screws

. base frame

bevel gears

143
85

85
397,425
255,401
119

288

423
50,163, 442
51,247
161
155,161
268

319

319

268

369

370

430

435

437

350

320

424

281

282
7,100,141
281

BIBO

bottom-up programming

bounded

bounded-input bounded-output

bounding boxes

brushless motors

CAD models

CAD

calibration

CAM

Cartesian based control

Cartesian manipulator

(artesian mass matrix

Cartesian motion

Cartesian space

Cartesian straight line motion

Cartesian trajectory generation

Cevley’s formula for
orthonormal matrices

centrifugal force

characteristic equation

CimStation

closed form solutions

closed form solvable

closed form

closed loop stifiness

closed loop structures

closed loop system

collision detection

316
409

316

316

424

288
419,423
1
143,433
1

353

267

211

246
7,85

247

11

43
205
303
423
119
129
201
31
277
30

419,424





