ME133 - Lab 2 Guide

Serial.begin(speed) & Serial.print() & Serial.printin()

“Speed” in Serial.begin means data rate in bits per second for serial data transmission, when using

“Serial Monitor” or “Serial Plotter” from Tools, we should set the same data rate to generate

communication. To view data in monitor or plotter, we need Serial.print() or Serial.printin(). The

“In” means new line, so that printin() will print the content first and change line, but print() will
not. By using this kind of function, we could print text or data as we need. For example,
“Serial.print(“My Age =");” will print out “My Age =" directly, “Serial.printin(agedata);” will print

the number we set on “agedata” and change a new line.

analogRead(pin)

Open example from Arduino IDE: File -> Examples -> Basics -> AnalogReadSerial and connect

circuit below.

// the setup routine runs once when you press reset:

void setup() {
// initialize serial communication at 9600 bits per second:
Serial.begin (9600);

// the loop routine runs over and over again forewver:
void loop() {
// read the input on analog pin 0:
int sensorValue = analogRead(AQ)
// print out the walue you read:
Serial.println(sensorValue);

delay (1) : // delay in between reads for stability

5V

Axduino
UND

AD
Al
AZ

Ad

eaEAGEY &
L1l I‘

AS

 EE—

13
12
11
10

~9

B8

7

~6

This code will print out integer values from 0 to 1023 instead of 0 to 5 volts. To transfer the integer

value to voltage value, we can multiply 0.0049, which means 5 volts per 1024 units.




analogWrite(pin) & map(value, fromLow, fromHigh, toLow, toHigh)
Open example from Arduino IDE: File -> Examples -> Analog -> AnalogInOutSerial and connect
circuit below.

const int analogInPin = A0; // Analog input pin that the potentiometer is attached to
const int analogOutPin = 9; // ARnalog output pin that the LED is attached to

int sensorValue 0; // walue read from the pot

0; // walue output to the DWM (analog out)

int outputvValue

vold setup() {
// initialize serial communications at 9600 bps:
Serial .begin(9600);

void loop() {
// read the analog in wvalue:
sensorValue = analogRead(analogInPin) ;
// map it to the range of the analog out:
outputvalue = map(sensorvValue, 0, 1023, 0, 255);
// change the analog ocut value:

analogWrite (analogOutPin, outputValue);

// print the results to the Serial Monitor:
Serial.print("sensor = ");

Serial .print (sensorValue);

Serial.print ("\t output = "});

Serial.println(outputvValue);

// wait 2 milliseconds before the next loop for the analog-to-digital

// converter to settle after the last reading:

delay(2);

This should be pin 9
av ‘/
13
ARDUINO 12 [
11 o
UNO 1o b=
o = J
< — .
é,_ C g 330Q resistor
< 6 =
AB w5 f—
- A1 4
— A2 =3 [f—
-— A3 2 f—
— Al TX 1 o m
— AS R 40 o SZ\
GHD p
»

analogWrite will let the pin generate a pulse-width modulation (PWM) signal to control motor
speed or light brightness. The PWM signal is a method of reducing the average power by adjusting
on and off time, which is called duty cycle. The term duty cycle describes the proportion of 'on'



time to the regular interval or 'period' of time; a low duty cycle corresponds to low power, because
the power is off for most of the time.

50% duty cycle

on

ff.

wu
o 5

75% duty cycle

25% duty cycle

a L]

In Arduino, the duty cycle ranges from 0 to 255 representing 0 to 100%. To transfer data from

analogRead to analogWrite, we could use map( ) function to re-map “0—1023” to “0 — 255”.



attachinterrupt(digitalPinTolnterrupt(pin), ISR, mode)

Here is an example code from this website.
const byte ledPin = 13;

const byte interruptPin = 2;
volatile byte state = LOW;

void setup() {

}

pinMode (1edPin, OUTPUT) ;
pinMode (interruptPin, [NPUT PULLUP) ;
attachlnterrupt (digitalPinTolnterrupt (interruptPin), blink, CHANGE);

void loop() {

}

digitalWrite(ledPin, state):

void blink() {

}

state = !state;

This should be pin 13 (or change the code)

s;-;;;L:nL;::liZEiEE

The pin for interrupting should be set as “INPUT_PULLUP” mode in “setup”. The logic is once the
pin has one of the modes, the system starts running function “ISR” (or blink in the example)

There are four modes:

LOW to trigger the interrupt whenever the pin is low,

CHANGE to trigger the interrupt whenever the pin changes value
RISING to trigger when the pin goes from low to high,

FALLING for when the pin goes from high to low.

The Due, Zero and MKR1000 boards allow also HIGH to trigger the interrupt whenever the pin is
high.


https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

