
ME133 - Lab 2 Guide

Serial.begin(speed) & Serial.print() & Serial.println()

“Speed” in Serial.begin means data rate in bits per second for serial data transmission, when using

“Serial Monitor” or “Serial Plotter” from Tools, we should set the same data rate to generate

communication. To view data in monitor or plotter, we need Serial.print() or Serial.println(). The

“ln” means new line, so that println() will print the content first and change line, but print() will

not. By using this kind of function, we could print text or data as we need. For example,

“Serial.print(“My Age = ”);” will print out “My Age = ” directly, “Serial.println(agedata);” will print

the number we set on “agedata” and change a new line.

analogRead(pin)

Open example from Arduino IDE: File -> Examples -> Basics -> AnalogReadSerial and connect

circuit below.

This code will print out integer values from 0 to 1023 instead of 0 to 5 volts. To transfer the integer

value to voltage value, we can multiply 0.0049, which means 5 volts per 1024 units.

analogWrite(pin) & map(value, fromLow, fromHigh, toLow, toHigh)

Open example from Arduino IDE: File -> Examples -> Analog -> AnalogInOutSerial and connect

circuit below.

analogWrite will let the pin generate a pulse-width modulation (PWM) signal to control motor

speed or light brightness. The PWM signal is a method of reducing the average power by adjusting

on and off time, which is called duty cycle. The term duty cycle describes the proportion of 'on'

This should be pin 9

330Ω resistor

time to the regular interval or 'period' of time; a low duty cycle corresponds to low power, because

the power is off for most of the time.

In Arduino, the duty cycle ranges from 0 to 255 representing 0 to 100%. To transfer data from

analogRead to analogWrite, we could use map() function to re-map “0 – 1023” to “0 – 255”.

attachInterrupt(digitalPinToInterrupt(pin), ISR, mode)

Here is an example code from this website.

const byte ledPin = 13;

const byte interruptPin = 2;

volatile byte state = LOW;

void setup() {

 pinMode(ledPin, OUTPUT);

 pinMode(interruptPin, INPUT_PULLUP);

 attachInterrupt(digitalPinToInterrupt(interruptPin), blink, CHANGE);

}

void loop() {

 digitalWrite(ledPin, state);

}

void blink() {

 state = !state;

}

The pin for interrupting should be set as “INPUT_PULLUP” mode in “setup”. The logic is once the

pin has one of the modes, the system starts running function “ISR” (or blink in the example)

There are four modes:

⚫ LOW to trigger the interrupt whenever the pin is low,

⚫ CHANGE to trigger the interrupt whenever the pin changes value

⚫ RISING to trigger when the pin goes from low to high,

⚫ FALLING for when the pin goes from high to low.

The Due, Zero and MKR1000 boards allow also HIGH to trigger the interrupt whenever the pin is

high.

This should be pin 13 (or change the code)

https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

