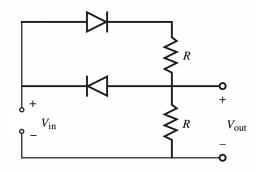
ME 133 Winter 2023 Lab 3: *Plotter and Diodes* February 2, 2023 Due: 2/10/2023

Submit a zip file named yourFirstName-Lab1.zip on Canvas with your code, a lab report (following the format in syllabus), and a short video proving the working hardware-software integration.

Exercise 1

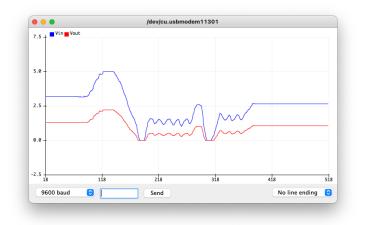

Material required

- Arduino
- Resistors
- 2 x Diodes

Coding together

You already know all it takes to code this problem. We will only look at the Serial Plotter, which is very similar to the Serial Monitor and allows to plot the value of a variable over time. Copy and paste into Matlab and plot the results.

Assignment

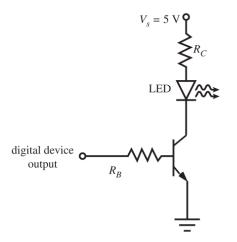


- 1. **Study** the circuit in the figure above. For a given $V_{in} > 0$, what is the value of V_{out} ? Use either 2 or 1 K Ohm resistors (depending on the ones you received). Attach your calculations to the Report.
- 2. **Implement** the circuit with a tunable V_{in} and measure both V_{in} and V_{out} with your Arduino. Show both variables on the Serial Plotter (something like in the figure below, notice that the scale on the left is in Volt). Using a potentiometer is the recommended way to create the tunable power supply.
- 3. Discuss your result and whether the hardware implementation confirmed your math.

Exercise 2

Material required

- Arduino
- 1 x Transistor (PN 2222a)



- $\bullet~1$ x 330 Ohm resistor
- 1 x 10 K Ohm resistor

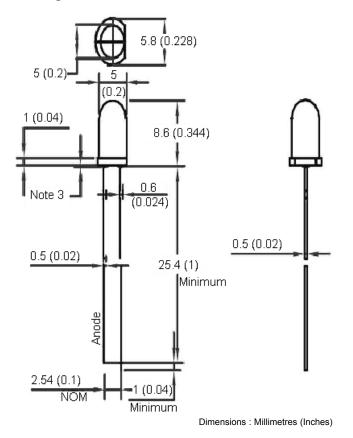
Coding together

You will fly solo on this one.

Assignment

Consider the circuit in the figure above. Use the two data sheets (attached) to determine the appropriate values for the resistors R_c and R_b . You should ensure that the current through the LED is limited to within the max range and the transistor is in the saturation region when turned ON. What happens when the Arduino is set to HIGH (digital device output)? What about when its set to LOW? How much current is flowing trough the LED in each of the two cases? Motivate your conclusions.

Then, implement the circuit and have the Arduino set the pin connected to it as HIGH and LOW, alternatively. Discuss what happens and whether it matches with what you computed.


Standard LED

Red Emitting Colour

Features:

- High intensity
- Standard T-1 3/4 diameter package
- General purpose leads
- Reliable and rugged

Package Dimensions:

Specification Table

Chip Material	Lens Colour	Source Colour	Part Number
AlGaAs	Diffused	Red	MV5754A

Notes:

- 1. Tolerance is ±0.25 mm (0.01") unless otherwise noted
- 2. Protruded resin under flange is 1 mm (0.04") maximum

3. Lead spacing is measured where the leads emerge from the package

www.element14.com www.farnell.com www.newark.com

multicomp

Standard LED

Red Emitting Colour

multicomp

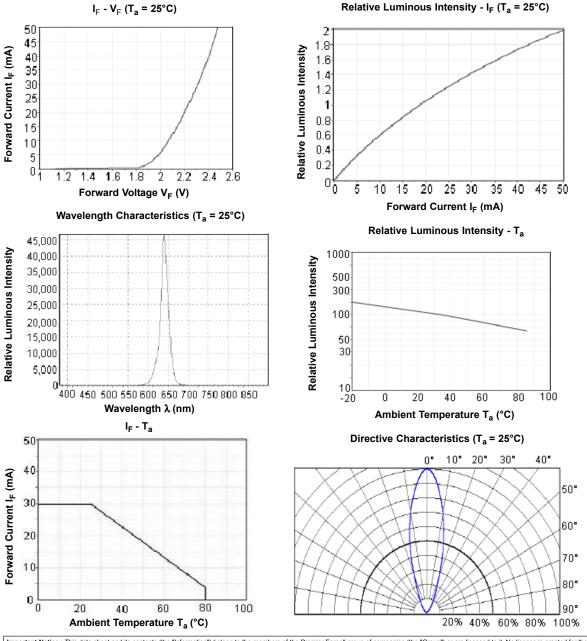
Absolute Maximum Ratings at T_a = 25°C

Parameter	Maximum	Unit
Power Dissipation	80	mW
Peak Forward Current (1/10 Duty Cycle, 0.1 ms Pulse Width)	100	mA
Continuous Forward Current	20	
Derating Linear From 50°C	0.4	mA / °C
Reverse Voltage	5	V
Operating Temperature Range	-25°C to	o +80°C
Storage Temperature Range	-40°C to +100°C	
Lead Soldering Temperature (4 mm (0.157) Inches from Body)260°C for 5		

Electrical Optical Characteristics at T_a = 25°C

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Test Condition
Luminous Intensity	I _v		40		mcd	I _f = 20 mA (Note 1)
Viewing Angle	2θ _{1/2}		25		Deg	(Note 2)
Peak Emission Wavelength	λρ		640		nm	l _f = 20 mA
Dominant Wavelength	λd		635		nm	I _f = 20 mA (Note 3)
Spectral Line Half-Width	Δλ		25		nm	l _f = 20 mA
Forward Voltage	V _f		2	2.5	V	I _f = 20 mA
Reverse Current	I _R	-	-	100	μA	V _R = 5 V

Notes:


- 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve
- 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity
- 3. The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the colour of the device

Standard LED

Red Emitting Colour

Typical Characteristics

Important Notice : This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces and lad as heets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completenses, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any relatince on the Information or use of it (including liability resulting from neigligence or where the Group was aware of the possibility of such lass or damage arising) is excluded. This will not operate to limit or restrict the Group's liability of resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2011.

www.element14.com www.farnell.com www.newark.com

multicomp

18/10/11 V1.1

FAIRCHILD

SEMICONDUCTOR®

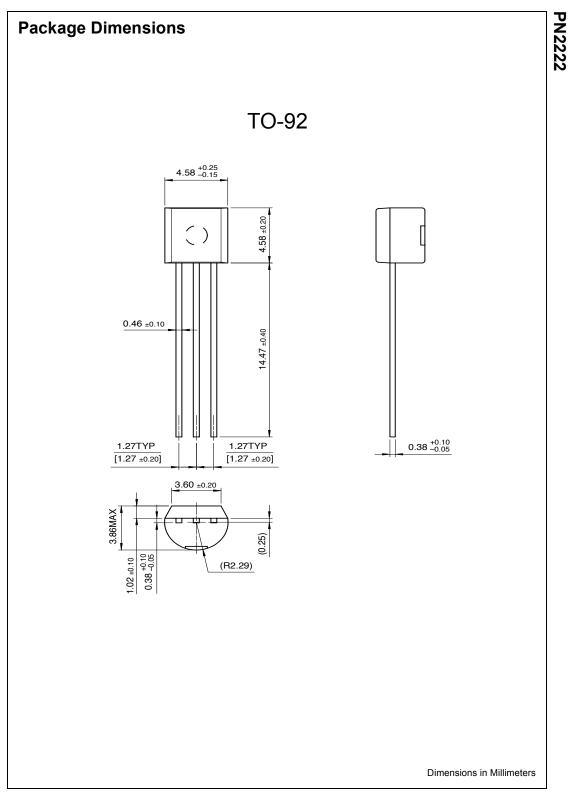
PN2222

General Purpose Transistor

1. Emitter 2. Base 3. Collector

1

NPN Epitaxial Silicon Transistor


Absolute Maximum Ratings T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units
√ _{CBO}	Collector-Base Voltage	60	V
V _{CEO}	Collector-Emitter Voltage	30	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current	600	mA
P _C	Collector Power Dissipation	625	mW
Г _J Junction Temperature		150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Parameter Test Condition		Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =10μA, I _E =0	60		V
BV _{CEO}	Collector Emitter Breakdown Voltage	I _C =10mA, I _B =0	30		V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =10μA, I _C =0	5		V
I _{CBO}	Collector Cut-off Current	V _{CB} =50V, I _E =0		0.01	μA
I _{EBO}	Emitter Cut-off Current	V _{EB} =3V, I _C =0		10	nA
h _{FE}	DC Current Gain	V _{CE} =10V, I _C =0.1mA	35		
		V _{CE} =10V, *I _C =150mA	100	300	
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		1	V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	I _C =500mA, I _B =50mA		2	V
f _T	Current Gain Bandwidth Product	V _{CE} =20V, I _C =20mA, f=100MHz	300		MHz
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		8	pF
* Pulse Test: Pulse Width≾300µs, Duty Cycle≾2%					

©2004 Fairchild Semiconductor Corporation

©2002 Fairchild Semiconductor Corporation

Rev. A, November 2004

TRADEMARKS				
The following are reg	gistered and unregistered tr		onductor owns or is author	ized to use and is no
ACEx [™]	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GTO™່	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics™	TinyLogic®
E ² CMOS™	I ² C™	MSXPro™	Quiet Series™	TINYOPTO™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation [™]
FACT™	ImpliedDisconnect [™]	OCXPro™	RapidConnect™	UHC™
FACT Quiet Series™		OPTOLOGIC [®]	μSerDes™	UltraFET [®]
Across the board. Around the world.™		OPTOPLANAR™	SILENT SWITCHER [®]	VCX™
The Power Franchise [®]		PACMAN™	SMART START™	
Programmable Active Droop™		POP™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.