ME133 Lecture 11

Last time:

> Midterm

goal: grades by next Thursday

2/21/23

Today:

> Remarks on Second Order systems

> Digital Circuits (Ch. 6)

> digital signals and representations >combinational logic >timing diagrams-

First, Summarize "System Response" (Ch. 4)

First, Summarize "System Response" (Ch. 4)

First, Summarize "System Response" (Ch. 4)

The next most important system:

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b\frac{\mathrm{d}x}{\mathrm{d}t} + kx = F$$

Key Idea of Second order Systems:

$$ms^{2} + bs + k = 0$$

$$s_{1} = -\frac{b}{2m} + \sqrt{\left(\frac{b}{2m}\right)^{2} - \frac{k}{m}}$$

$$s_{2} = -\frac{b}{2m} - \sqrt{\left(\frac{b}{2m}\right)^{2} - \frac{k}{m}}$$

Roots of the Characteristic Eq. can be complex

$$\zeta = \frac{b}{b_c} = \frac{b}{2\sqrt{km}} \quad \omega_n = \sqrt{\frac{k}{m}}$$
$$s_1 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}$$
$$s_2 = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}$$

Key Idea of Second order Systems:

Compare First vs Second Order Step Response

Features of Second Order Step Response

What is an analog signal?

MM

· changes continously

. infinite values

. analog

J Signal

represent

zome

phylical Juantity

Analog Signal Example

##DADBOTTOTOTOTOTOCICK (0).0000++#19000004 KL INVENTION

What is a digital signal?

Digital signal examples:

Digital signal examples:

fritzing

Digital Representations: How to represent a digital number?

Base representations

$$d_{n-1} \cdot 10^{n-1}$$

$$d_{-1}, d_{-2} \cdot d_{-1}, d_{-2} \cdot d_{-2} \cdot d_{-2}, d_{-2} \cdot d_{-2}$$

Binary: base 2 representation Why? $d_{n-1} - d_3 d_2 d_1 d_0 = d_{n-1} \cdot 2^{n-1}$ $d_i = 1$ or 0

- & fundament 1 speration of digital devices can only be on/off [we are using transistors] $+ d_3 \cdot 2^3 + d_2 \cdot 2^2$ $+d_1 \cdot 2' + d_0 \cdot 2'$

it lmzu.... Binary is tedious to write/read: solution hexadecimal Hexadecimal is extensively used for programmy devius. 123 = 0111 |011 = 0x7B7 BStandard Code 0x9A = 9.16' + 10.16' =for Infirmtion exchange.

Combinational Logic (a subset within the Theory of Automata)

Binnig	finte -> controls tre flow of signals
of	

Inverter A -

Combinational logic operations (gates)

NAND

zte

Notes on buffers

How to make hardware gates?

(a) AND gate

How to make hardware gates?

(b) OR gate