Last time:

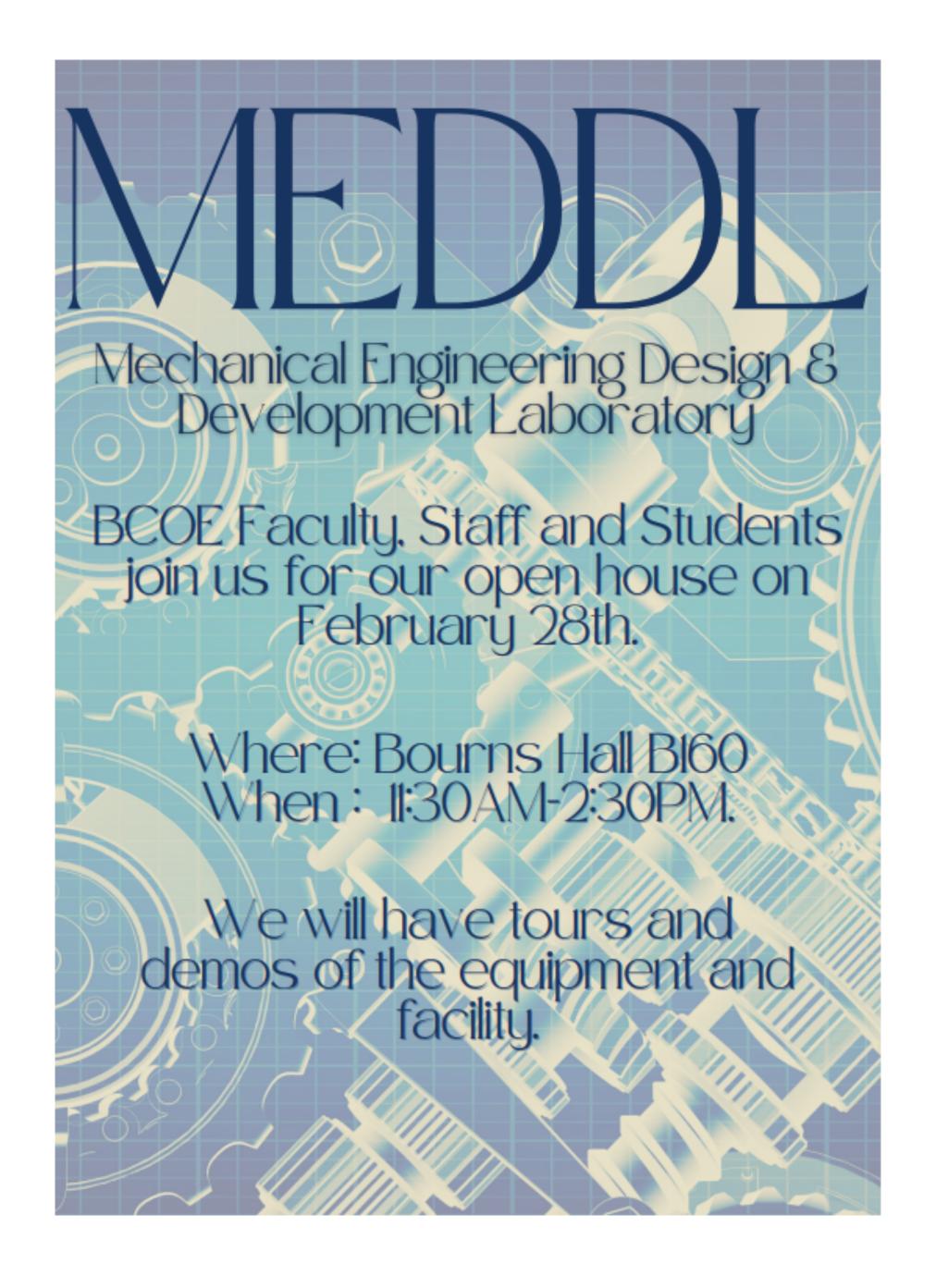
- > Digital Signals
- > Representation
- > Combinational Logic

Today:

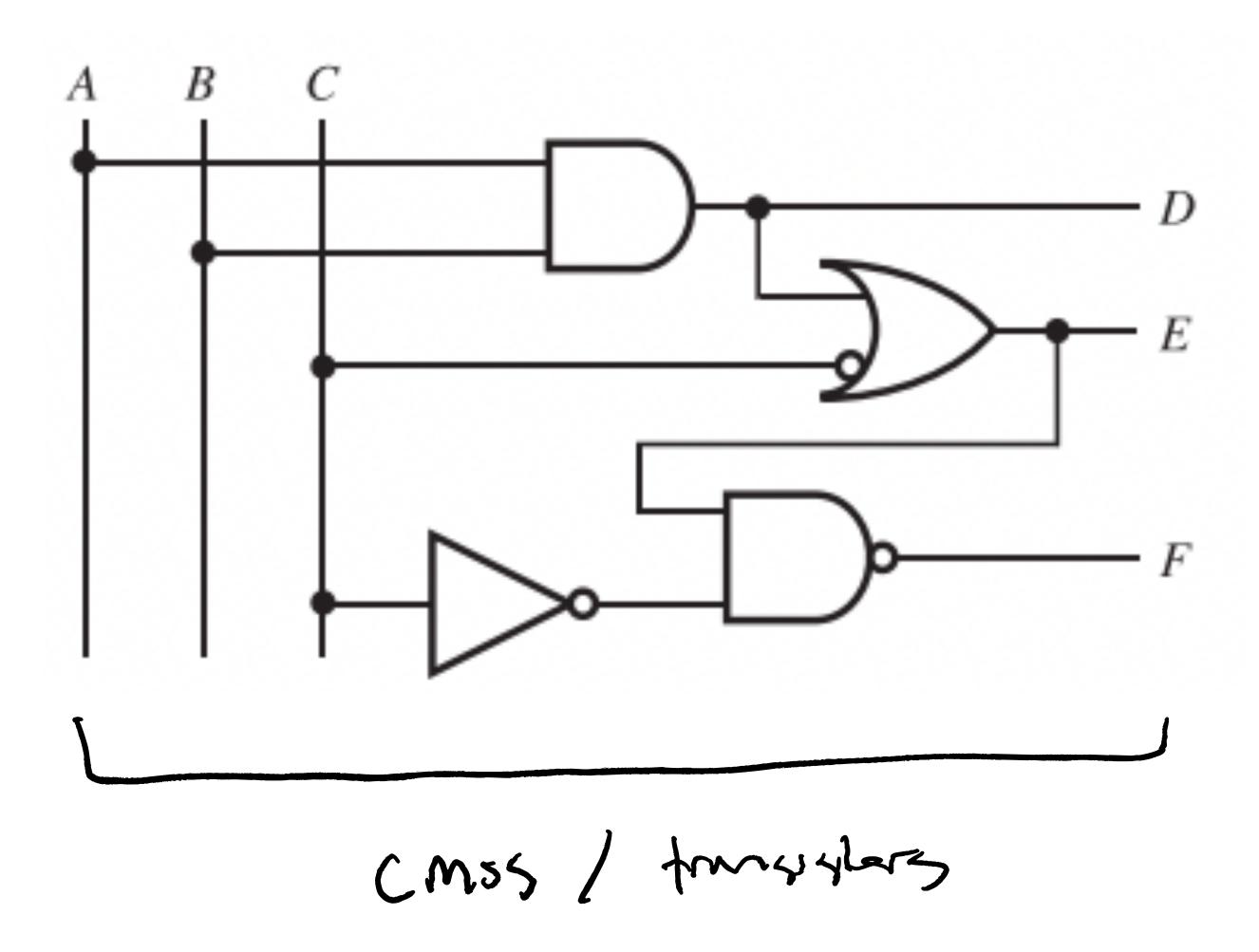
- > Lab project
- > Examples
- > Timing Diagrams
- > Boolean Algebra

MakerSpace opens soon!

Please join the open house if you're available



Example



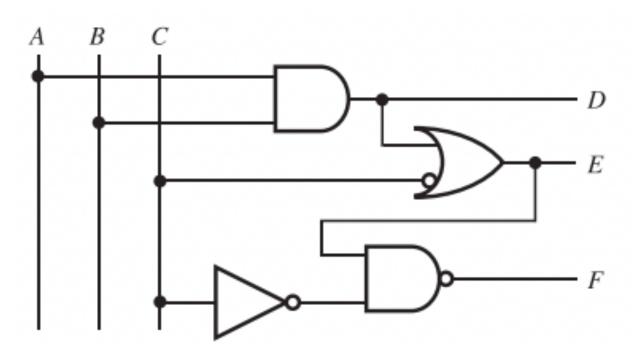
$$D = A \cdot B$$

$$E = D + C = (A \cdot B) + C$$

$$F = E \cdot C$$

$$= (A \cdot B) + C \cdot C$$

Example



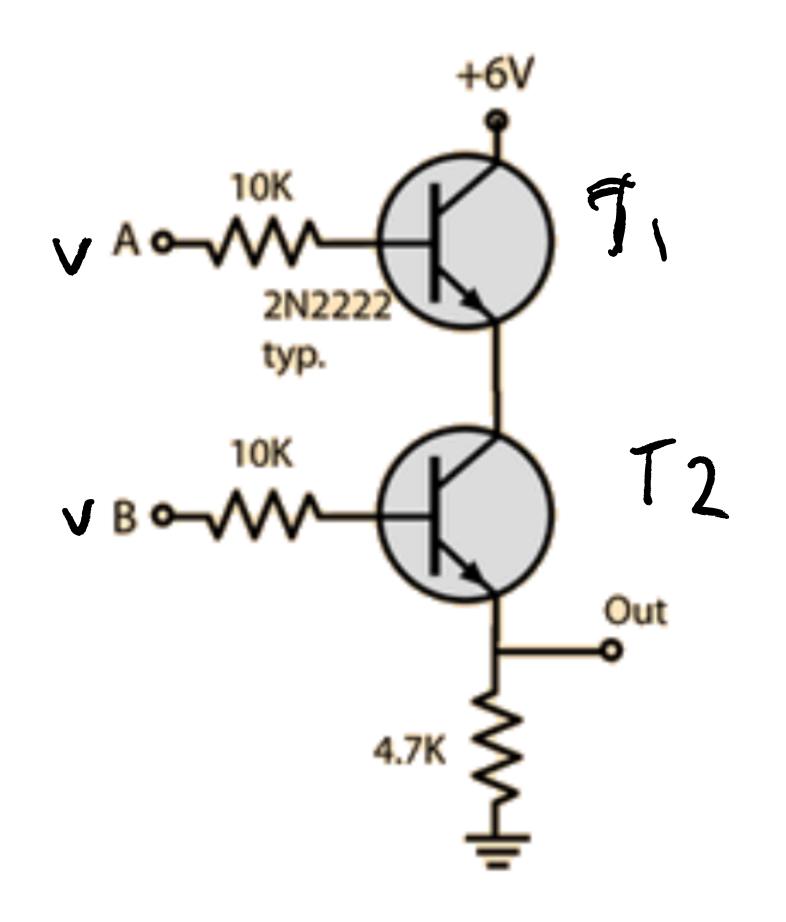
$$D = A - B$$

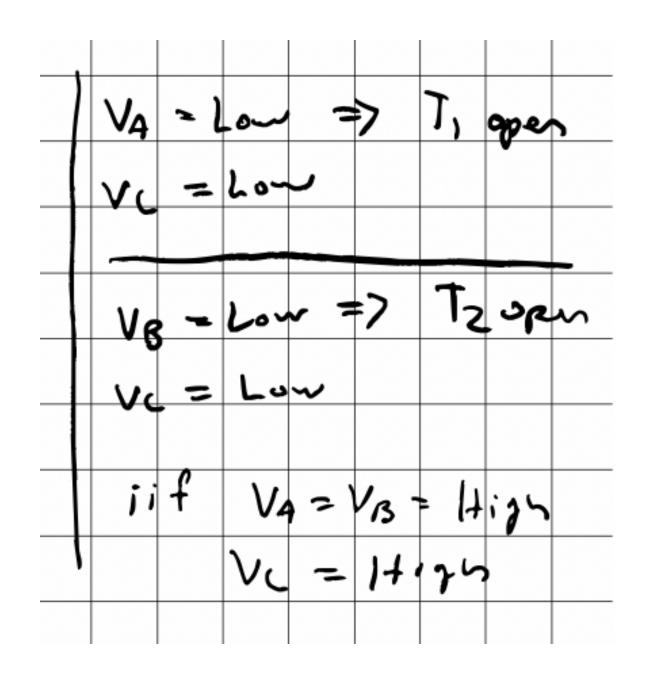
$$E = D + \overline{C} = (A - B) + \overline{C}$$

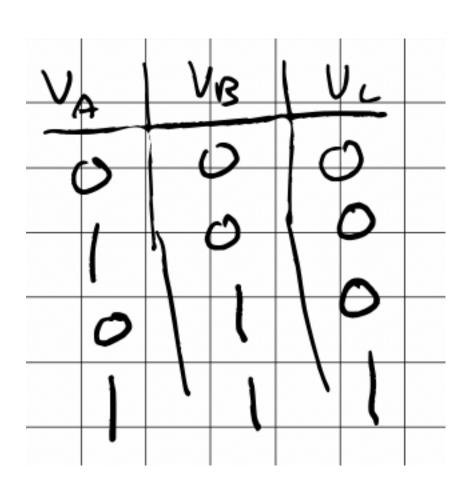
$$F = \overline{[(A - B) + \overline{C}] \cdot \overline{C}}$$

\boldsymbol{A}	В	\boldsymbol{C}	D	E	F
0	0	0	0		0
0	O		0	O	
0			0		0
0					
		0	0		0
	0				
		O			3
			(1	1

How to make hardware gates?

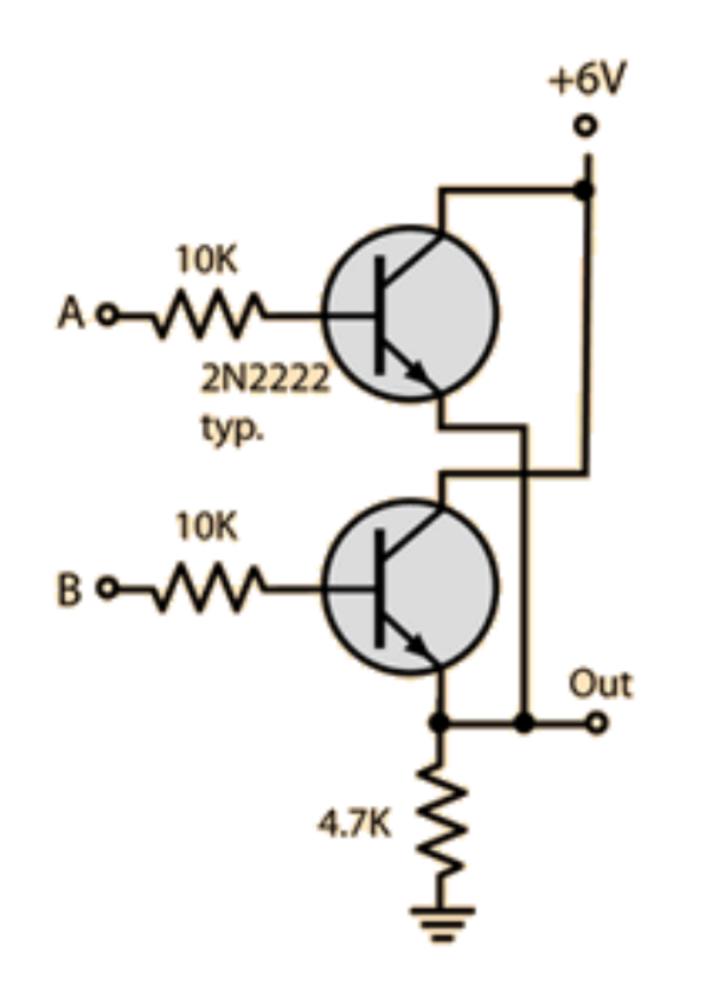


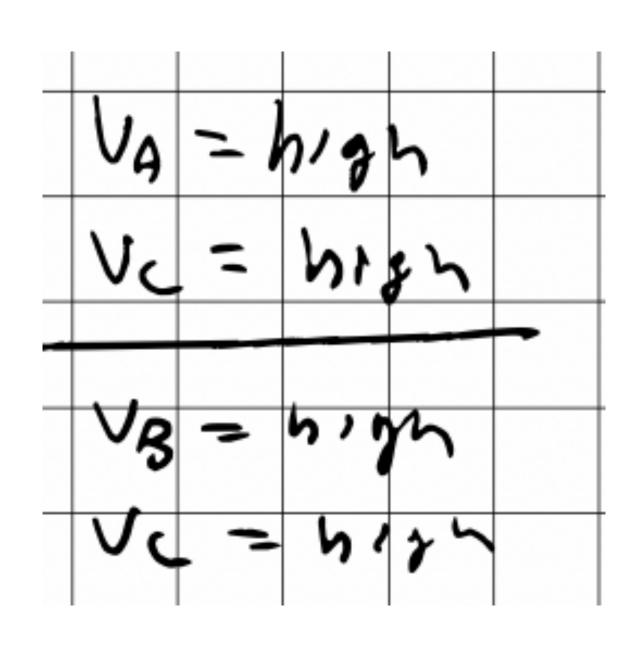


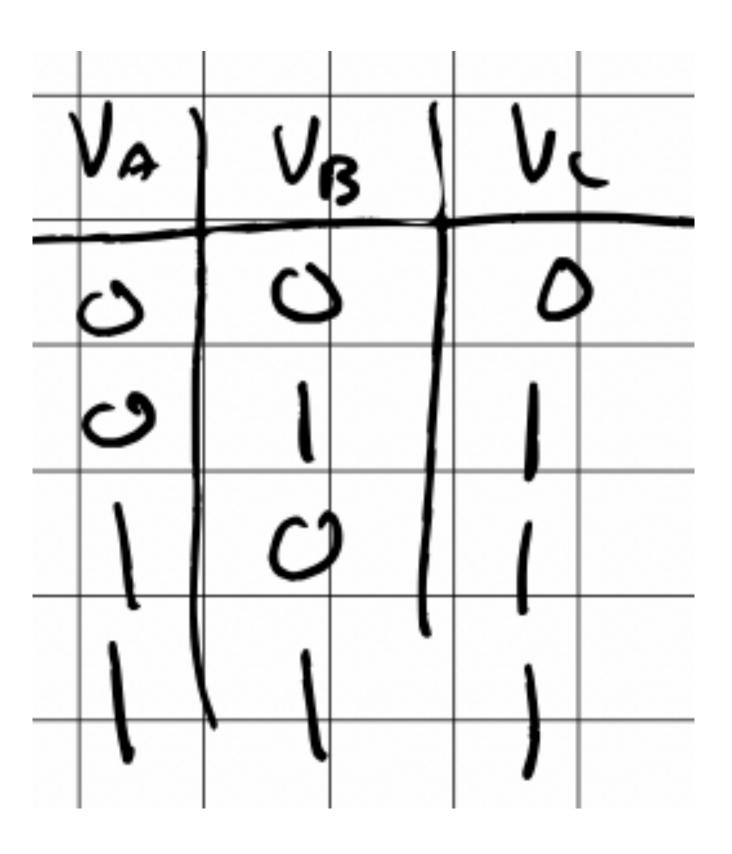


(a) AND gate

How to make hardware gates?

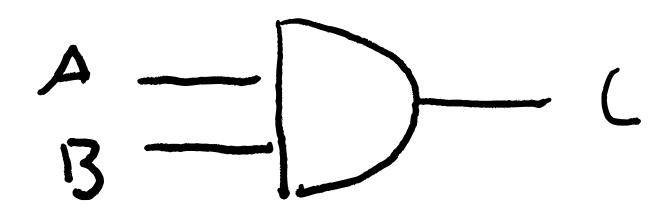


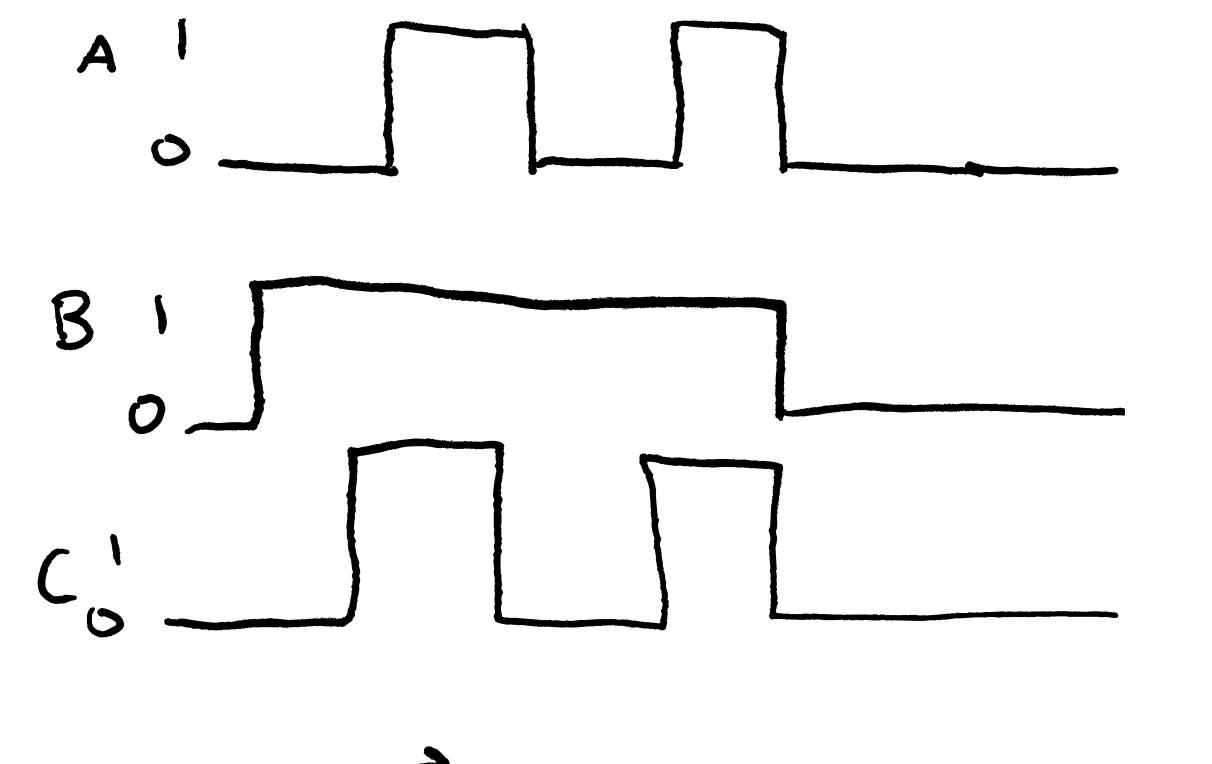


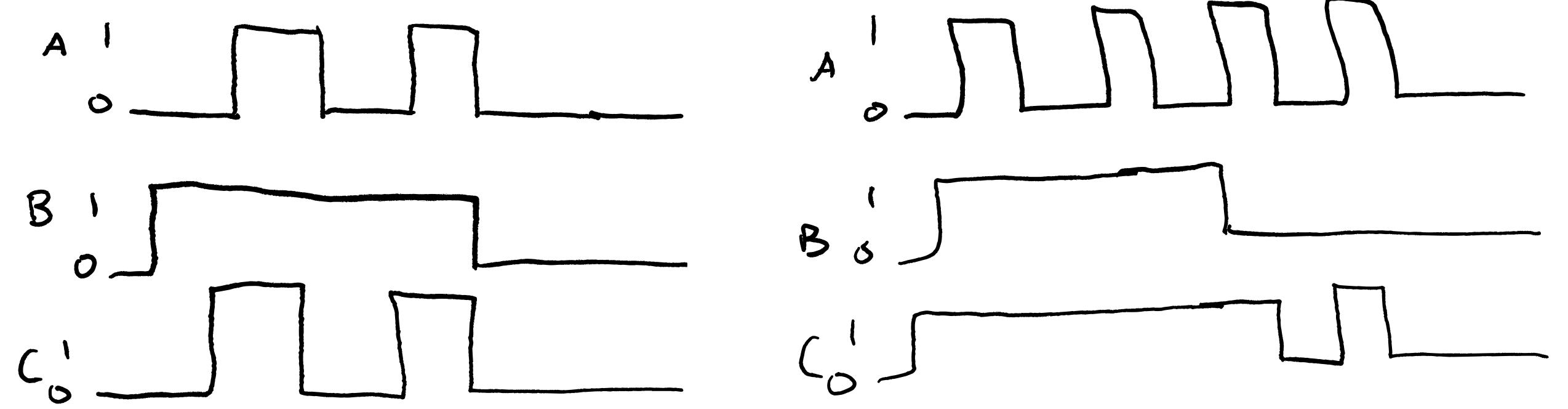


(b) OR gate

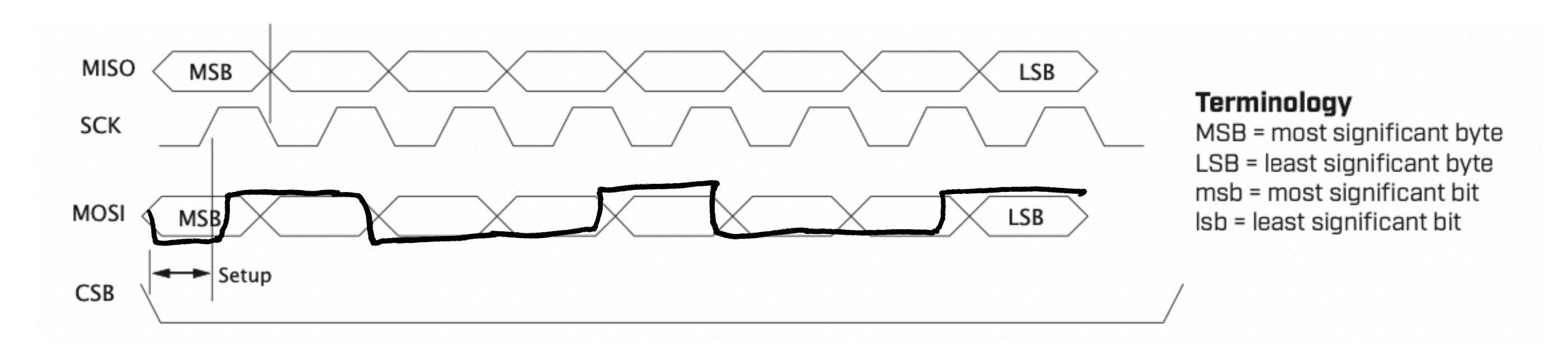
Timing Diagrams







Timing Diagrams



Let's look at real timing diagrams from an encoder with SPI interface

Boolean Algebra

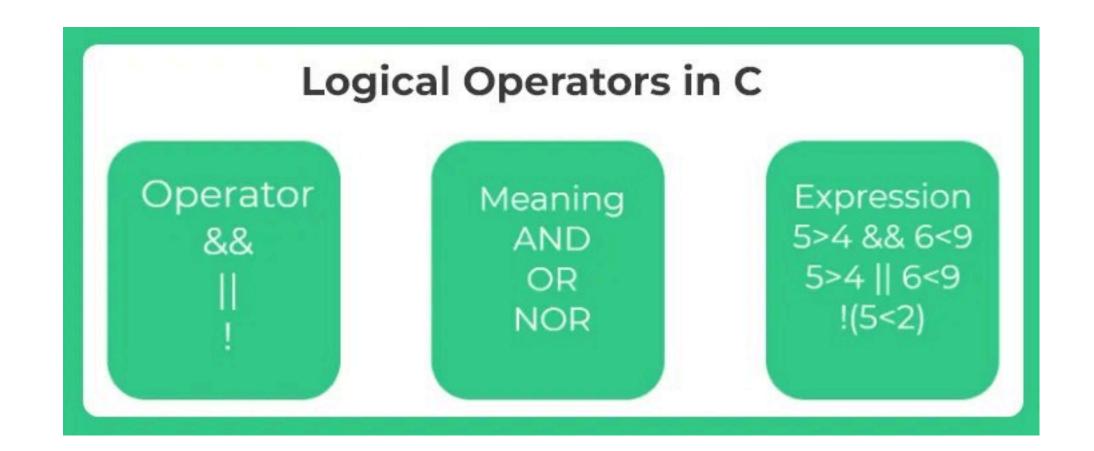
Booleum: binary, usually interpreted as 'TRUE' or FALSE' Algebra: the study of unriables is the rules for manipulating these variables in a formula Boolern Algebra: rules for manipulating binary formulas Thee fundmental lagic operations: AND OR NOT

These can be realized with hardware garles
or 50ftware (logical statements)

Boolean Algebra in Software

Logical Operators

Symbol	Role
&	Find logical AND
	Find logical OR
&&	Find logical AND (with short-circuiting)
H	Find logical OR (with short-circuiting)
~	Find logical NOT



Fundamental Laws

$$A = 0 \text{ or } 1$$

$$OR \quad AND \quad NOT$$

$$- A + O = A \quad A \cdot O = O$$

$$A + A = A$$
 $A \cdot A = A$

Commutative, Associative and Distributive Laws

$$(A+B)+C=A+(B+C)$$

$$(A\cdot B)\cdot C=A\cdot (B\cdot C)$$

$$(A+B)+C=A+(B+C)$$

$$=(A\cdot B)+(A\cdot C)$$

$$=(A\cdot B)+(A\cdot C)$$

De Morgan's Laws

$$\overline{A+B+C\cdots} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdots \qquad A+B+C\cdots = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdots$$

$$\overline{A \cdot B \cdot C \cdots} = \overline{A} + \overline{B} + \overline{C} \cdots \qquad A \cdot B \cdot C \cdots = \overline{A} + \overline{B} + \overline{C} \cdots$$

Other useful identifies 6.17-6.24

Example
$$(A + A) \cdot (A + B)$$

Prove:
$$A + (\overline{A} \cdot B) = A + B$$

Example

Prove:
$$A + (\overline{A} \cdot B) = A + B$$

Most straight forward way: use a truth table!

$$\overline{A}$$
 $\overline{A} \cdot B$ $\overline{A} \cdot B$ $A + (\overline{A} \cdot B)$ $A + B$

Example: Simplifying a Boolean Expression

Use laws to collect like-terms — just like regular algebra!

$$X = (A \cdot B \cdot C) + (B \cdot C) + (\overline{A} \cdot B)$$

$$\Rightarrow \text{ associative}$$

$$X = A \cdot (B \cdot C) + (B \cdot C) + (\overline{A} \cdot B)$$

$$\Rightarrow \text{ distrib-line}$$

$$X = (B \cdot C) \cdot (A \neq 1) + (\overline{A} \cdot B)$$

$$\Rightarrow \text{ Furtherful laws } A \neq 1 = 1$$

$$X = (B \cdot C) + (\overline{A} \cdot B) \rightarrow X = B \cdot (C + \overline{A})$$

Let's design a home alarm system using only logic gates

What we want:

- 1. Alarm to sound if window or doors are distribed Mode-1 (sleeping)
- 2. Alarm to sound it works Mode-Z (uncartion)
- 3. A disabled State where alorm is off mode-3 (off)

Assumptions:

That sensors are binary (motion -1, no motion -0 door/window is distribut -1, no distribute

Let's define our Boolean variables:

- A: state of the door and window sensors
- \blacksquare B: state of the motion detector
- Y: output used to sound the alarm
- *CD*: 2-bit code set by the user to select the operating state defined by

$$CD = \begin{cases} 0.1 & \text{operating state 1} \\ 1.0 & \text{operating state 2} \\ 0.0 & \text{operating state 3} \end{cases}$$

Quasi-logic Statement

Action te alorm
$$(T=1)$$
 if $A=1$ and $CD=01$ or $A=1$ or $B=1$ and $CD=10$

Translate Quasi-logic Statement into Boolean Expression

Activate alarm (Y=1) if A=1 and CD = 01 or activate the alarm if
$$A = 1 \circ B = 1 \circ B = 1 \circ B = 10$$

$$Y = A \cdot (C \cdot D) + (A + B) \cdot (C \cdot D)$$

Simplify
$$Y = A \cdot (\overline{C} \cdot D) + (A + B) \cdot (C \cdot \overline{D})$$

C	D	$(\overline{C}\cdot D)$	$(C \cdot \overline{D})$
0	0	0	0
1	0	0	1
0	1	1	0

$$(\overline{C} \cdot D) = D \text{ and } (C \cdot \overline{D}) = C$$

$$Y = (A \cdot D) + (A + B) \cdot C$$

Convert to single gate: $Y = (A \cdot D) + (A + B) \cdot C$

Now we can draw logic circuit:

$$Y = \overline{\overline{A \cdot D} \cdot (\overline{A} \cdot \overline{B})} \cdot C$$