ME133 Lecture 2 Last time: > What is mechatronics?

Quick Poll: How mony have used ChatGPT?

1/12/23

Today:

- Basic electronic components
- Kirchoff's Laws
- Examples

Electricity Basics

 $I(t) = \frac{d\tau_0}{dt} \xrightarrow{P} charge} (A) anps$

Hydraulic Analogy

Voltage: a measure of <u>electric field potential</u>

Current: time rate of "flow of charge"

Direct vs Alternating Current

Examples: Batteries, USB solar cells, Fuel cells

Examples: July (outlet) Ly power lines

NIIs~ current for flow

Terminology and Conventions

Basic Ideal Electrical Components (3 + 2 ideal sources)

Capacitor

Ohms Law:

Resistor: converts électrical energy into heat (dissipates energy)

For homogenous material with constant cross-sectional area

L: length rho: resistivity A: cross-sectional area

Water Analogy for a resistor

Water Analogy for a resistor

Potentiometer: variable resistor

Water Analogy for a capacitor

Water Analogy for a capacitor

tank analogy

membrane analogy

established

Water Analogy for a inductor

Water Analogy for a inductor

water wheels stores energy as inertia

Kirchhoff's voltage law (KVL)

a closed
$$\frac{1}{2}V_{i} = 0$$

1. assume current direct
2. assign pohrity
3. Start loop from anyw
1. Som all
$$V_0$$
)tages
 $-V_1 - V_2 + V_3 + \cdots + - \nabla y = e$

KVL Example (2.3 pg. 24)

Find the current through the resistor.

KVL Example (2.3 pg. 24)

KVL:

+ $V_s = 10 \text{ V}$ I_R $V_R \stackrel{+}{\gtrless} R = 1 \text{ k}\Omega$

Find the current through the resistor.

 $-\tilde{V}_{S}+\tilde{V}_{R}=0$ $V_S = V_R$ $I = \frac{V_s}{R} = \frac{10^{10}}{10^{10}}$ = 10 mA

Kirchhoff's current law (KCL)

$\mathbf{J}_1 + \mathbf{J}_2 = \mathbf{J}_3$

Series Resistance

Find Req?

Series Resistance

 $K(L: I = J_{R_1} = J_{R_2}$ $KVL: -V_3 + V_{R_1} + V_{R_2} = 0$ Ohms $V_{R_1} = IR_1$ $V_{R_2} = IR_2$ $-V_{c} + IR_{1} + IR_{2} = 0$ $V_{\varsigma} = (R, +R_{z}) T$

Resister in series add.

Voltage Divider Circuit

Why is this circuit useful? > Step down voltages > simplest sensing circuit

 $=\frac{R_1}{R_1+R_2}V_s$ V_{R1} $\frac{R_2}{R_1 + R_2}V_s$ V_{R2}

Force Sensitive Resistor

How can we convert resistance into something ve can measure with a mercoantrol (Voltage!???

KCL: $I = I_{R_s} = J_R$ $KVL: -V_s + V_{e_s} + V_o = 0$ $V_s = V_{Rs} + V_R$ $= IR_{s} + IR = I(R_{s} + R)$

Rs + R vs

Let's look at the limits:

Now we can *sample* the voltage from the voltage divider, which is proportional to the force

