3.1. * To measure the activity of a radioactive sample, two students count the
alpha particles it emits. Student A watches for 3 minutes and counts 28 particles;
Student B watches for 30 minutes and counts 310 particles. (a) What should Student
A report for the average number emitted in 3 minutes, with his uncertainty? (b)
What should Student B report for the average number emitted in 30 minutes, with
her uncertainty? (¢) What are the fractional uncertainties in the two measurements?
Comment.



3.3. * Most of the ideas of error analysis have important applications in many
different fields. This applicability is especially true for the square-root rule (3.2)
for counting experiments, as the following example illustrates. The normal average
incidence of a certain kind of cancer has been established as 2 cases per 10,000
people per year. The suspicion has been aired that a certain town (population
20,000) suffers a high incidence of this cancer because of a nearby chemical dump.
To test this claim, a reporter investigates the town’s records for the past 4 years and
finds 20 cases of the cancer. He calculates that the expected number is 16 (check
this) and concludes that the observed rate is 25% more than expected. Is he justified
in claiming that this result proves that the town has a higher than normal rate for
this cancer?



3.11. * With a good stopwatch and some practice, you can measure times ranging
from approximately 1 second up to many minutes with an uncertainty of 0.1 second
or so. Suppose that we wish to find the period 7 of a pendulum with 7 = 0.5 s. If
we time 1 oscillation, we have an uncertainty of approximately 20%; but by timing
several oscillations together, we can do much better, as the following questions
illustrate:

(a) If we measure the total time for 5 oscillations and get 2.4 + 0.1 s, what is
our final answer for 7, with its absolute and percent uncertainties? [Remember the
rule (3.9).]

(b) What if we measure 20 oscillations and get 9.4 = 0.1 s?

(¢) Could the uncertainty in 7 be improved indefinitely by timing more oscilla-
tions?



3.13. % If I have measured the radius of a sphere as r = 2.0 = 0.1 m, what should
I report for the sphere’s volume?



3.21. * (a) To find the velocity of a cart on a horizontal air track, a student mea-
sures the distance d it travels and the time taken ¢ as

d = 510 £ 0.01 m and t = 6.02 = 0.02s.

What is his result for v = d/t, with its uncertainty? (b) If he measures the cart’s
mass as m = (0.711 = 0.002 kg, what would be his answer for the momentum
p = mv = md/t? (Assume all errors are random and independent.)



3.29. % (a) An experiment to measure Planck’s constant 4 gives it in the form
h = K\'3 where K is a constant known exactly and \ is the measured wavelength
emitted by a hydrogen lamp. If a student has measured A with a fractional uncer-
tainty she estimates as 0.3%, what will be the fractional uncertainty in her answer
for #? Comment. (b) If the student’s best estimate for 4 is 6.644 X 1073 J-s, is her
result in satisfactory agreement with the accepted value of 6.626 X 10734 J-s?



3.39. x% (a) The glider on a horizontal air track is attached to a spring that causes
it to oscillate back and forth. The total energy of the system is £ = $mv® + 3kx?,
where m is the glider’s mass, v is its velocity, k£ is the spring’s force constant, and
x 1is the extension of the spring from equilibrium. A student makes the following
measurements:

m = 0.230 = 0.001 kg, v = 0.89 £ 0.01 m/s,
k = 1.03 £ 0.01 N/m, x = 0.551 = 0.005 m.

What is her answer for the total energy £E? (b) She next measures the position x,,,
of the glider at the extreme end of its oscillation, where v = 0, as

X = 0.698 £ 0.002 m.

max

What is her value for the energy at the end point? (¢) Are her results consistent with
conservation of energy, which requires that these two energies should be the same?



3.45. x (a) For the function g(x, y) = xy, write the partial derivatives dq/ox and
dg/dy. Suppose we measure x and y with uncertainties ox and oy and then calculate
q(x, y). Using the general rules (3.47) and (3.48), write the uncertainty g both for
the case when dx and dy are independent and random, and for the case when they
are not. Divide through by |g| = |xy|, and show that you recover the simple rules
(3.18) and (3.19) for the fractional uncertainty in a product. (b) Repeat part (a) for
the function g(x, y) = x"y", where n and m are known fixed numbers. (¢c) What do
Equations (3.47) and (3.48) become when g(x) depends on only one variable?



3.49. %% If an object 1s placed at a distance p from a lens and an image is
formed at a distance g from the lens, the lens’s focal length can be found as

_ P4
f PET, (3.56)
[This equation follows from the “lens equation,” 1/f = (1/p) + (1/q).] (a) Use the
general rule (3.47) to derive a formula for the uncertainty &f in terms of p, g, and
their uncertainties. (b) Starting from (3.56) directly, you cannot find &f in steps
because p and g both appear in numerator and denominator. Show, however, that f
can be rewritten as

1
~ (Up) + (lg)

Starting from this form, you can evaluate &f in steps. Do so, and verify that you get
the same answer as in part (a).

f



