4.5. % (a) Computing the standard deviation o, of N measurements x;, ..., Xy
of a single quantity x requires that you compute the sum Y(x; — X)*. Prove that this
sum can be rewritten as

Sl - %71 = Sl - . [S@P (428

This problem is a good exercise in using the . notation. Many calculators use the
result to compute the standard deviation for the following reason: To use the expres-
sion on the left, a calculator must keep track of all the data (which uses a lot of
memory) to calculate X and then the sum indicated; to use the expression on the
right, the machine needs only to keep a running total of >(x;”) and X(x;), which
uses much less memory. (b) Verify the identity (4.28) for the three measurements
of Problem 4.1.



4.7. % %% Read the first paragraph of Problem 4.6 and then do the following prob-
lem: A health physicist is testing a new detector and places it near a weak radioac-
tive sample. In five separate 10-second intervals, the detector counts the following
numbers of radioactive emissions:

16, 21, 13, 12, 15.

(a) Find the mean and standard deviation of these five numbers. (b) Compare the
standard deviation with its expected value, the square root of the average number.
(¢) Naturally, the two numbers in part (b) do not agree exactly, and we would like
to have some way to assess their disagreement. This problem is, in fact, one of error
propagation. We have measured the number ». The expected standard deviation in
this number is just \/;, a simple function of ». Thus, the uncertainty in the standard
deviation can be found by error propagation. Show, in this way, that the uncertainty
in the SD is 0.5. Do the numbers in part (b) agree within this uncertainty?



4.9. * A student measures the period of a pendulum three times and gets the
answers 1.6, 1.8, and 1.7, all in seconds. What are the mean and standard deviation?
[Use the improved definition (4.9) of the standard deviation.] If the student decides
to make a fourth measurement, what is the probability that this new measurement
will fall outside the range of 1.6 to 1.8 s? (The numbers here were chosen to “come
out right.” In Chapter 5, I will explain how to do this kind of problem even when
the numbers don’t come out right.)



4.13. ** (a) Calculate the mean and standard deviation for the following 30 mea-
surements of a time ¢ (in seconds):

8.16, 8.14, 8.12, 8.16, 8.18, 8.10, 8.18, 8.18, 8.18, 8.24,
8.16, 8.14, 8.17, 8.18, 8.21, 8.12, 8.12, 8.17, 8.06, 8.10,
8.12, 8.10, 8.14, 8.09, 8.16, 8.16, 8.21, 8.14, 8.16, 8.13.

(You should certainly use the built-in functions on your calculator (or the spread-
sheet you created in Problem 4.8 if you did), and you can save some button pushing
if you drop all the leading 8s and shift the decimal point two places to the right
before doing any calculation.) (b) We know that after several measurements, we can
expect about 68% of the observed values to be within o, of 7 (that is, inside the
range ¢ = o). For the measurements of part (a), about how many would you expect
to lie outside the range ¢ = ¢,? How many do? (c¢) In Chapter 5, I will show that
we can also expect about 95% of the values to be within 20, of 7 (that is, inside the
range ¢ = 20,). For the measurements of part (a), about how many would you ex-
pect to lie outside the range ¢ + 20,7 How many do?



4.21. * Table 4.3 records 10 measurements each of the length / and breadth b of
a rectangle. These values were used to calculate the area A = [b. If the measure-
ments were made in pairs (one of / and one of b), it would be natural to multiply
each pair together to give a value of A—the first / times the first b to give a first
value of A, and so on. Calculate the resulting 10 values of A, the mean A, the SD
o,, and the SDOM o 5. Compare the answers for A and o5 with the answer (4.18)
obtained by calculating the averages / and b and then taking A to be [ b, with an
uncertainty given by error propagation. (For a large number of measurements, the
two methods should agree.)



4.23. ¥ A famous example of a systematic error occurred in Millikan’s historic
measurement of the electron’s charge e. He worked on this experiment for several
years and had reduced all random errors to a very low level, certainly less than
0.1%. Unfortunately, his answer for e depended on the viscosity of air (denoted 7)),
and the value of 7 that he used was 0.4% too low. His value for e had the form
e = Kn*”?, where K stands for a complicated expression involving several measured
parameters but not 7. Therefore, the systematic error in 1 caused a systematic error
in e. Given that all other errors (random and systematic) were much less than 0.4%,
what was his error in e? (This example is typical of many systematic errors. Until
the errors are identified, nothing can be done about them. Once identified, the errors
can be eliminated, in this case by using the right value of 7.)



4.25. x% (a) A student measures the speed of sound as u = f\, where f is the
frequency shown on the dial of an audio oscillator, and N\ is the wavelength mea-
sured by locating several maxima in a resonant air column. Because there are sev-
eral measurements of A, they can be analyzed statistically, and the student concludes
that A = 11.2 = 0.5 cm. Only one measurement has been taken of f= 3,000 Hz
(the setting on the oscillator), and the student has no way to judge its reliability.
The instructor says that the oscillator is “certainly 1% reliable”; therefore, the stu-
dent allows for a 1% systematic error in f (but none in N\). What is the student’s
answer for u with its uncertainty? Is the possible 1% systematic error from the
oscillator’s calibration important? (b) If the student’s measurement had been
A = 11.2 = 0.1 cm and the oscillator calibration had been 3% reliable, what would
the answer have been? Is the systematic error important in this case?



