ME170b Lecture 4

Experimental Techniques

Last time:

General Formula for
error propogration

$$\delta g = \sqrt{\left(\frac{\partial p}{\partial x} \delta_{x}\right)^{2} + \dots + \left(\frac{\partial p}{\partial z} \delta_{z}\right)^{2}}$$

 $\delta g = \sqrt{\left(\frac{\partial p}{\partial x} \delta_{x}\right)^{2} + \dots + \left(\frac{\partial p}{\partial z} \delta_{z}\right)^{2}}$

2/3/23

Today: Statistics CH-4

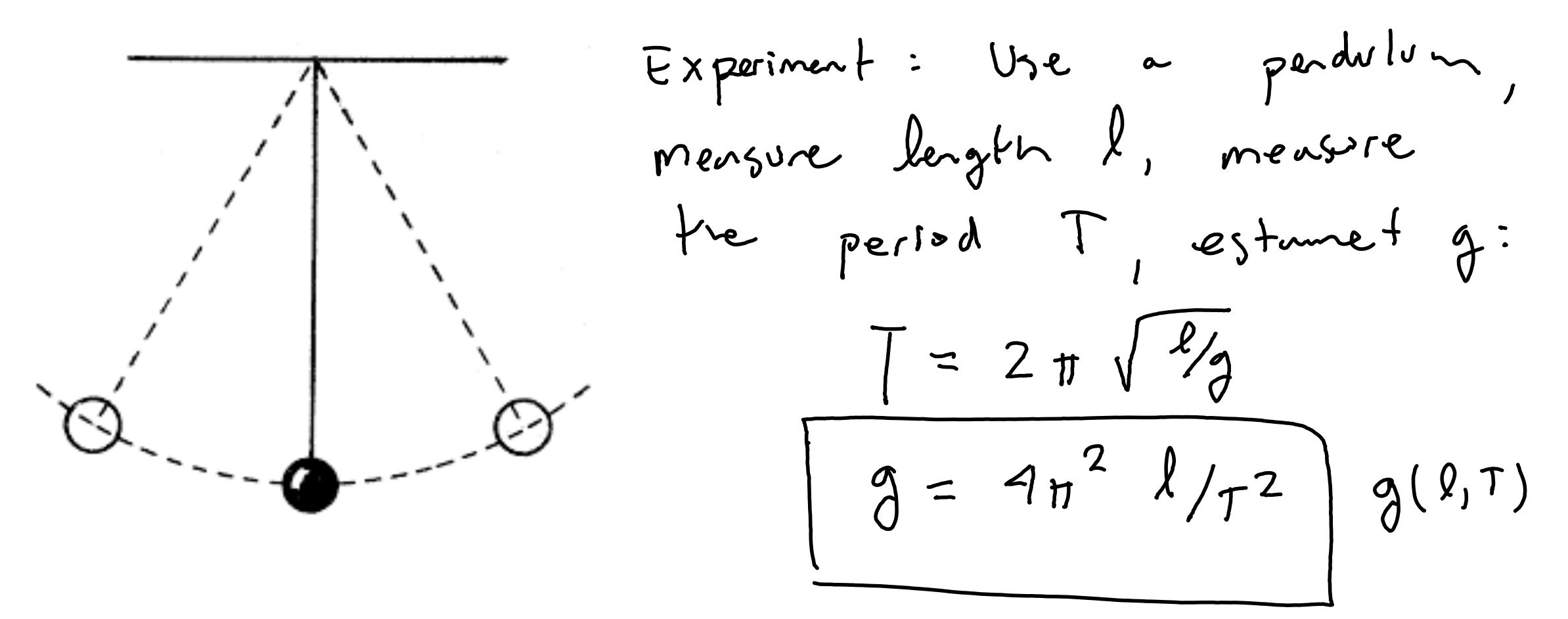
Histogram

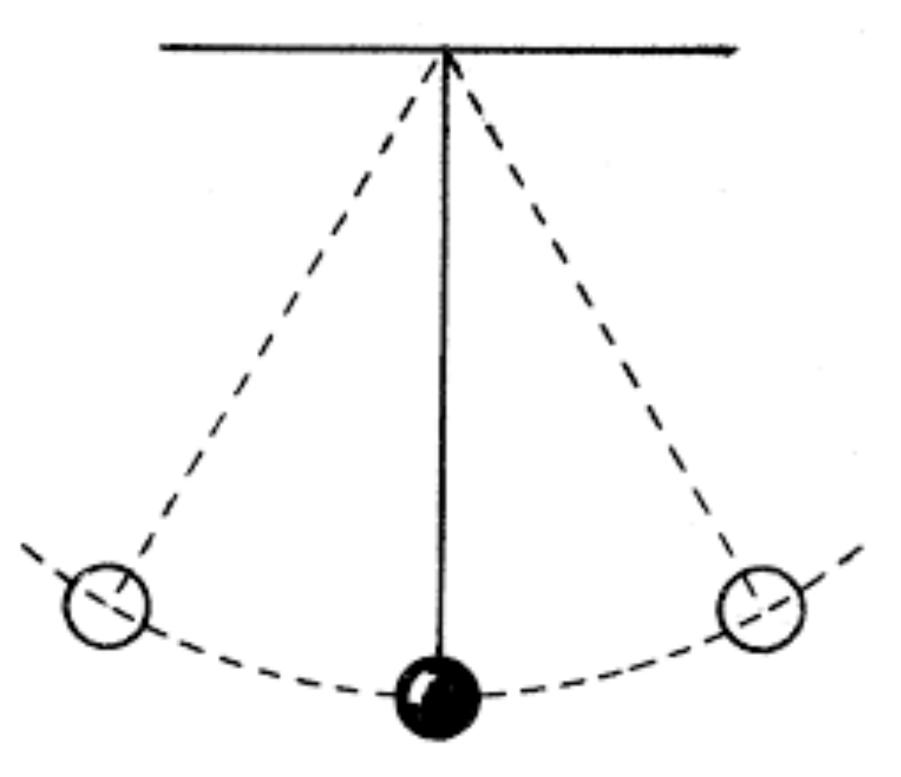
C H.5 first-

 $\left(\frac{1}{2} \right)^2$



Checking Understanding: Propagation of Uncertainties Suppose we want to confirm the value of g, the acceleration due to gravity H: grensure = T.31



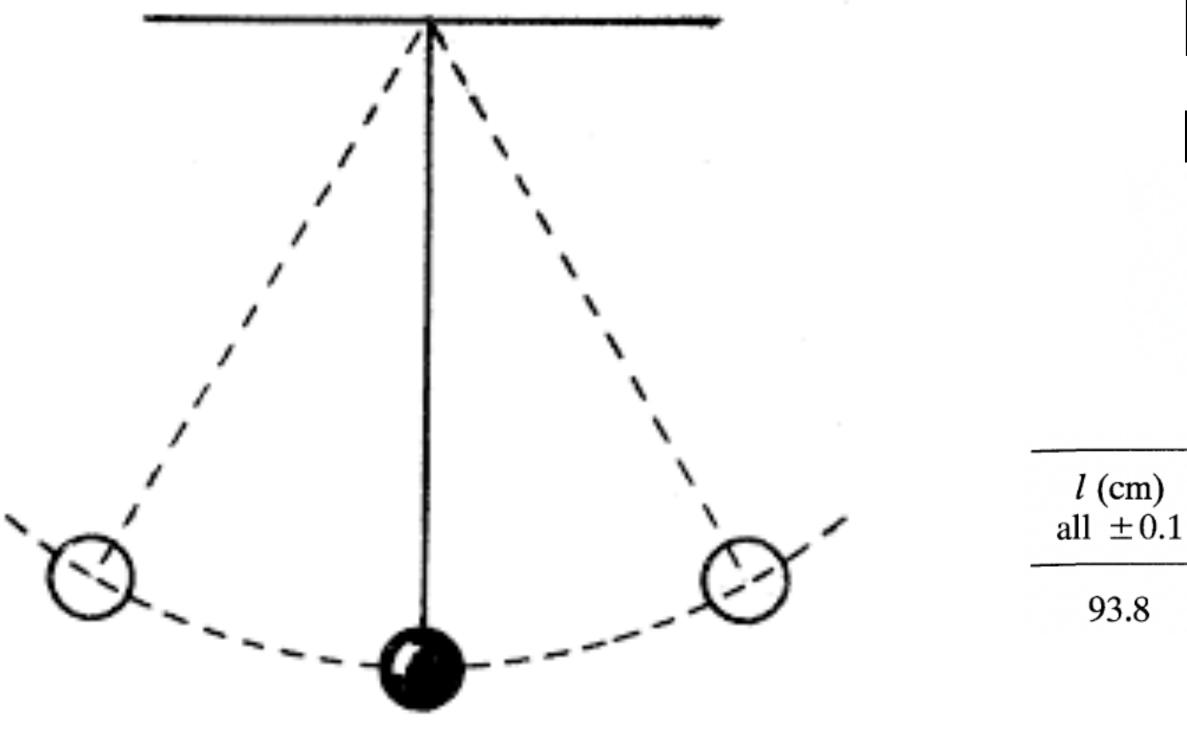


n little - D Quan betier.

How can we track error propagation?

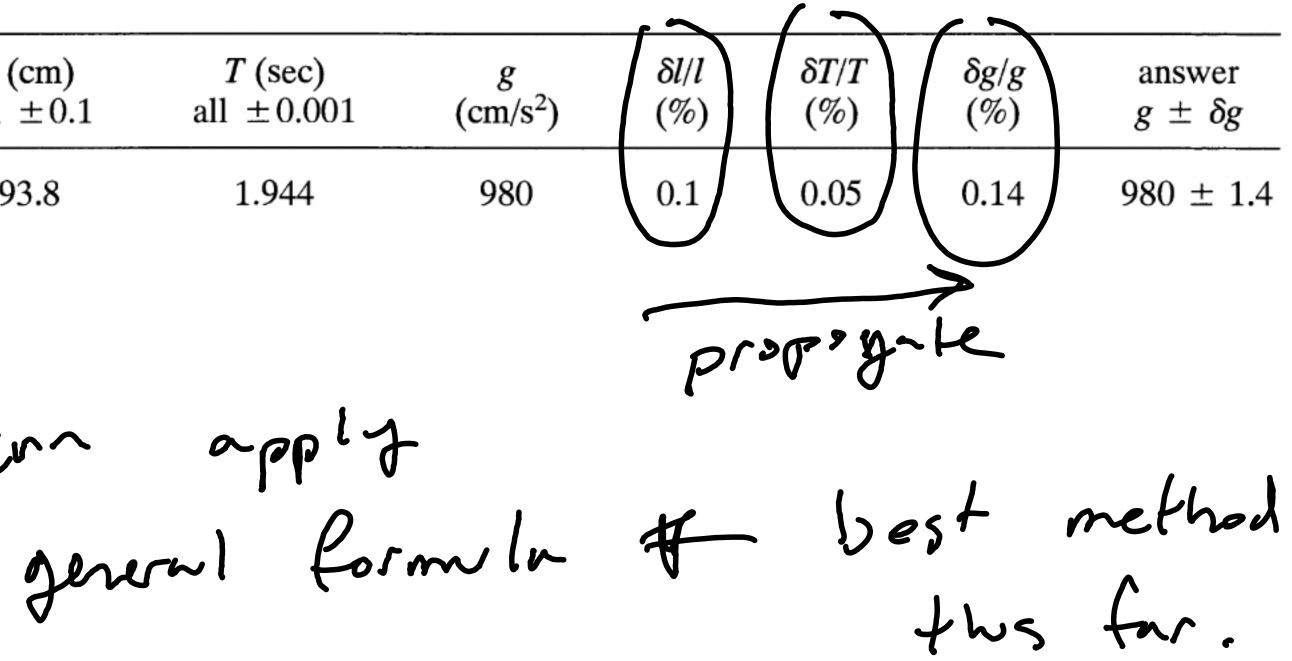
$$g = 4\pi^2 l/r^2$$

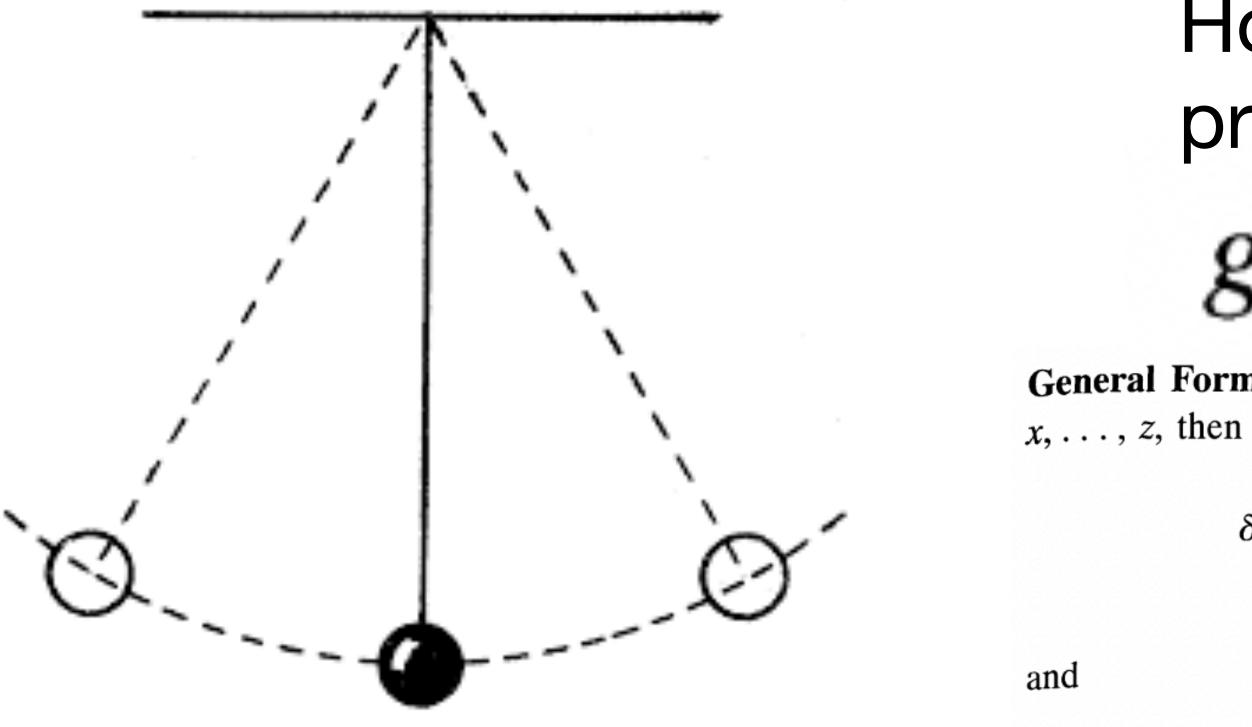
rouisional method:
- factional uncertainties add
under multiplication
Quardrature method:
$$\sqrt{[]^2 + (]^2}$$



How can we track error propagation?

$$g = 4\pi^2 l/T^2$$





How can we track error propagation?

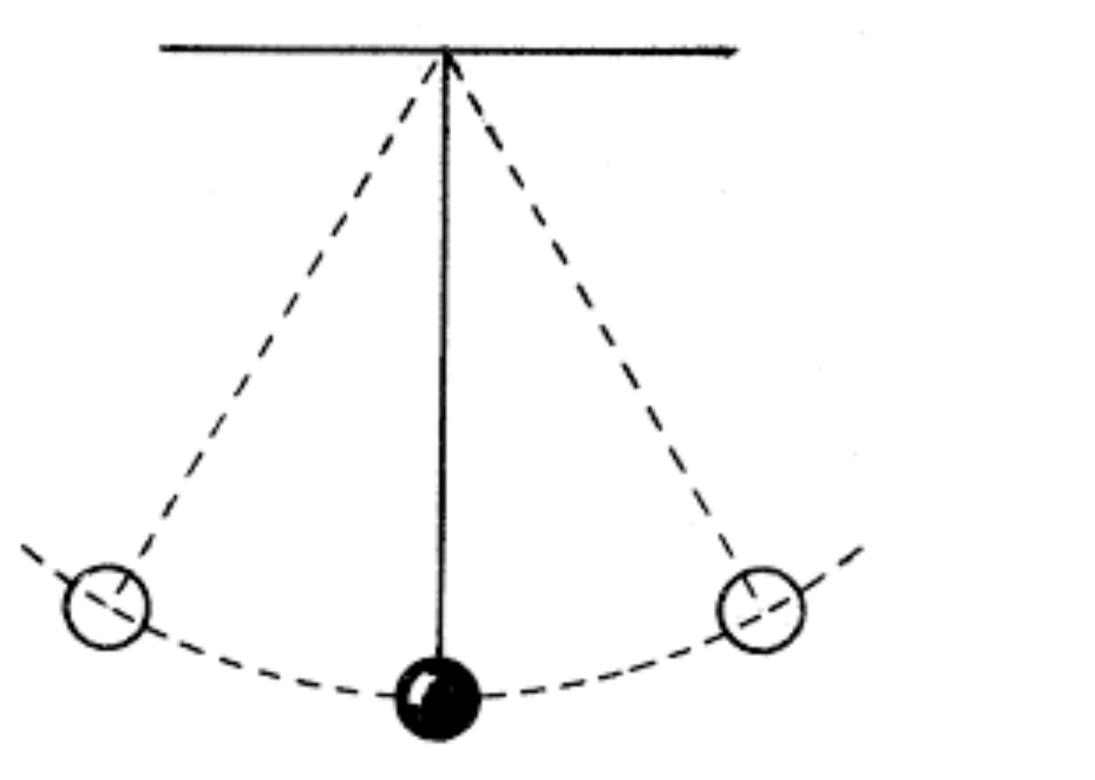
$$g = 4\pi^2 l/T^2$$

General Formula for Error Propagation: If q = q(x, ..., z) is any function of

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x} \,\delta x\right)^2 + \dots + \left(\frac{\partial q}{\partial z} \,\delta z\right)^2}$$
(provided all errors are independent and random)

$$\delta q \leq \left| \frac{\partial q}{\partial x} \right| \, \delta x + \dots + \left| \frac{\partial q}{\partial z} \right| \, \delta z$$
(always). [See (3.47) & (3.48)]

We can apply the general formula



How can we leverage repeated measures to estimate uncertainty directly from data? A: Statistics!

How can we track error propagation?

g =	$4\pi^2 l/T^2$
g =	$4\pi^2 l/T^2$

l (cm) all ± 0.1	T (sec) all ± 0.001	g (cm/s ²)
93.8	1.944	980
70.3	1.681	
45.7	1.358	
21.2	0.922	

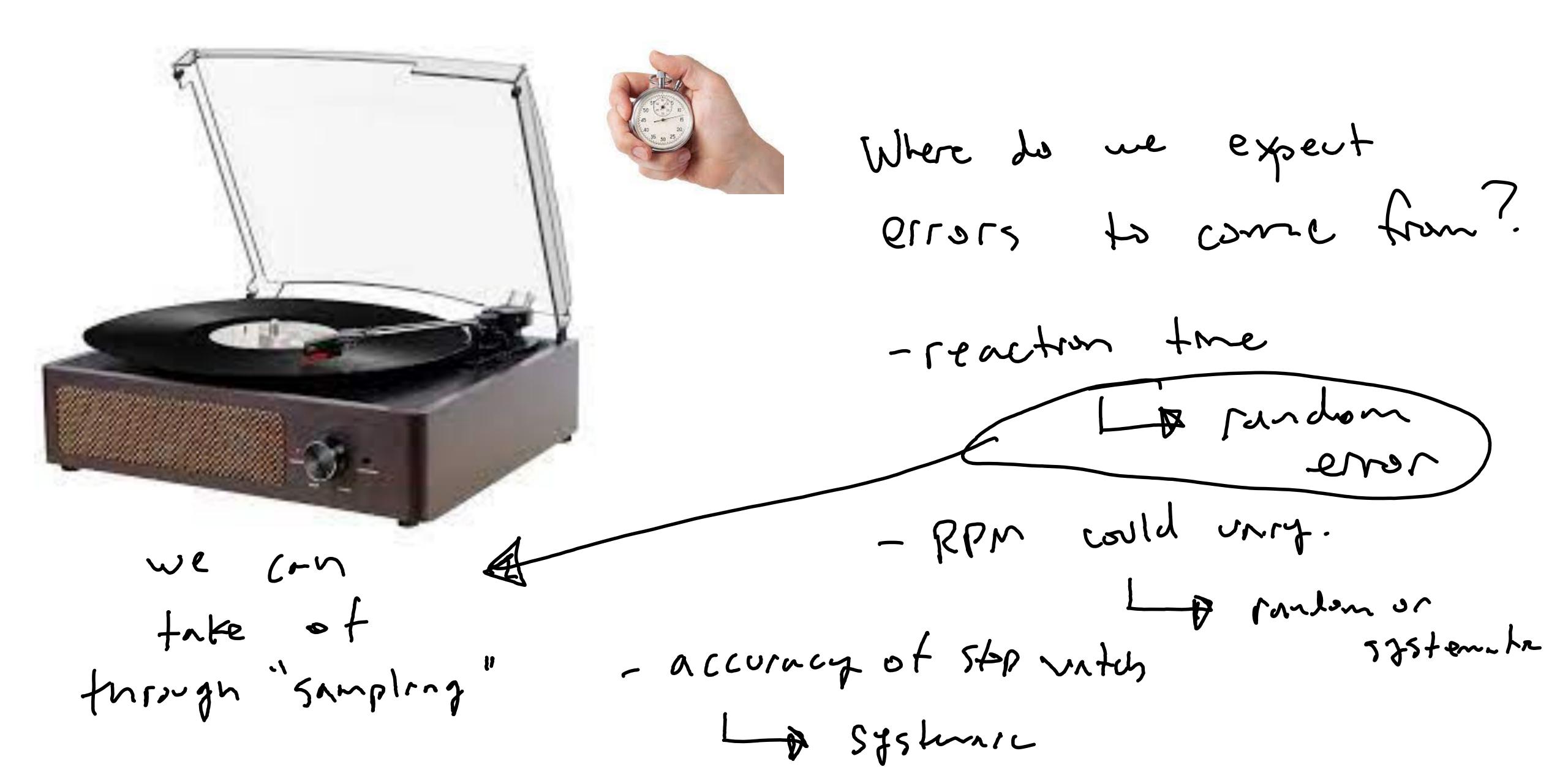
First, which types are errors can be estimated statistically?

Random Errors: uncertainties that can be revealed by repeating the measurements

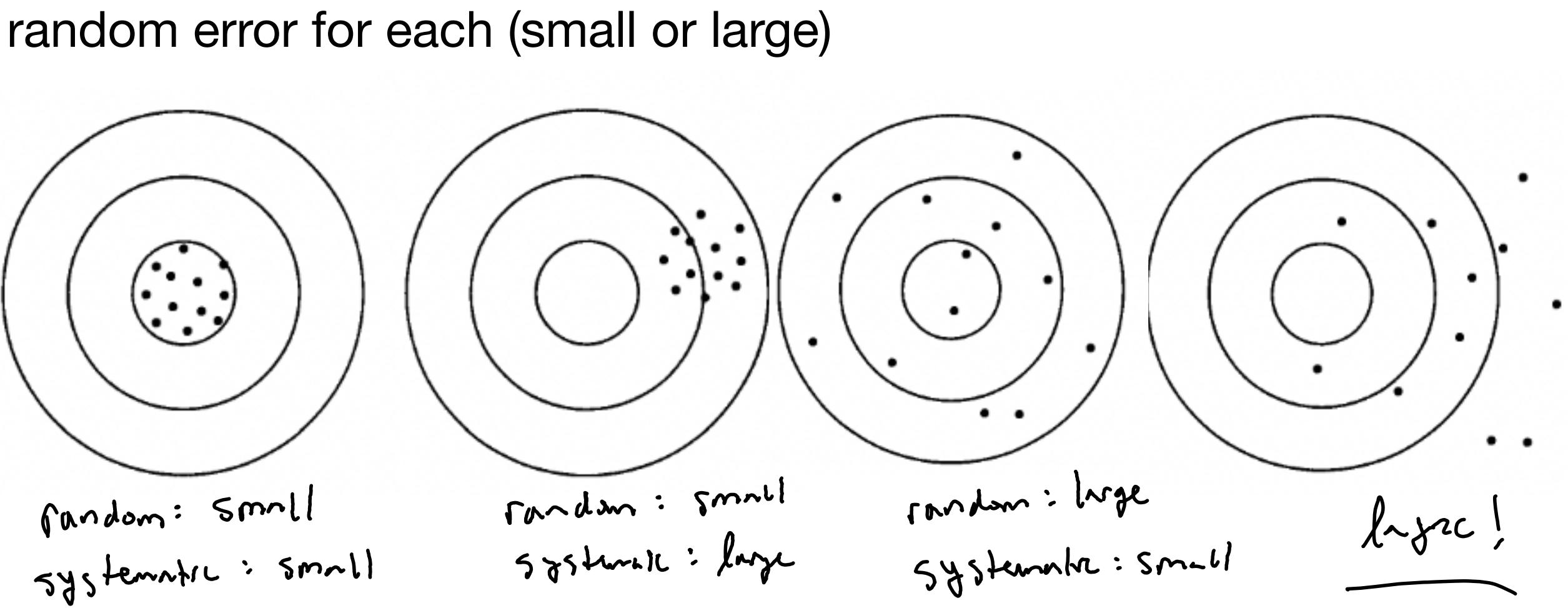
Systematic Errors: errors that are not random are systematic

Consider timing the revolutions of a turntable using a stop watch

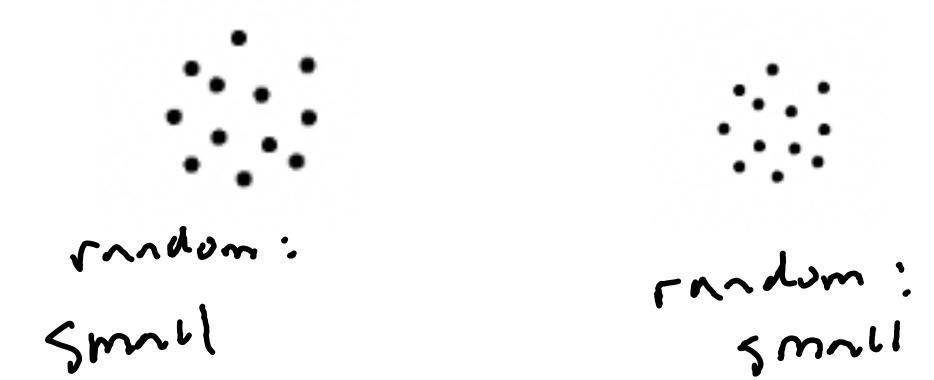
maybe we want to test whether a vintage record playing is at the correct RPM



Conceptual example: 'experiment' is series of 'shots' at target accurate measurement == center of target. qualify systematic and random error for each (small or large)



In reality we don't know the target!



We chn't systematic error! Key iden: we can identify random error even If we don't know the target.

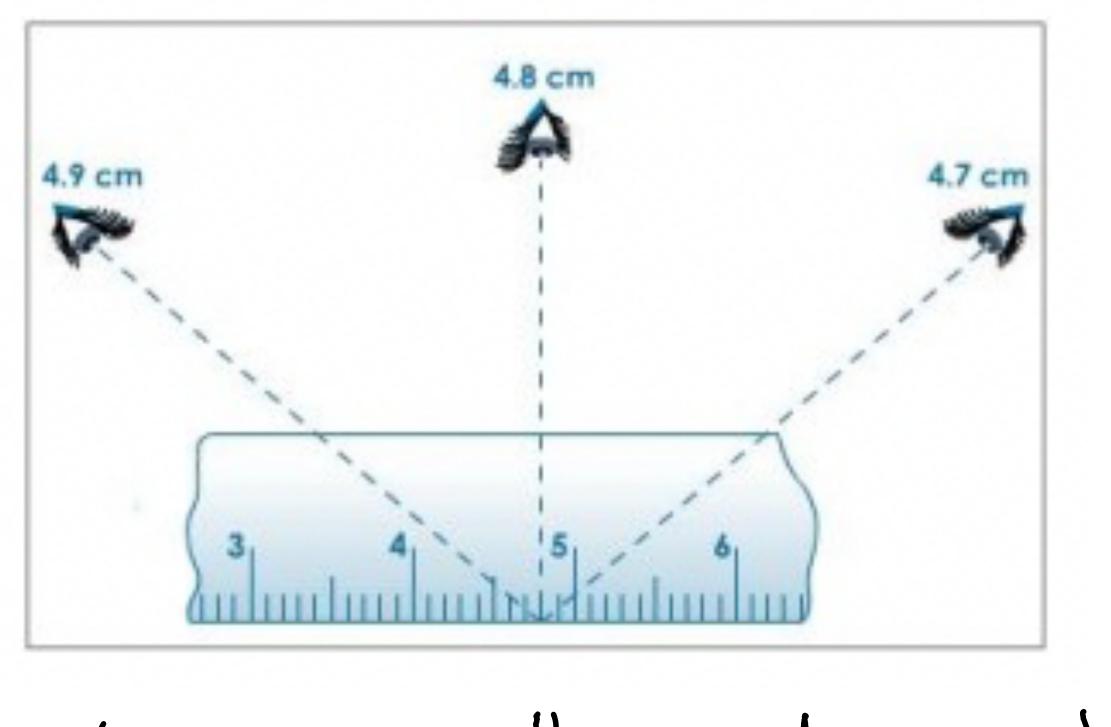
rundum:

rnnm:

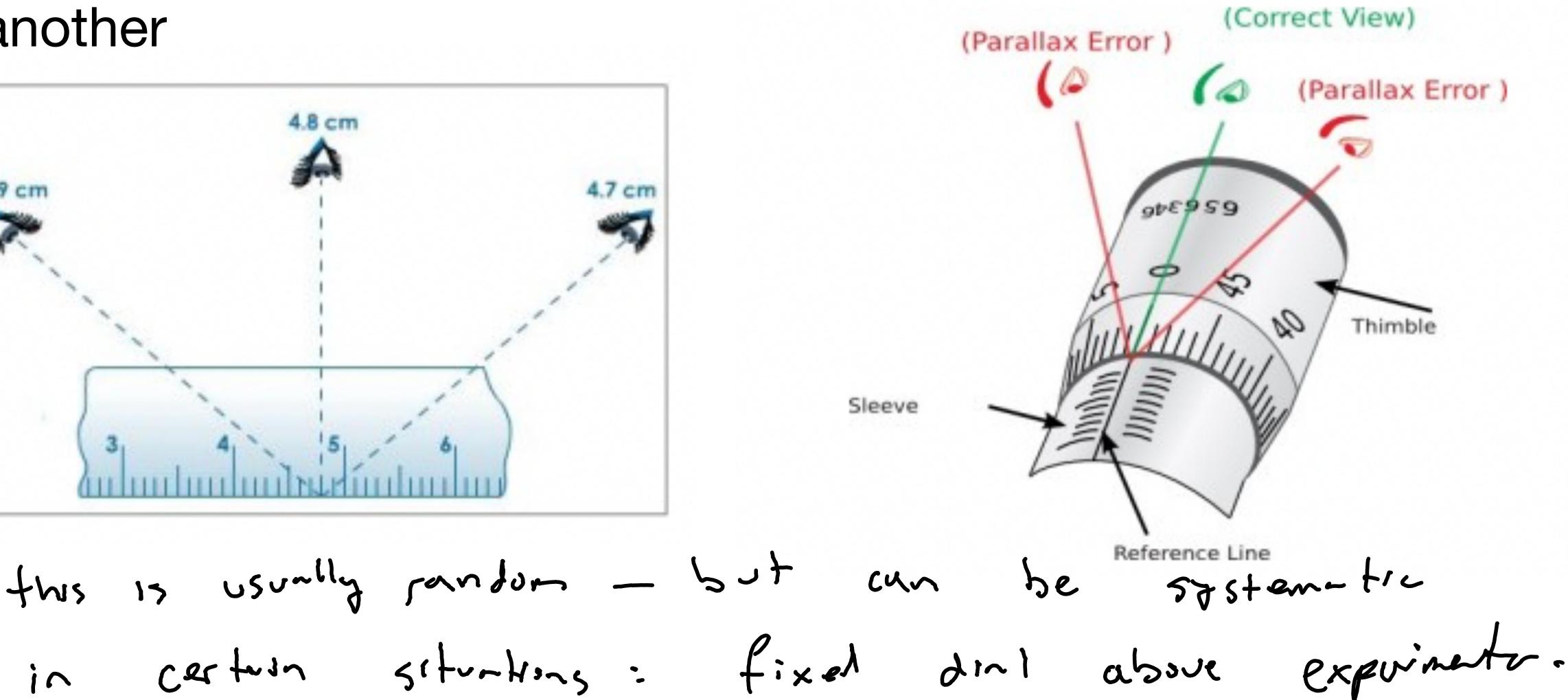
lage

Errors are not always clear cut

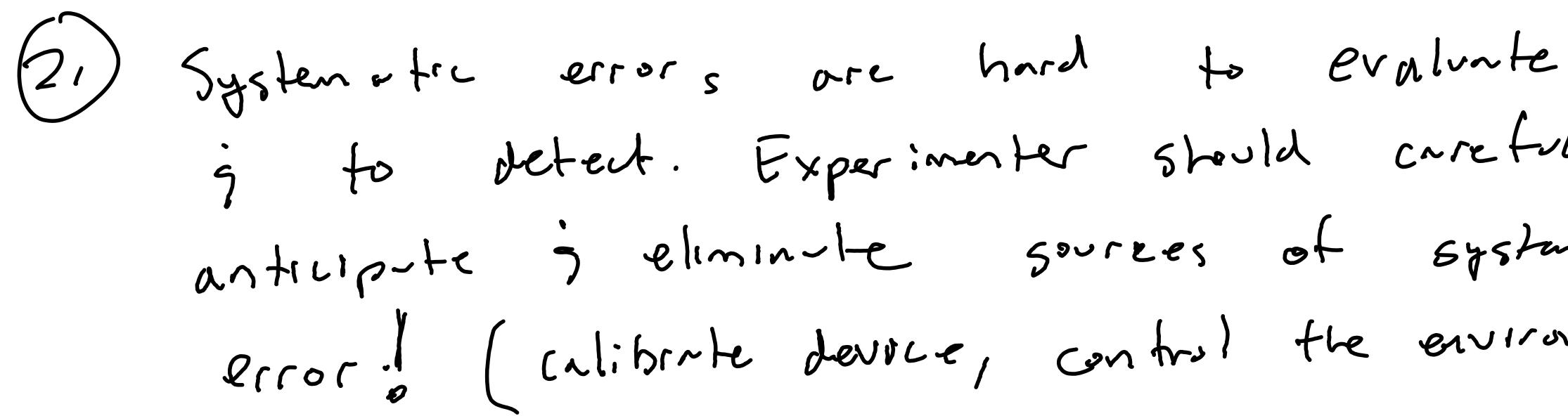
random errors in one experiment may produce systematic errors in another (Correct View) (Parallax Error)

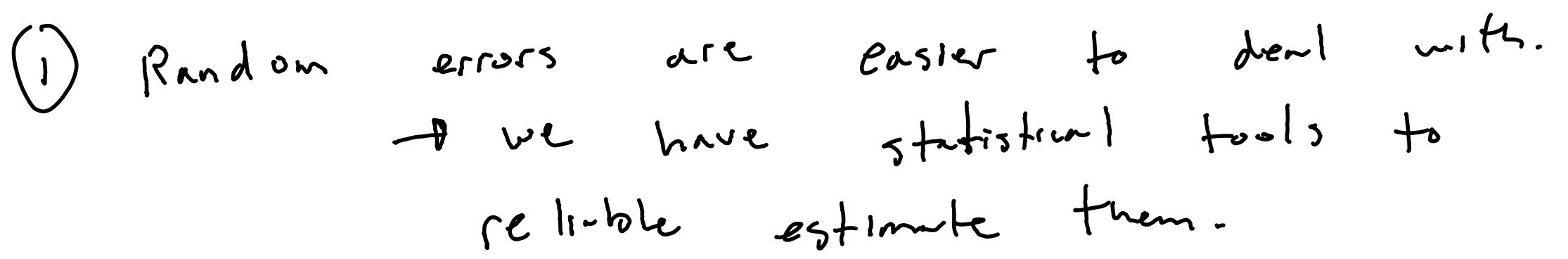


in certain siturtions: fixed dint above experimeter.



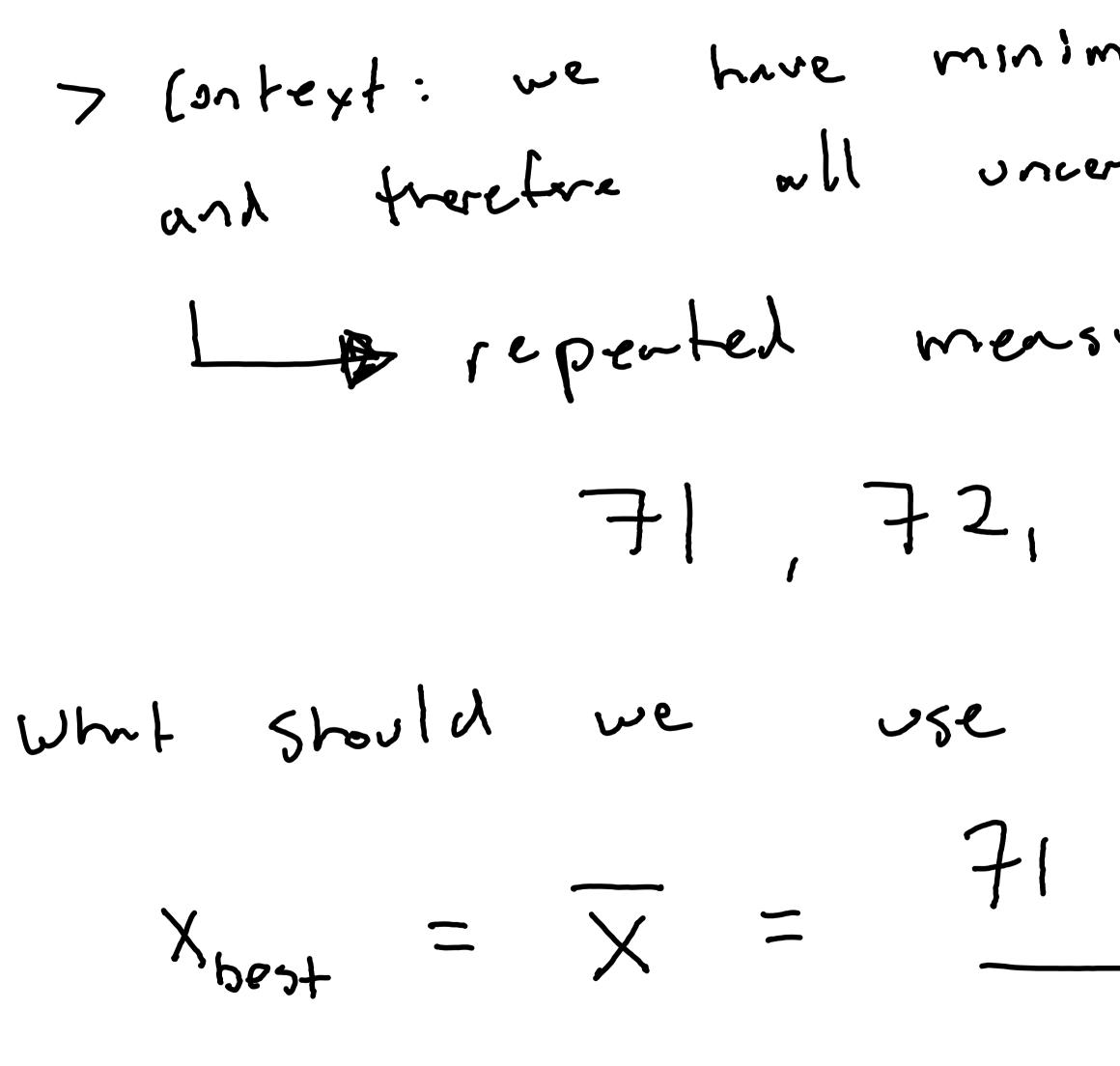
Dealing with errors





g to detect. Experimenter should carefully anticipate 3 eliminate sources of systematic error! (calibrate devoce, control the environt)

Statistics the very basics



= 71.8

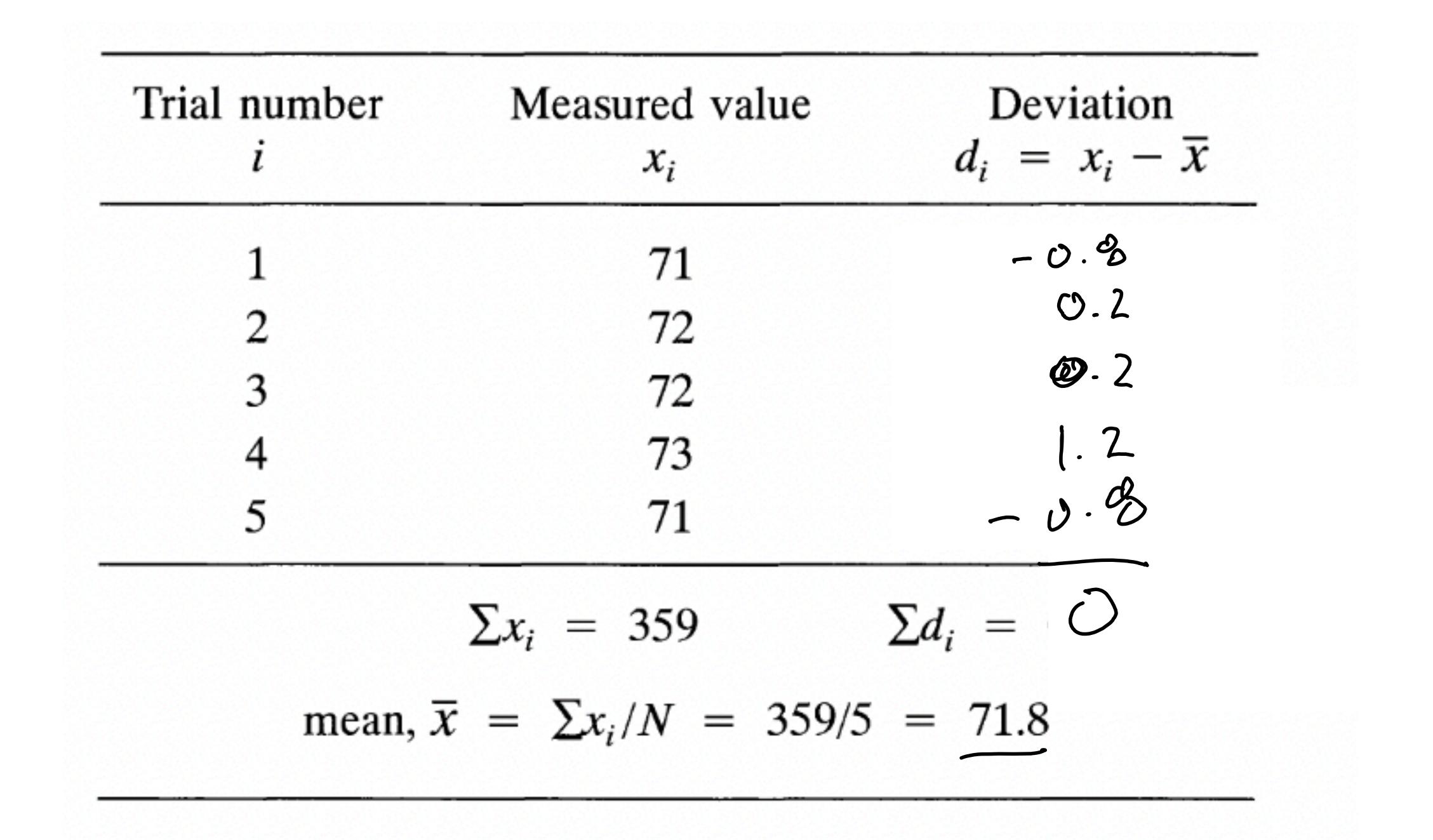
ViFeV	syste	matri	esror
r tin ty	٥٢٢	ran dun	- ·
ures !			
72,	73	, 71	
0-S	X_	be_3 =	Ż
+ 72 +	77	+73.	F7(
	5		

Statistics the very basics

71, 72, 72, 73, 71

How can we estimate uncertainty from our five measurements?

What is a standard deviation? 71, 72, 72, 73, 71 X_1 Y_2 Y_3 X_4 X_5 deviation of the its mensuemat $d_i = x_i - \overline{x}$ (residual) A can ve just average the dear-time?



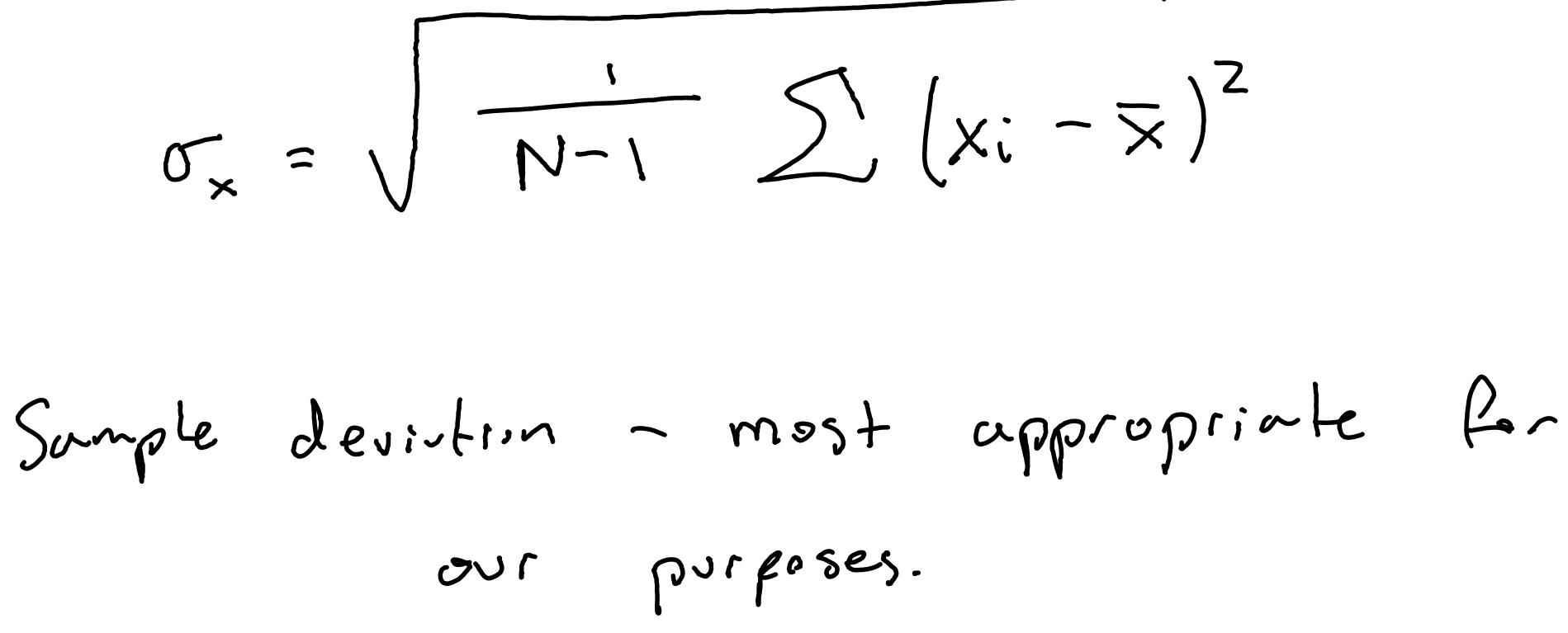
Definition of standard deviation

 $\sigma_{x} = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (\Lambda_{i})^{2}$

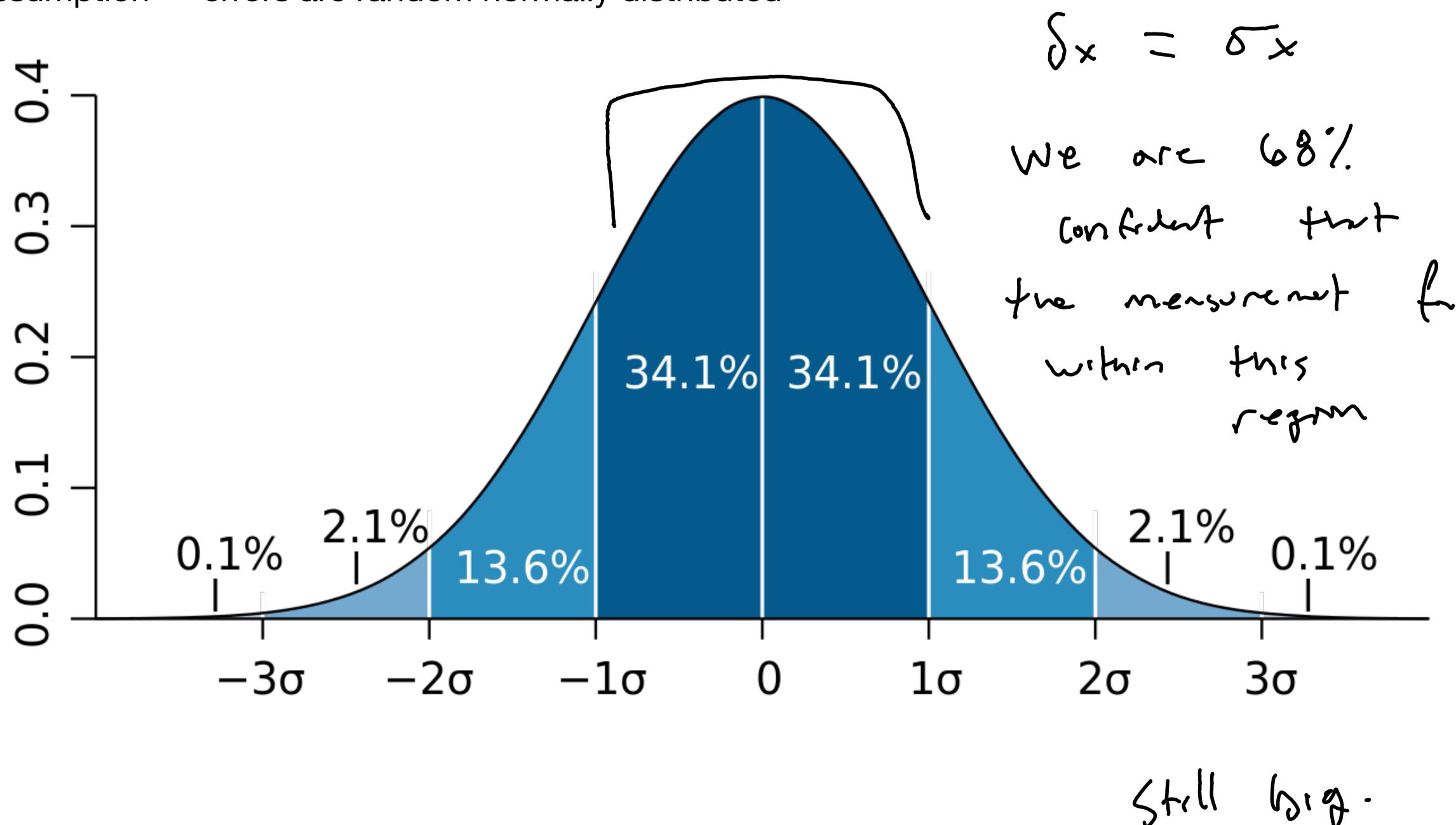
 $\sigma_{x}^{2} = \frac{1}{N} \frac{\sum \lambda_{i}^{2}}{\sum \lambda_{i}}$ variance

$$= \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (x_i - x_i)^2$$

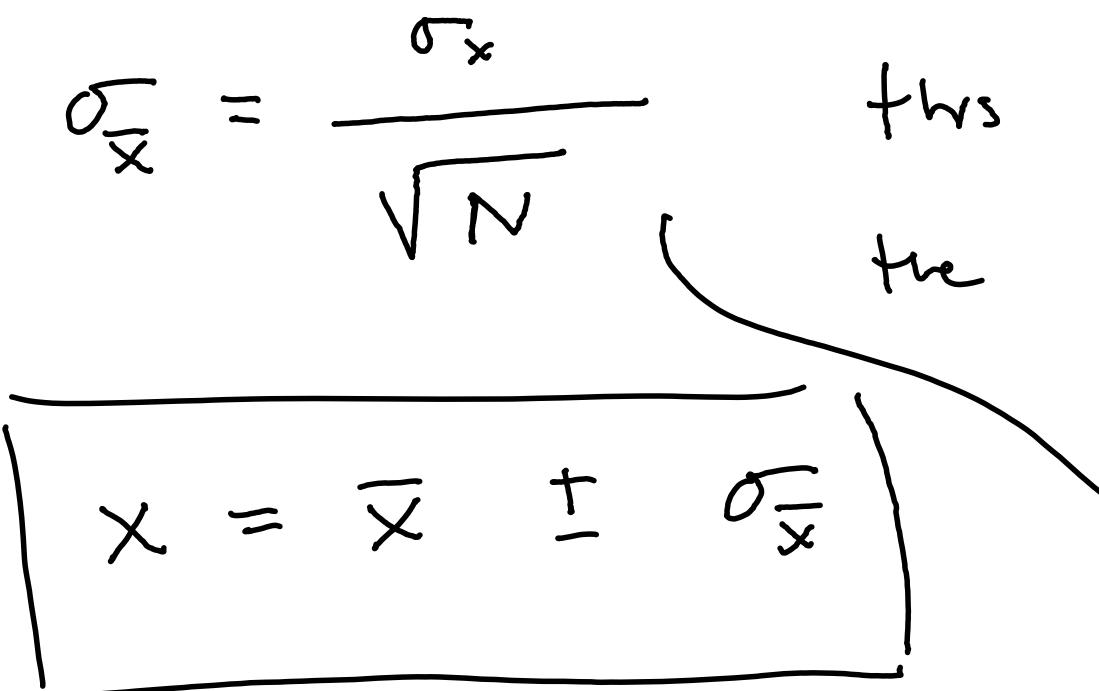
Bessels correction



Standard deviation as uncertainty of a single measurement assumption — errors are random normally distributed



Standard deviation of the mean (standard error)



 $\overline{X} = \frac{\sigma_{\overline{X}}}{\sqrt{N}}$ this is good estimate for \sqrt{N} the uncertainty using all necesure, $X = \overline{X} \pm \overline{0} \overline{\overline{x}}$ we can prove (ch.5) Kmaking mire mensurements doesn't really change 5D. * SE, on the other hand, will decrease with increasing measurements

By now, it should be clear: serious uncertainty analysis, via statistics, requires experiments that make many measurents.

26, 24, 26, 28, 23, 24, 25, 24, 26, 25. Written out, the data conveys very little info.

23, 24, 24, 24, 25, 25, 26, 26, 26, 28. We can order them.

Table 5.1. Measured lengths x and their numbers of occurrences.

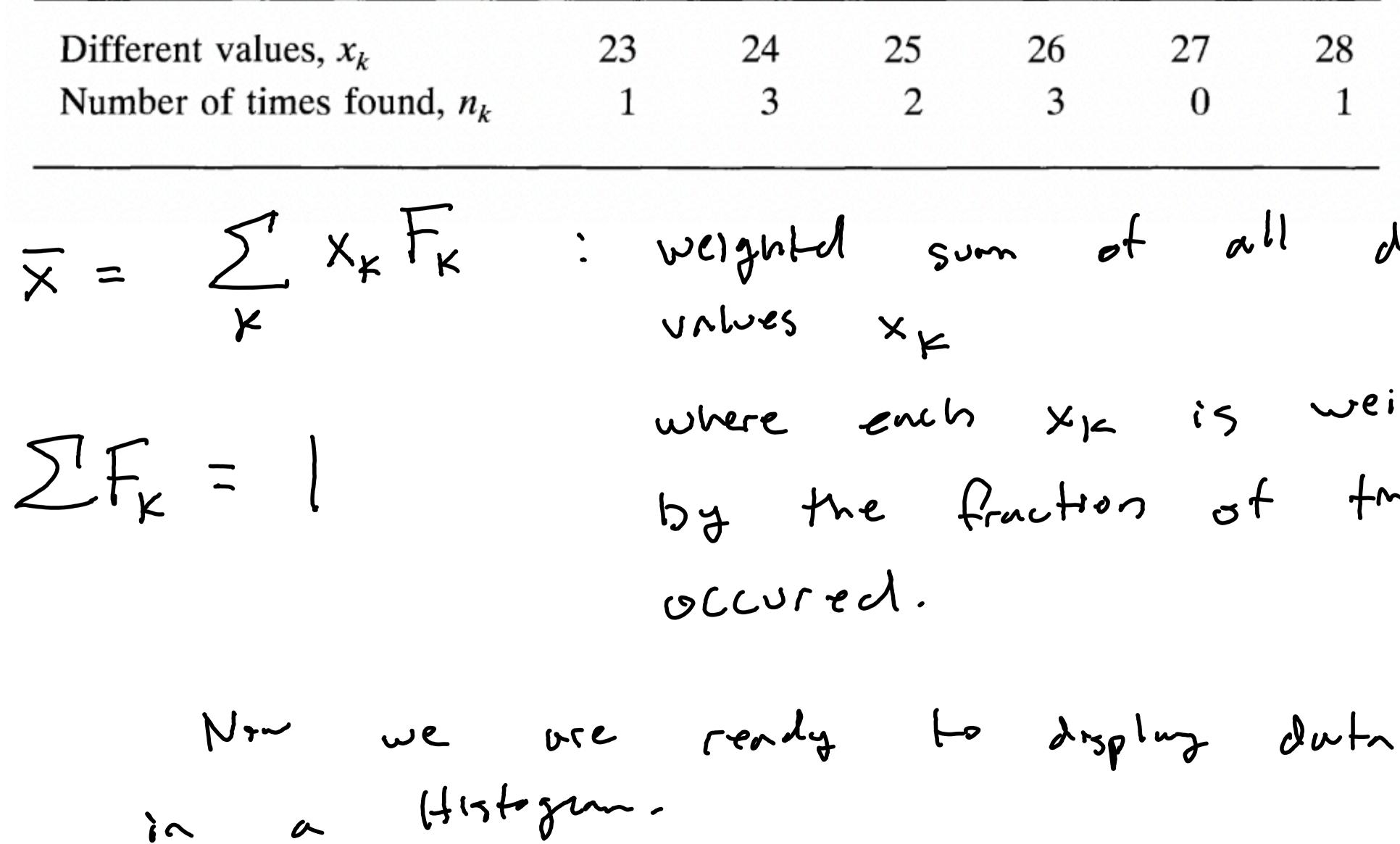
Different values,
$$x_k$$
 23
Number of times found, n_k 1

Instead of saying "
$$X = 24$$

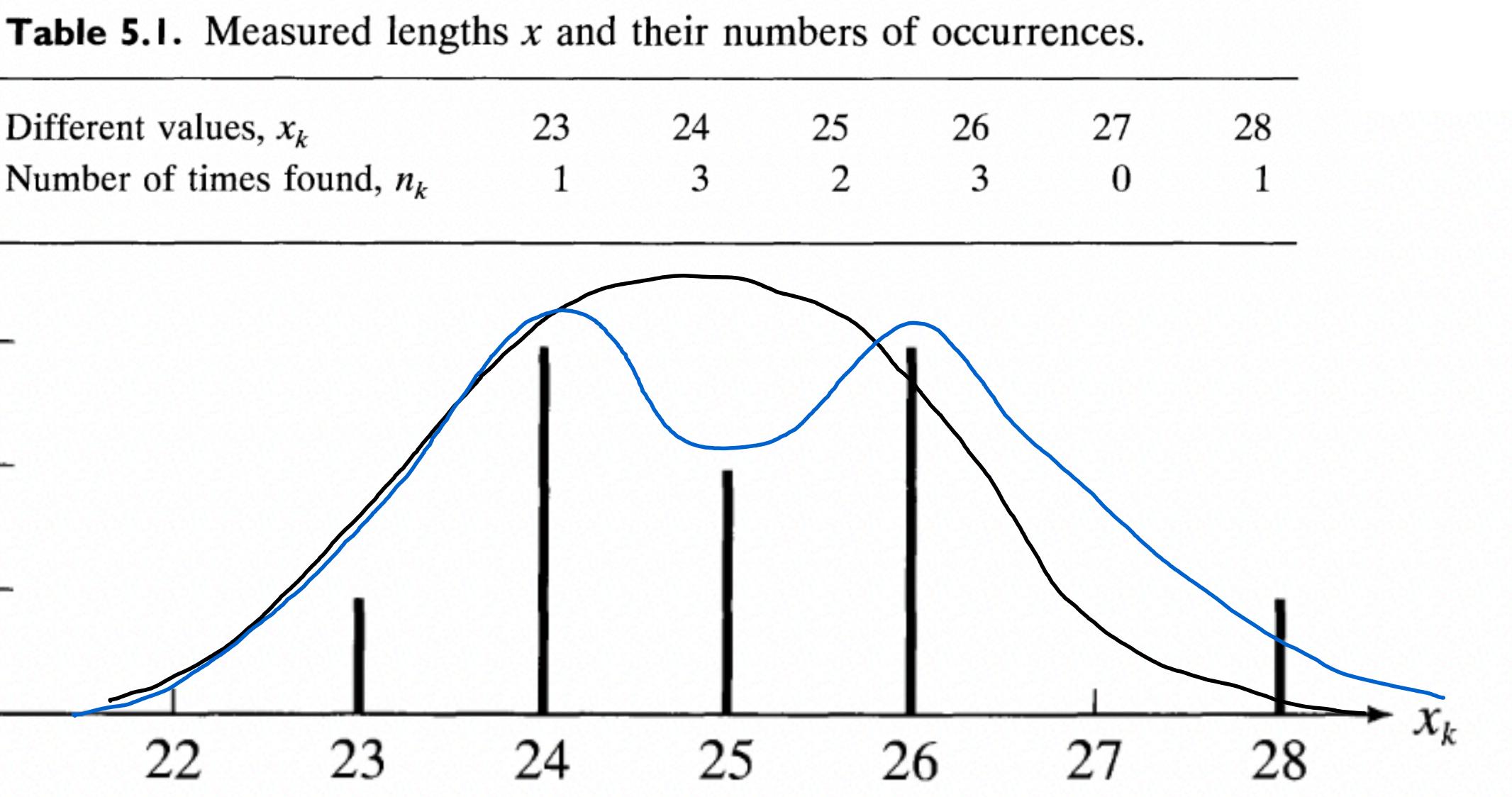
" $X = 24$
 $F_{K} = \frac{n_{K}}{N} \frac{1}{N} \frac{$

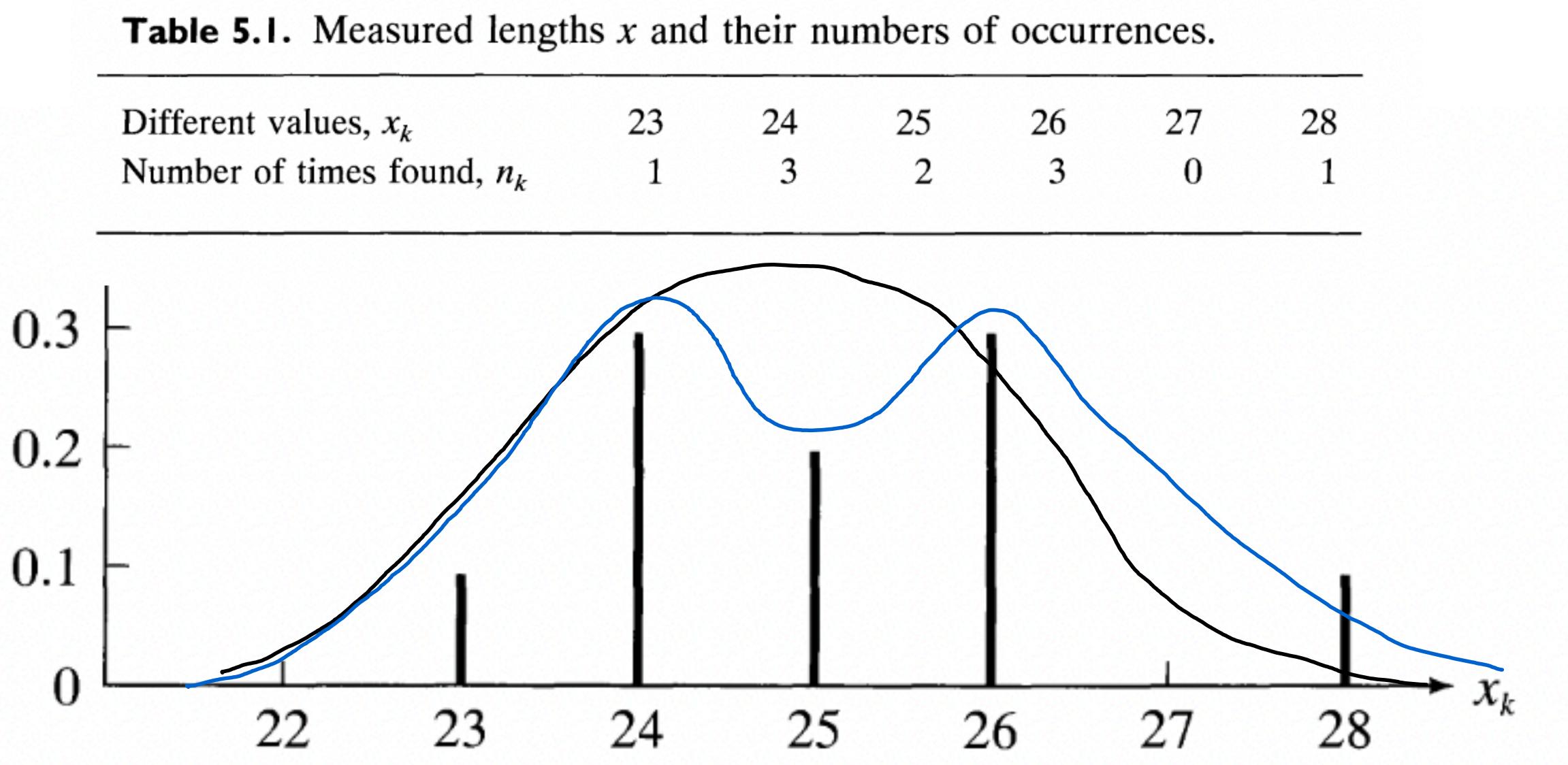
24 3	25 2	26 3	27 0	28 1	
wn	5 361	aind	three	fme	l (- 5
	のついう		3/10	fmc	fræn.

Table 5.1. Measured lengths x and their



eir nu	mbers o	f occurr	ences.			
24	25	26	27	28		
3	2	3	0	1		
्र	×ĸ		f a			1
re	ench	メイ	15	vei	gntc	U
1	ne f	Fraction	n of	- +~	~e 5	: +
5012						





What about for 'untidy data'

26.4, 23.9, 25.1, 24.6, 22.7, 23.8, 25.1, 23.9, 25.3, 25.4.

Table 5.2. The 10 measurements (5.9) gr

Bin	22 to 23	23 to 24	24 to 25	25 to 26	26 to 27	27 to 28
Observations in bin	1	3	1	4	1	0

	1	•	1 .
rolli	ned	1n	hing
lou	Juu	111	bins.

What about for 'untidy data'

26.4, 23.9, 25.1, 24.6, 22.7, 23.8, 25.1, 23.9, 25.3, 25.4.

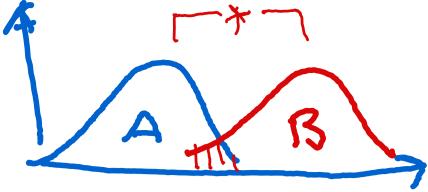
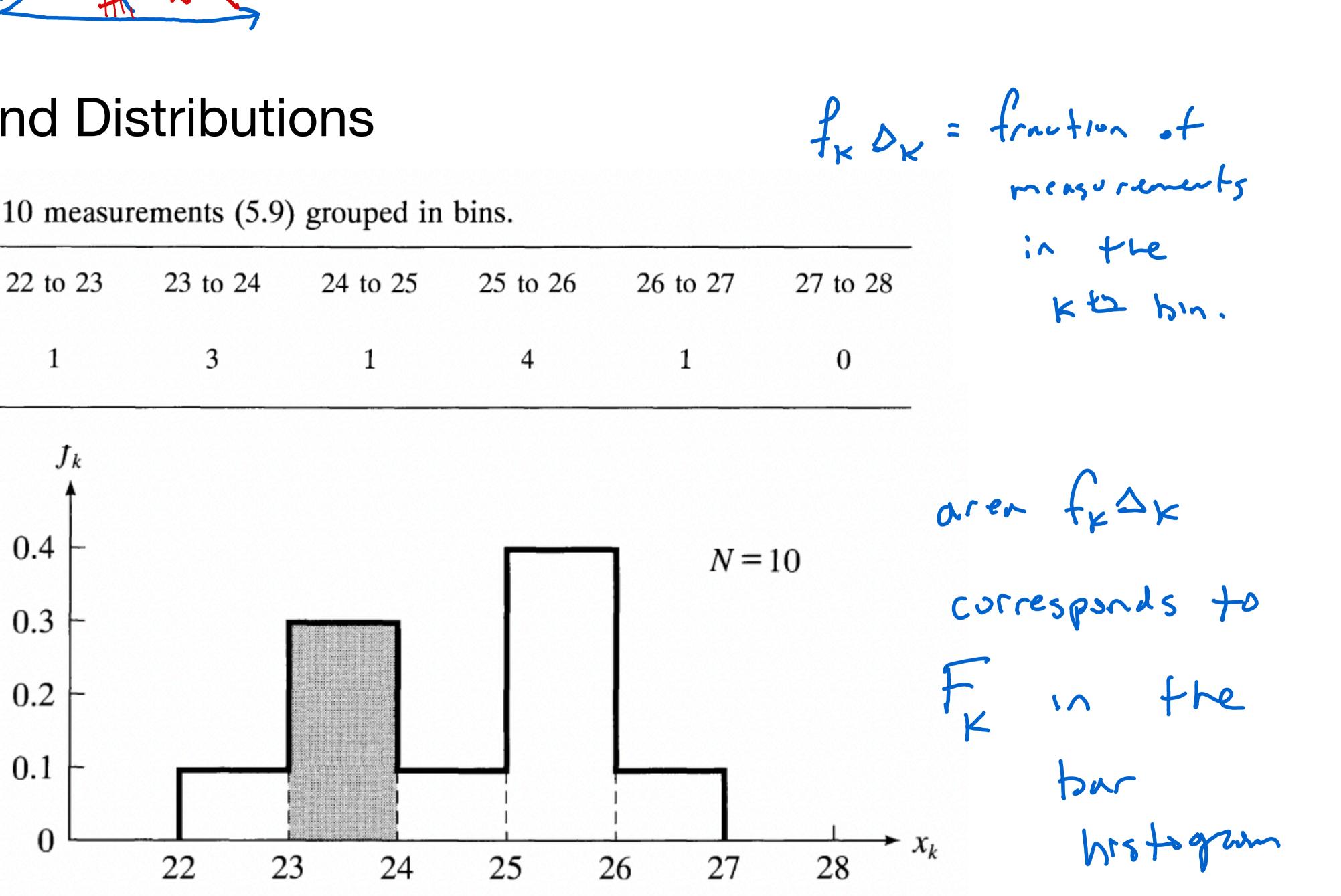
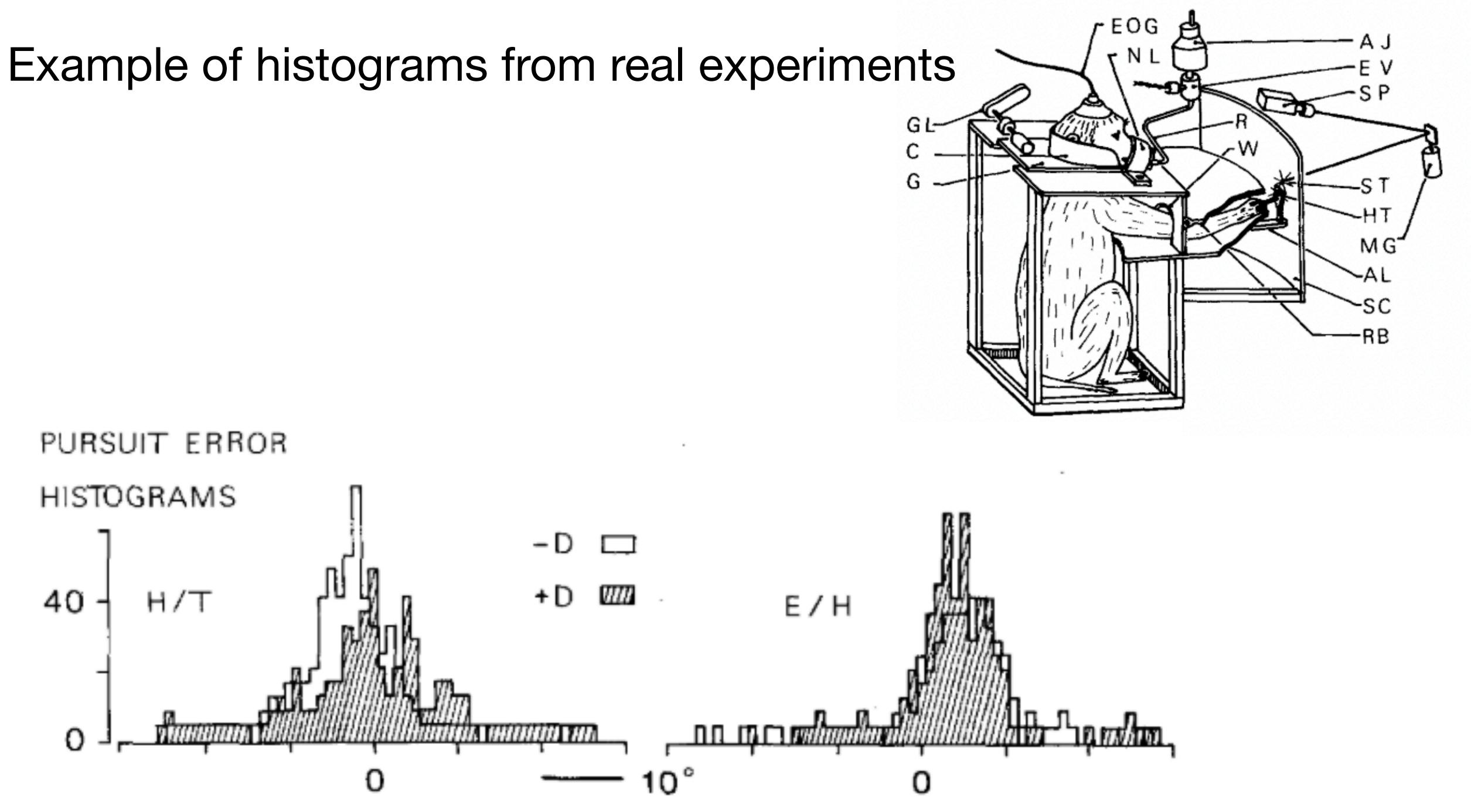


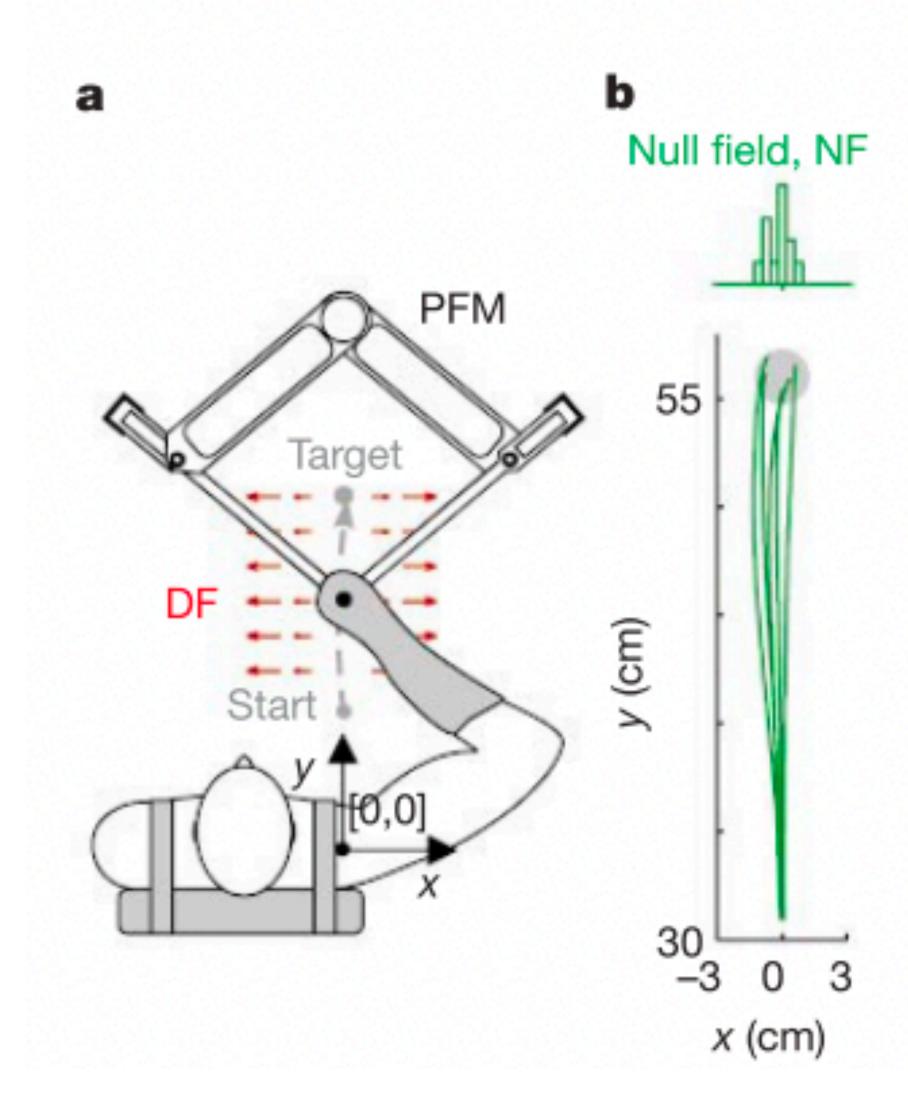
Table 5.2. Th	e 10 measur	ements (5.9)) grouped in
Bin Observations	22 to 23	23 to 24	24 to 25
in bin	1	3	1

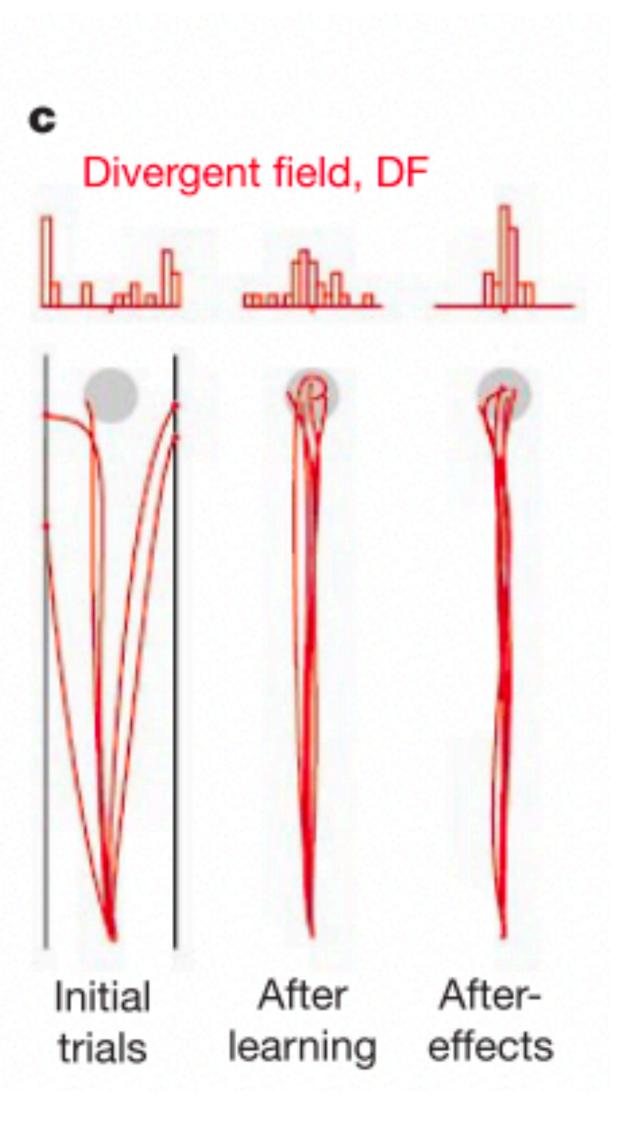


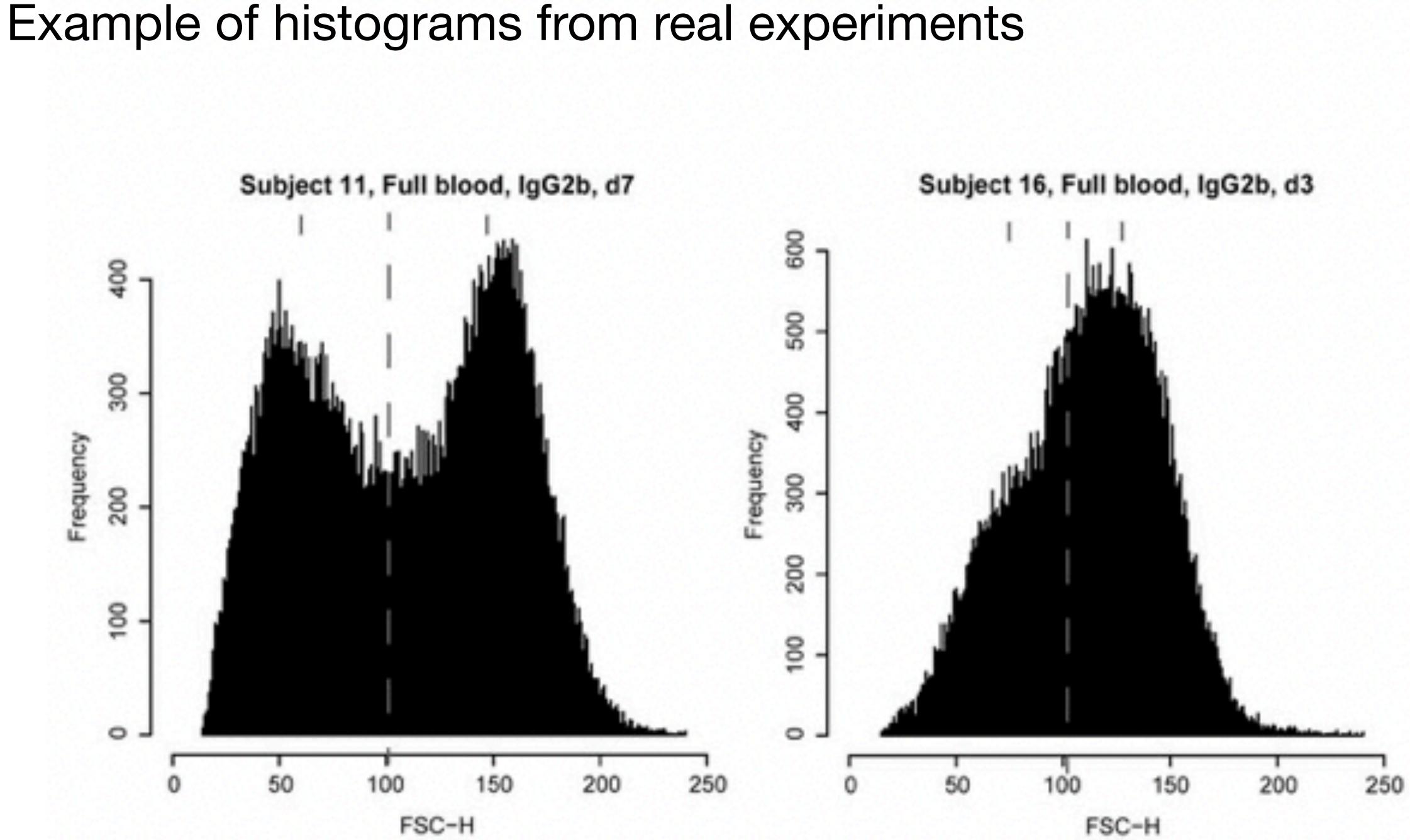
-Bin size Δ_k



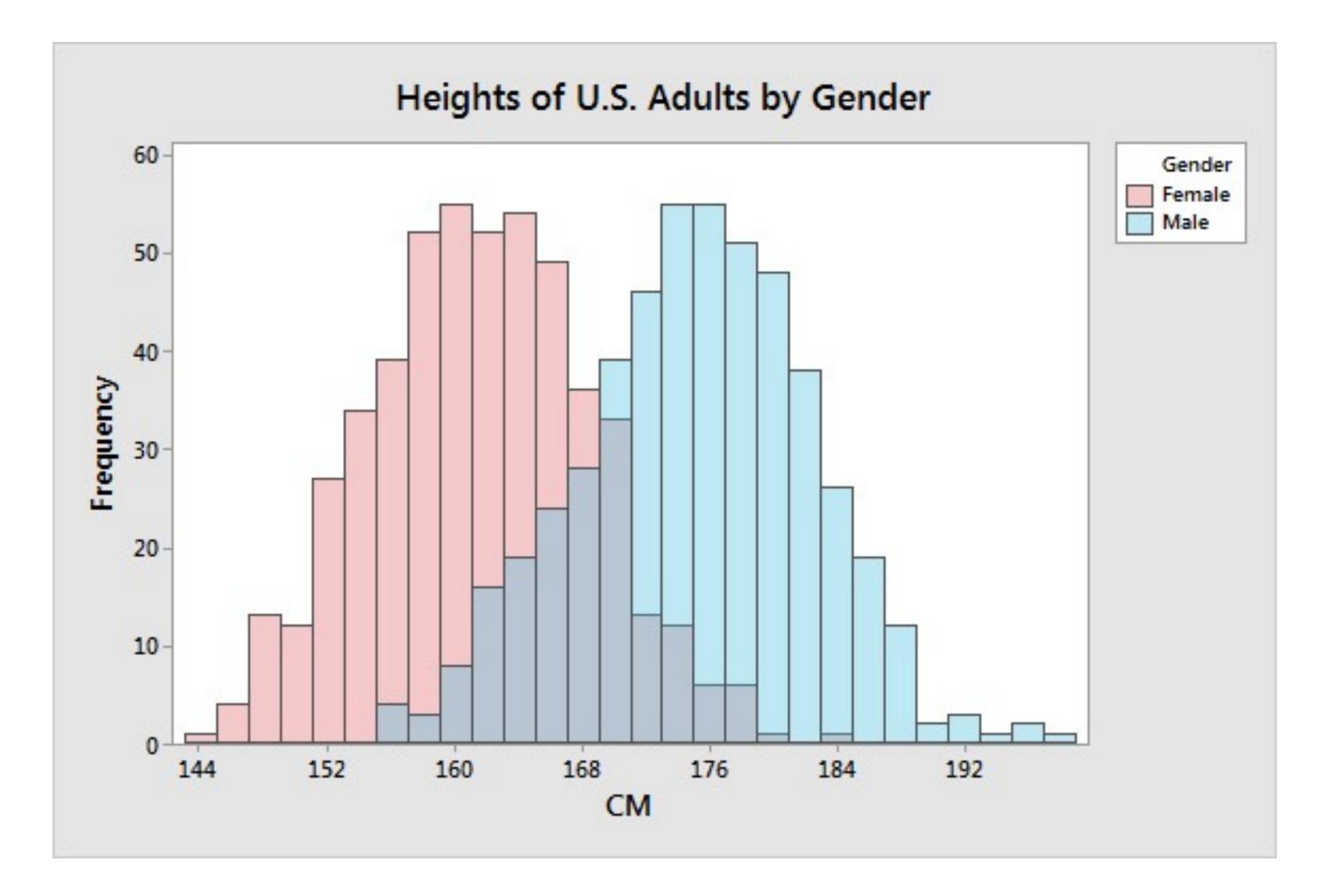
Example of histograms from real experiments





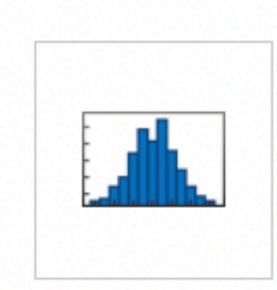


It's really easy to visually test hypothesis with histograms



histogram

Histogram plot



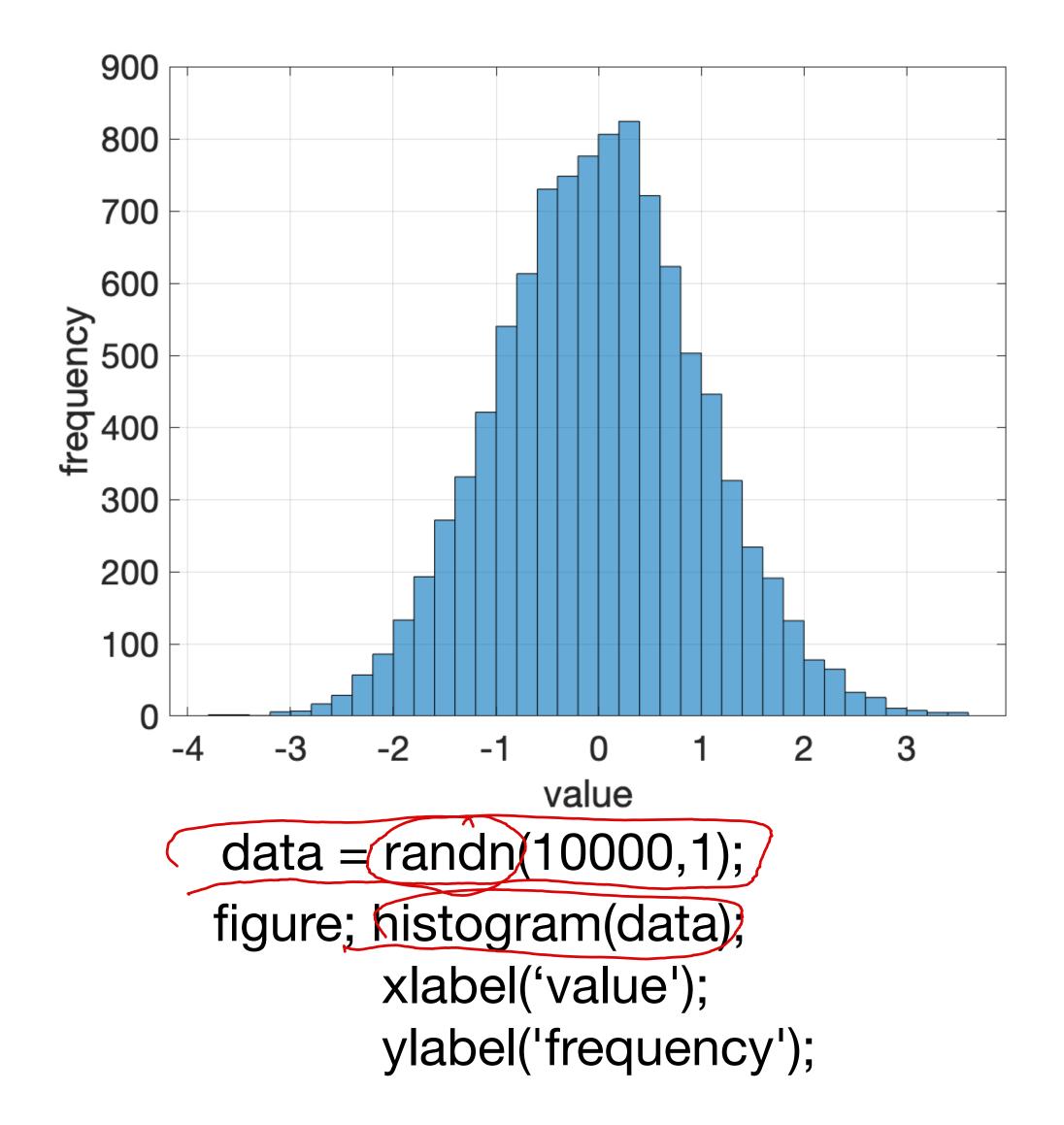
Description

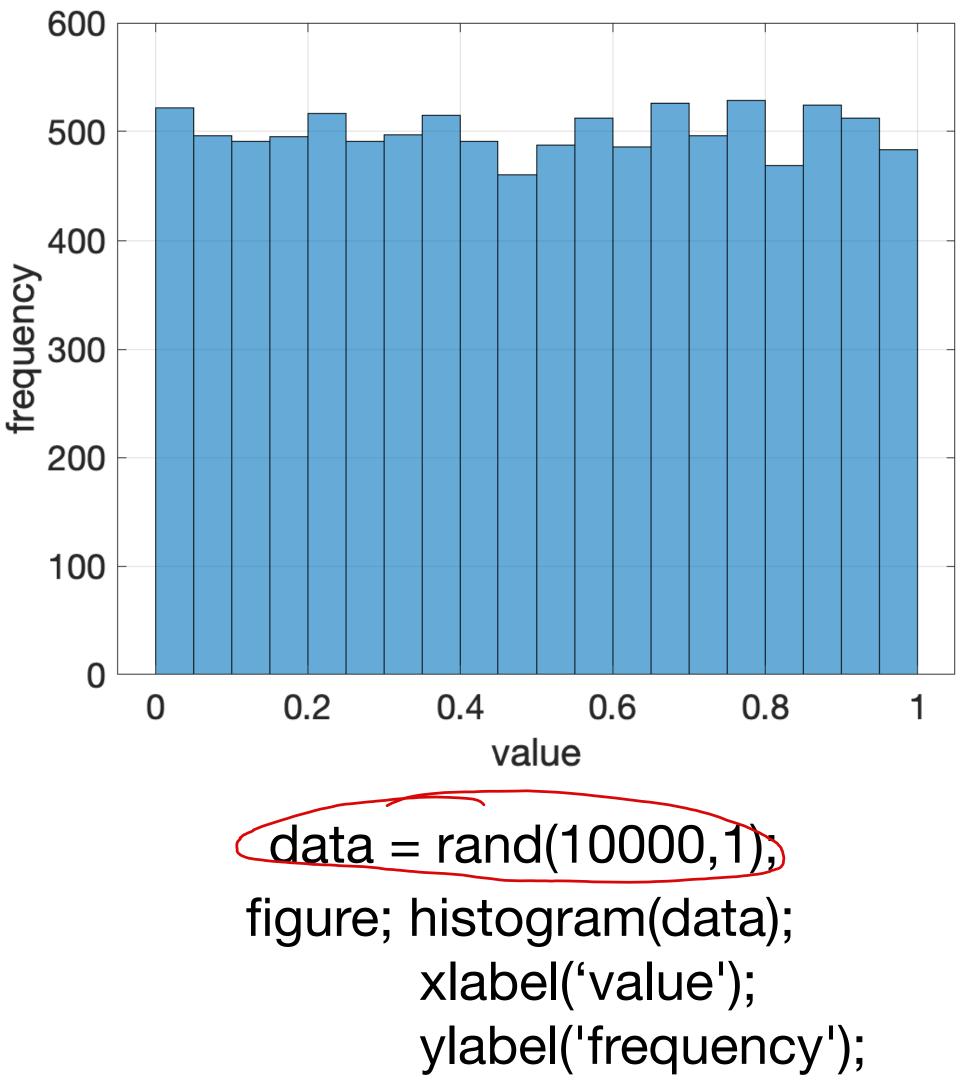
Histograms are a type of bar plot for numeric data that group the data into bins. After you create a Histogram object, you can modify aspects of the histogram by changing its property values. This is particularly useful for quickly modifying the properties of the bins or changing the display.

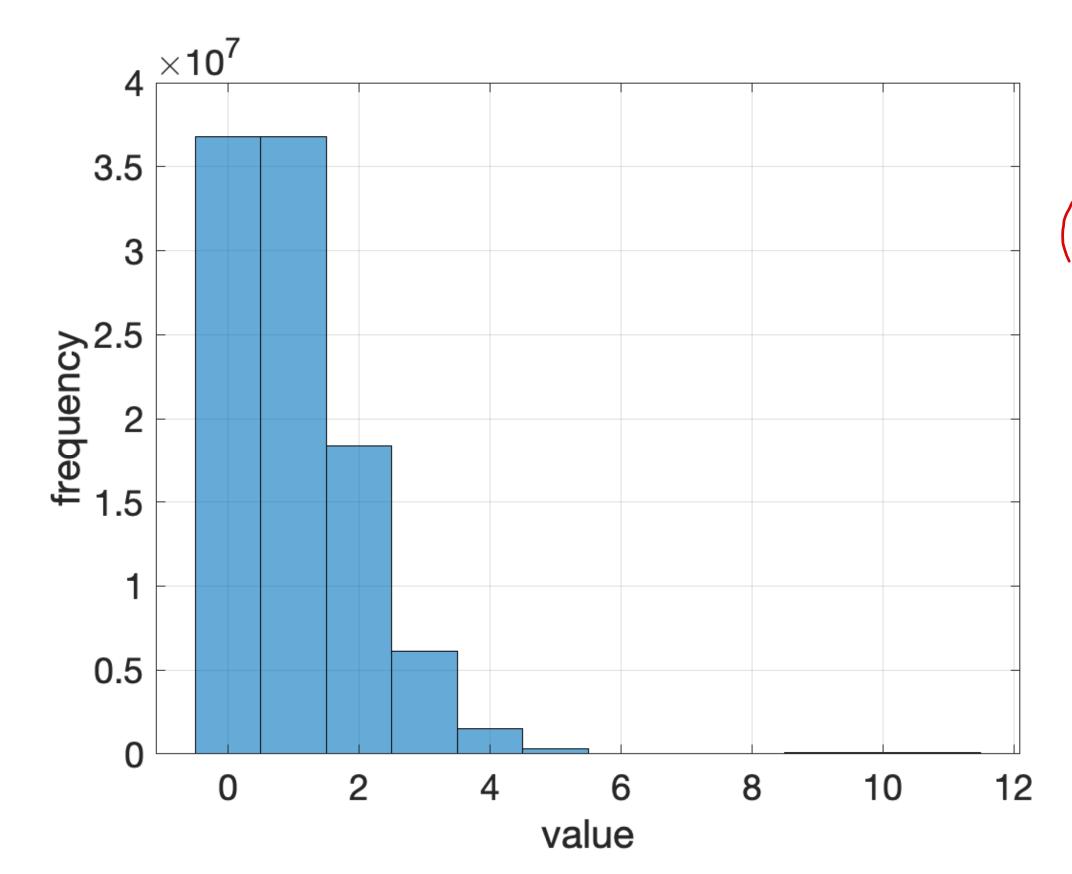
Creation

Syntax

```
histogram(X)
histogram(X,nbins)
histogram(X,edges)
histogram('BinEdges',edges,'BinCounts',counts)
```

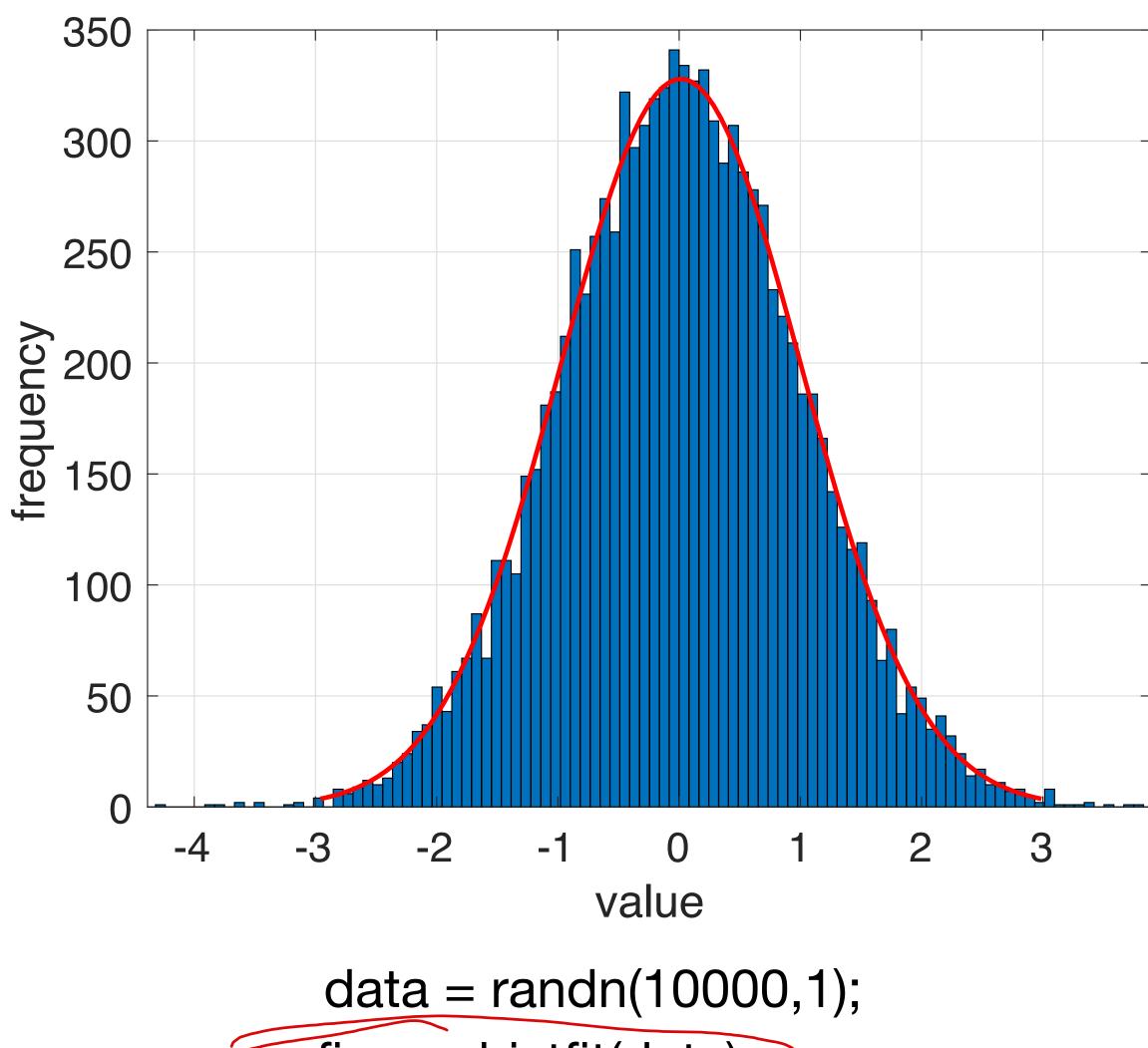




figure; histogram(data);

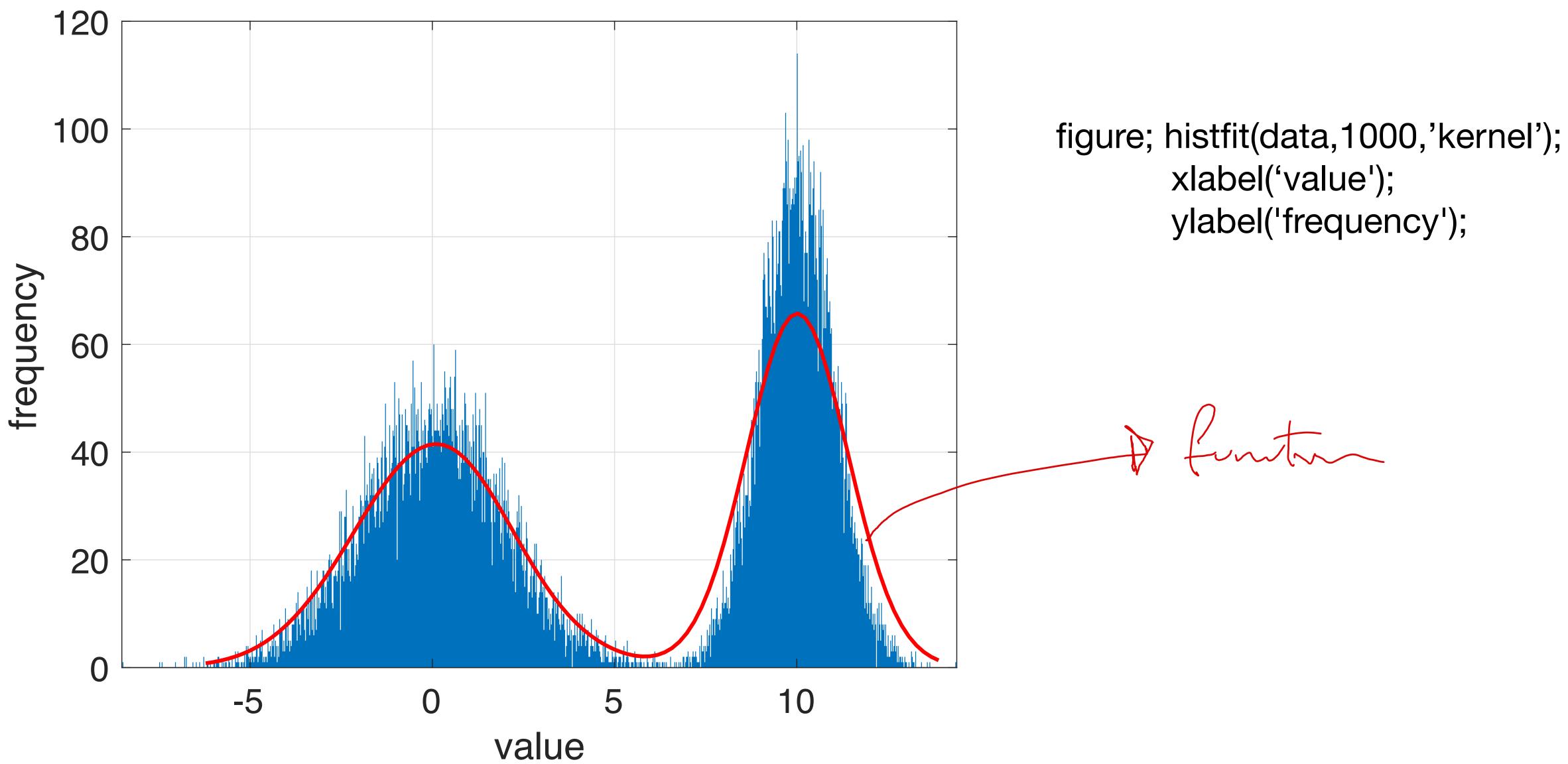
xlabel('value'); ylabel('frequency');

data = poissrnd(1, 10000)



figure; histfit(data); xlabel('value');

- ylabel('frequency');



data = $[(randn(10000,1) + 10); 2^{randn}(10000,1)]$