ME170b Lecture 6

Experimental Techniques

Last time:

> Normal Distribution

3/3/23

Today:

> Ch.6/7/8

> Rejection of data> Weighted Averages> Least Squares

When is data normal?

The standard deviation as 68% confidence limit

Prob(within
$$\sigma$$
) = $\frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-z^2/2} dz$.

Prob(within
$$t\sigma$$
) = $\frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^{2}/2} dz$
erf
erf
error funt

More generally, what is the probability a measurement falls within t*sigma?

J. 20

Gaussian probability table ,

	Pro- as a	Prob(within $t\sigma$) = $\int_{X-t\sigma}^{X+t\sigma} G_{X,\sigma}(x) dx$					$X-t\sigma$ X			$X+t\sigma$	
\mathbf{F}	t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
•	0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
	0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
	0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
	0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
	0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
	0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
	0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
	0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
	0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78
	1.0	68.27	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
	1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60
	1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29
	1.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55
	1.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38
	1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82
	1.6	89.04	89.26	89.48	05.09	89.90	90.11	90.31	90.51	90.70	90.90
	1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65
	1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12
	1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34
	2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34
	2.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15
	2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80
	2.3	97.86	97.91	97.97	98.02	98.07	98.12	98.17	98.22	98.27	98.32
	2.4	98.36	98.40	98.45	98.49	98.53	98.57	98.61	98.65	98.69	98.72
	2.5	98.76	98.79	98.83	98.86	98.89	98.92	98.95	98.98	99.01	99.04
	2.6	99.07	99.09	99.12	99.15	99.17	99.20	99.22	99.24	99.26	99.29
	2.7	99.31	99.33	99.35	99.37	99.39	99.40	99.42	99.44	99.46	99.47
	2.8	99.49	99.50	99.52	99.53	99.55	99.56	99.58	99.59	99.60	99.61
	2.9	99.63	99.64	99.65	99.66	99.67	99.68	99.69	99.70	99.71	99.72
	3.0	99.73									
	3.5	99.95									
C . D	4.0	99.994									
5.~	4.5	99.9993									
$\overline{}$	5.0	99,99994									

Maximum likelihood estimator

Maximum likelihood estimator

Maximum likelihood estimator: summary

Given: N observations, x_1, x_2 ... x_n Find: X and Sigma, expected value (mean) and standard deviation of the limiting distributions

The best estimate, maximizes the following probability: $Prob_{X,\sigma}(x_1,\ldots,x_N) \propto \frac{1}{\sigma^N} e^{-\sum (x_i-X)^2/2\sigma^2}$

mle

Maximum likelihood estimates

MATLAB MLE function

Syntax

```
phat = mle(data)
phat = mle(data,Name,Value)
[phat,pci] = mle( )
```

R2022b collapse all in page

Rejection of Data - Ch.6

What's wrong with this data set? Why does it matter? What can we do about it?

y we can check how many std the "outlier" 15 > only remove it you can justify its very unlikely cert data!

outber 7

3.8, 3.5, 3.9. 3.9, 3.4, 1.8

Rejection of Data

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

Let's calculate our an estimate of x with and without the "outlier" menn 7/- SE

 3.4 ± -0.1 vs 3.70 ± -0.05

These are significantly different! Y Unierhinty doubles!

Rejection of Data

3.8, 3.5, 3.9. 3.9, 3.4, 1.8 Interquartile Range (IQR) Outliers Outliers $\bigcirc\bigcirc$ \bigcirc "Minimum" "Maximum" (Q1 - 1.5*IQR) Median (Q3 + 1.5*IQR)Q3 Q1 (25th Percentile) (75th Percentile) -3 -2 $^{-1}$ 0 2 3 if the outlier is fike, it has conspicance on our experimental result.

Rejection of Data

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

When should an experimenter "reject data"? > Controverial topic! Jsome say never. Jultmetely it is a subjective decision of experimenter. Chauvenets criterion: asses whether one prece of experimental data outlier - from a set of observations is likely to be spurrous (fake).

Chauvenet's criterion

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

What's the probability of sbfaming the outlier? Let's calculate the mean 5七人: $\overline{X} = 3.45$ Prob(within to) = $\frac{1}{\sqrt{2\pi}}\int \frac{-\frac{z^2}{2}}{e^2}d$ $\sigma_{\mathbf{X}} = \mathcal{O} \cdot \mathcal{O} \, \mathbf{5}$ Probloutside 20) = 1.6/ - Prob(within 20) = 1 - .75 =

 $3.4, 1.8^{-1.6}$

Chauvenet's criterion

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

What's the probability of obtaining the outlier measurement?

Prob(within $t\sigma$) = $\frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^2/2} dz$

 $3.4 - 1.8 = 1.6 = 2 \$

 $Prob(\text{outside } 2\sigma) = 1 - Prob(\text{within } 2\sigma)$ = 1 - 0.95= 0.05.

What does this mean? 5%. at mensurement being us devint us Xsus 1/20 mensuents should fnot derimt (expected # of devinit) (sumples on order of 1-8) $= N \times 0.5 = 6 \times 0.05$ - O. Z

Chauvenet's criterion: main idea

 x_1, \ldots, x_N less than 1/2, the you should reject the 5spect.

$$\begin{array}{l} \chi_1 \cdot \ldots \quad \chi_N \\ t_{sus} = \underbrace{|\chi - \chi_{sus}|}_{\sigma_X} \quad (\#_1) \end{array}$$

Prob (outside tros or)

$$n < \frac{1}{2} \rightarrow reject!$$

Chauvenet's criterion: what to do if you have an outlier?

fuice and compare

Chauvenet's criterion: example

46, 48, 44, 38, 45, 47, 58, 44, 45, 43 $\overline{X} = 45.8 \text{ (H)}$ $t_{sus} = \frac{|\overline{X} - X_{sus}|}{|\overline{D_X}|^2} = \frac{|45.8 - 5\%|}{|5.1|} \text{ (H2)}$

= 2.4

be remard. -7 revsonable comprise: use Chauvenct's -> 1/2 brunderg is arbitrarg. - Unless you have large number of samples, or is very uncertain and therefor so is your criterion.

Weigted Averages – CH. 7

Separate à independent mensurements?

Student A: $x = x_A \pm \sigma_A$

Student B: $x = x_B \pm \sigma_B$

> taking the average. X not good.

Before combining measurements must check consistency

- Student A: X = XA I JA
- Student B: $x = x_B \pm \sigma_B$

if not, the measurants are

inconsistant.

Naive approach — let's just average?

Why is this not appropriate?

- unswitchle if the
not equal.
- gives equal import
bit if
$$\sigma_A < <$$

two uncertainties are both mensionals 5, we trust Xa more

We can use principles of maximum likelihood to solve this Gaussian assure both mensionent are -> orrors only random $\frac{1}{X} \left(\frac{X_A}{X_A} \right) \propto \frac{1}{\sigma_A} \frac{-(x_A - \frac{X}{2})^2 / 2\sigma_A^2}{\sigma_A^2}$ sum of the squares of the deviation from X of two measures $P_{rob}(X_b) \ll \frac{\int -(X_B - X_b)^2 / 2\sigma^2}{\sigma_B}$ We don't know It! $Prob_{X}(X_{A}, X_{B}) = \frac{Prob_{X}(X_{A}) \cdot Prob_{X}(X_{B})}{X}$ $\left(\frac{X_{A}-X}{\Sigma_{A}}\right)^{2} + \left(\frac{X_{B}-X}{\Sigma_{B}}\right)^{2}$

We can use principles of maximum likelihood to solve this ML: our best estimate for the Unknown X is the value X that maximizes the Prob- of observing both Xp 3 XB max $\frac{1}{\sigma_4 \sigma_3} e^{-\chi^2/2}$ max $\frac{1}{\sigma_4 \sigma_3} e^{-\chi^2/2}$ min $\chi^2 = \left(\frac{\chi_A - \bar{\chi}}{\sigma_4}\right)^2 + \left(\frac{\chi_8 - \chi}{\sigma_5}\right)^2$ 2014 $\frac{d x^2}{d x} = 2\left(\frac{x_A - x}{\sigma_A}\right) + 2\left(\frac{x_B - x}{\sigma_B}\right) = 0$ $(\text{best estime of } X_1) = \left(\frac{X_0}{\sigma_A^2} + \frac{X_3}{\sigma_B^2}\right) / \left(\frac{1}{\sigma_A^2} + \frac{1}{\sigma_B^2}\right)$

(best estimate of \overline{X}) = $\left(\frac{X_A}{\overline{\sigma}_A^2} + \frac{Y_B}{\overline{\sigma}_B^2}\right) / \left(\frac{1}{\overline{\sigma}_A^2} + \frac{1}{\overline{\sigma}_B^2}\right)$ + WB XB WA +WR provitz ot two bodies, where was UB ove weights 9 XA 3 XB are positions

Quick Check 7.1. Workers from two laboratories report the lifetime of a cerand their weighted average as given by (7.9)?

tain particle as 10.0 ± 0.5 and 12 ± 1 , both in nanoseconds. If they decide to combine the two results, what will be their respective weights as given by (7.8)

Easily generalizes for N measurements

 $X_1 \pm \sigma_1$, $X_2 \pm \sigma_2$, \cdots $X_n \pm \sigma_n$ Xwar = ZwiXi Zwar = Zwi

 $wi = \frac{1}{5^2}$

Uncertainty of the weighted average?

J = A + Bx

experiment: we mensure soveral unlues of

The least squares problem: how to find best fit?

What is the purpose?

y = A + BxDue wort estimites for A 5 13 (2) A determination of whether the data (Xi..., Gi-) a really linear 11 how well does the data fit our model? [h.g]

How to estimate A and B? $(x_1, y_1), \ldots, (x_N, y_N)$

How to estimate A and B?

How to estimate A and B?

How to estimate uncertainty in y?

How to estimate uncertainty in A and B?

Some caveats

What if both x and y have uncertainties

Assume error in x only

What if both x and y have uncertainties

We can use least squares to fit nonlinear curves!

General case when least squares can fit