ME170b Lecture 3

Experimental Techniques

Last time:
$>$ Standard Form $x=x_{\text {best }} \pm \delta x$
> Discrepancy
> Fractional Uncertainty
> Graphical Methods
> Difference and multiplication

Today:
> Uncertainty in measurements Review
> Square root rule
$>$ Revisit sum/difference prod/quotient
> Independence
$>$ uncertainty in functions
$>$ General Forumula

Propagation of Uncertainties
\longrightarrow uncertainties 'piling' up

Most physical quantities cannot be measured by single measurement.

$$
A=L \cdot H
$$

$$
-\quad v=\frac{d}{t}
$$

(1) estimate each uncert. two Steps, uncertainties also requires two steps
(2.) determined How uncert. propogrited

We already discussed basic propagation

Uncertainty in a Difference (Provisional Rule)

If two quantities x and y are measured with uncertainties δx and δy, and if the measured values x and y are used to calculate the difference $q=x-y$, the uncertainty in q is the sum of the uncertainties in x and y :

$$
\delta q \approx \delta x+\delta y
$$

What about
Bor
more
complicated
situations?

Uncertainty in a Product
 (Provisional Rule)

If two quantities x and y have been measured with small factional uncertainties $\delta x /\left|x_{\text {best }}\right|$ and $\delta y /\left|y_{\text {best }}\right|$, and if the measured values of x and y are used to calculate the product $q=x y$, then the fractional uncertainty in q is the sum of the fractional uncertainties in x and y,

$$
\begin{equation*}
\frac{\delta q}{\left|q_{\text {best }}\right|} \approx \frac{\delta x}{\left|x_{\text {best }}\right|}+\frac{\delta y}{\left|y_{\text {best }}\right|} . \tag{2.28}
\end{equation*}
$$

First, review uncertainty in direct measurements

Recall how to find uncertainty in direct measurements

What are some challenges in determining uncertainty?

What're are the techniques we can use?

- repeated measures
- digital devices only specify sig. figs.

- where is center of lens
- could be a range of distance with image focused
- challenge is neither point is clearly defined - problem of definition,

Counting experiments and uncertainty

A demographer want to know the average births at a given hospital
H : The average births at Hospital Y is equal to the average births in city X.
What experiment should we do?
\rightarrow count births within a fixed wioliou
Demographer completes exporimat is counts
14 birth in 1 week.
Key idea: uncertainty has a different interpretation Uncertainties is not in observations, rather hiv well the observation matches the true value

Counting experiments $\sqrt{ }$ the square root rule

Poisson Process - counting process

Poisson Distribution
$\mathrm{CH} \cdot 11$
(average number of events in time T) $=v \pm \sqrt{v}$

Quick Check 3.I. (a) To check the activity of a radioactive sample, an inspector places the sample in a liquid scintillation counter to count the number of decays in a two-minute interval and obtains 33 counts. What should he report as the number of decays produced by the sample in two minutes? (b) Suppose, instead, he had monitored the same sample for 50 minutes and obtained 907 counts. What would be his answer for the number of decays in 50 minutes? (c) Find the percent uncertainties in these two measurements, and comment on the usefulness of counting for a longer period as in part (b).

$$
\text { (a.) } 33 \pm 6, \text { (b.) } 910 \pm 30 \text {, (0) } 18 \%, 3 \%
$$

Review for uncertainty propagation for Difference/Addition
Key Idea: you can use the highest and lowest probable values to estimate new uncertainty

$$
\begin{aligned}
& x=x_{\text {best }} \pm \delta x \\
& \mathcal{D}=x+y
\end{aligned}
$$

$$
y=y_{\text {best }} \pm d y
$$

δq_{0} ?

$$
\begin{gathered}
\sigma_{\text {nigh }}=x_{\text {best }}+y_{\text {best }}+\delta_{x}+\delta_{y} \quad \delta_{\text {bu }}=x_{\text {best }}+y_{\text {best }} \\
\\
\delta_{b} \approx \delta_{x}+\delta_{y} \quad-\left(\delta_{x}+\delta_{y}\right)
\end{gathered}
$$

Easy to show twi also hold for Subtraction

Review for uncertainty propagation for Difference/Addition

Uncertainty in Sums and Differences (Provisional Rule) \leftarrow

If several quantities x, \ldots, w are measured with uncertainties $\delta x, \ldots, \delta w$, and the measured values used to compute

$$
q=x+\cdots+z-(u+\cdots+w)
$$

then the uncertainty in the computed value of q is the sum,

$$
\begin{equation*}
\delta q \approx \delta x+\cdots+\delta z+\delta u+\cdots+\delta w, \tag{3.4}
\end{equation*}
$$

of all the original uncertainties.

Same idea applies to products/quotients, but fractional form is used

$$
\begin{aligned}
& x=x_{\text {best }} \pm \delta x \\
& \delta_{0}=x / y \\
& \delta v_{0}=? \\
& \frac{\delta x}{\left|x_{\text {best }}\right|} \quad \text { fraction } \\
& \frac{\partial x}{|x|}
\end{aligned}
$$

$$
\begin{gathered}
y=y_{\text {best }} \pm \delta y \\
0=\frac{x_{\text {best }}}{y_{\text {best }}}\left(\frac{1 \pm \frac{\delta x}{|x|}}{1 \pm \frac{\delta y}{|y|}}\right)
\end{gathered}
$$

Problem: How to extreme values of second term.

Same idea applies to products/quotients, but fractional form is used

$$
\frac{1+a}{1-b} \quad a \ll 1, b \ll 1
$$

Binominal Theorem: $\frac{1}{1-b} \approx 1+b$

$$
\begin{array}{r}
\therefore(1+a)(1+b)=1+a+b+a b^{0} \\
\delta_{\text {nigh }}=\frac{x_{\text {best }}}{y_{\text {best }}}\left(1+\frac{\delta x}{|x|}+\frac{\delta y}{|y|}\right)
\end{array}
$$

Special Cases: Multiplication with a constant

$$
\begin{aligned}
& \sigma=B x \\
& \uparrow \text { no uncertainty } \\
& \delta q=? \\
& b^{2}=B\left(x_{\text {best }} \pm \delta x\right)=B x_{\text {best }} \pm \underbrace{|B| \delta x}_{\delta q}
\end{aligned}
$$

Special Cases: Powers

$$
T=\frac{1}{2} m v^{2}
$$

we measure $v \rightarrow$ whits uncertionty of v^{2}

$$
\begin{aligned}
& q=x^{n} \\
& \frac{\partial z}{|z|}=n \frac{\delta x}{|x|}
\end{aligned}
$$

Independent Uncertainties in Sums
Summary so far: sob/add \rightarrow uncertainties add

$$
\begin{gathered}
\text { multi/div } \rightarrow \begin{array}{c}
\text { fractional } \\
\text { uncertainties } \\
\text { add }
\end{array} \\
\text { ad er }
\end{gathered}
$$

* In reatity these are really conservative estimates.
* If the uncertainties are independent i random, we can come up with a better estimate.

Let's explore why the original formulation is conservative

$$
q=x_{\text {best }}+y_{\text {best }} \pm(\delta x+\delta \gamma)
$$

When would actual value of $\gamma=$ the extreme value?
Only occurs if we underestimate x by the full δx i we underestimate y by the full δy.
If x is are independent, \dot{g} error is random tea 50% thant an underestimate in one is accompied by an overstonde in y.

* pint super unlikely twat the extreme istre!

What should be done?
\rightarrow Really depends en statistion Laws (H.) govering the error in measurement
if you can assume independence is thant the uncertainties are random is gaussian:

added in quadrature

if you con satisfy the assumptions you can be more certain

Summary for new uncertainty estimates

Uncertainty in Sums and Differences

Suppose that x,...., w are measured with uncertainties δx,
. . . ., δW and the measured values used to compute

$$
q=x+\cdots+z-(u+\cdots+w)
$$

If the uncertainties in x, \ldots, w are known to be independent and random, then the uncertainty in q is the quadratic sum
$\delta q=\sqrt{(\delta x)^{2}+\cdots+(\delta z)^{2}+(\delta u)^{2}+\cdots+(\delta w)^{2}}$
of the original uncertainties, In any ease, δq is never larger than their ordinary sum,

$$
\delta q=\delta x+\cdots+\delta z+\delta u+\cdots \cdot \delta w .
$$

Uncertainties in Products and Quotients

Suppose that x, \ldots, w are measured with uncertainties $\delta x, \ldots, \delta w$, and the measured values are used to compute
\qquad

$$
q=\frac{x \times \cdots \times z}{u \times \cdots \times w}
$$

If the uncertainties in x, \ldots, w are independent and ran dom, then the fractional uncertainty in q is the sum in quadrature of the original fractional uncertainties.

$$
\frac{\delta q}{q}=\sqrt{\left(\frac{\delta x}{x}\right)^{2}+\cdots+\left(\frac{\delta z}{z}\right)^{2}+\left(\frac{\delta u}{u}\right)^{2}+\cdots \cdot \cdot\left(\frac{\delta w}{w}\right)^{2}}
$$

In any case, it is never larger than their ordinary sum,

$$
\frac{\delta q}{\mid q} \leqslant \frac{\delta x}{|x|}+\cdots+\frac{\delta z}{|z|}+\frac{\delta u}{|u|}+\cdots+\frac{\delta w}{|w|}
$$

Summary for new uncertainty estimates

$$
\begin{aligned}
& \text { Sum } \dot{\xi} \text { differences } \\
& \sigma_{b}=x+\cdots+z-(u+\cdots w) \\
& \delta_{q}=\sqrt{(\delta x)^{2} \cdots(\delta \omega)^{2}} \\
& \delta_{\sigma} \leqslant \delta x+\cdots+\delta w
\end{aligned}
$$

$$
\begin{aligned}
& \text { Products ; Quotients } \\
& q=\frac{x \cdot y \cdot \cdots \cdot w}{n \times \cdots v} \\
& \frac{\delta \sigma}{|q|}=\sqrt{\left(\frac{\partial x}{x}\right)^{2} \cdots\left(\frac{\delta w}{w}\right)^{2}} \\
& \frac{\delta b}{|q|} \leqslant \frac{\partial x}{\mid \times 1}+\cdots \frac{\delta w}{|w|}
\end{aligned}
$$

Quick Check 3.6. Suppose you measure three numbers as follows:

$$
x=200 \pm 2, \quad y=50 \pm 2, \quad z=20 \pm 1
$$

where the three uncertainties are independent and random. What would you give for the values of $q=x+y-z$ and $r=x y / z$ with their uncertainties?

$$
\sigma_{0}=230 \pm 3, \quad r=500 \pm 6.5 \%=500 \pm 30
$$

Arbitrary Functions of One Variable
Ex. Find refractive index n of glass by measuring critical angle θ

$$
n=\frac{1}{\sin (\theta)}
$$

What is the uncertainty of n ?

Arbitrary Functions of One Variable
$x=x_{\text {best }} \pm \delta x$, and we voamt
$q(x)$ what is δq

How should we approach this?
\rightarrow The usual way \rightarrow find the extreme values

Arbitrary Functions of One Variable

Arbitrary Functions of One Variable

Arbitrary Functions of One Variable

Arbitrary Functions of One Variable

$$
\delta q=\left|\frac{d q}{d x}\right| \delta x
$$

Quick Check 3.7. Suppose you measure x as 3.0 ± 0.1 and then calculate $q=e^{x}$. What is your answer, with its uncertainty?

$$
\begin{aligned}
& \left|q_{0}=20 \pm 2\right| \\
& q_{\text {best }}=20.08 \ldots \\
& \delta_{q}=\left|\frac{d q}{d x}\right| \delta x \\
& \partial_{q}=\left.e^{x}\right|_{x} \delta x \\
& \delta_{q}=20.0 .1 \\
& \delta_{0}=2
\end{aligned}
$$

Special Case - power

$$
\begin{aligned}
& q(x)=x^{n} \\
& \delta q=\left|\frac{d q}{d x}\right| \delta x=\left|n x^{n-1}\right| \delta x \\
& \frac{\delta q}{|q|}=\frac{|n| \delta x}{|x|}
\end{aligned}
$$

Special Case - power

Special Case - power

Putting Everything Together: Propagation Step-by-Step

* Any calculation con be broken down in to a sequence, each involving only one st the following

1. Sum is differences
2. products is quotients
3. computation of a functor of one uniable

Putting Everything Together: Propagation Step-by-Step

$$
q=x(y-z \sin u)
$$

measure x, y, z, n

1. Uncertainty in $\sin (u)$
2. uncertainty in product $z-\sin u$
3. .. "d difference $y-z \cdot \sin u$
4. " " product $x(y-z \sin u)$

Quick Check 3.9. Suppose you measure three numbers as follows:

$$
x=200 \pm 2, \quad y=50 \pm 2, \quad z=40 \pm 2
$$

where the three uncertainties are independent and random. Use step-by-step propagation to find the quantity $q=x /(y-z)$ with its uncertainty.

$$
\begin{aligned}
& 1 q=20 \pm 6 \quad \begin{aligned}
& y-z \Rightarrow \sqrt{2^{2}+2^{2}}=\sqrt{8} \\
&\left(\frac{x}{y-z}\right) \Rightarrow \sqrt{\left(\frac{2}{20}\right)^{2}+\left(\frac{\sqrt{9}}{10}\right)^{2}} \\
&=\sqrt{\frac{4}{40000}+\frac{8}{100}}=0.293 \\
&=5.66 \\
& \frac{d x}{|x|} \cdot|x|=\delta x \quad \simeq 6 .
\end{aligned}
\end{aligned}
$$

General Formula for Error Propagation

$$
x=x_{\text {best }} \pm \delta x \quad y=y_{\text {best }} \pm \delta_{y} \quad z=z_{\text {best }} \pm \delta z
$$

$$
q(x, y, z)=\frac{x+y}{x+z}
$$

what happens if we do twas Step by step?
\rightarrow misses the possibity tart errors in den. (from x) could cancel 1 errors in the num. (from x)
\therefore Step-by-step no good for some situation.

General Formula for Error Propagation

General Formula for Error Propagation

$$
\left.\begin{array}{rl}
q_{\text {best }}= & f\left(x_{\text {best }}, y_{\text {best }}\right) \\
q(x+n, y+v) & \approx q(x, y)
\end{array}+\frac{\partial b}{\partial x} u\right)
$$

the absolute $m \times / \mathrm{min}$

General Formula for Error Propagation

Uncertainty in a Function of Several Variables

Suppose that x, \ldots, z are measured with uncertainties $\delta x, \ldots, \delta z$ and the measured values are used to compute the function $q(x, \ldots, z)$. If the uncertainties in x, \ldots, z are independent and random, then the uncertainty in q is

$$
\delta q=\sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^{2}+\cdots+\left(\frac{\partial q}{\partial z} \delta z\right)^{2}}
$$

In any case, it is never larger than the ordinary sum

$$
\delta q \leqslant\left|\frac{\partial q}{\partial x}\right| \delta x+\cdots+\left|\frac{\partial q}{\partial z}\right| \delta z .
$$

General Formula for Error Propagation

$$
\begin{aligned}
& q(x, \cdots, z) \\
& \delta q=\sqrt{\left(\frac{\partial z}{\partial x} \delta x\right)^{2}+\cdots+\left(\frac{\partial b}{\partial z} \delta z\right)^{2}} \\
& \delta q \leqslant\left|\frac{\partial b}{\partial x}\right| \delta x+\cdots+\left|\frac{\partial b}{\partial z}\right| d z
\end{aligned}
$$

