Experimental Techniques

Last time:

General Formula for

error progration

$$S_{1} = \frac{f(x_{1}, \dots, z_{1})}{2x \delta x^{2}} + \dots + \frac{3y}{3z \delta z^{2}}$$

errors are random independent

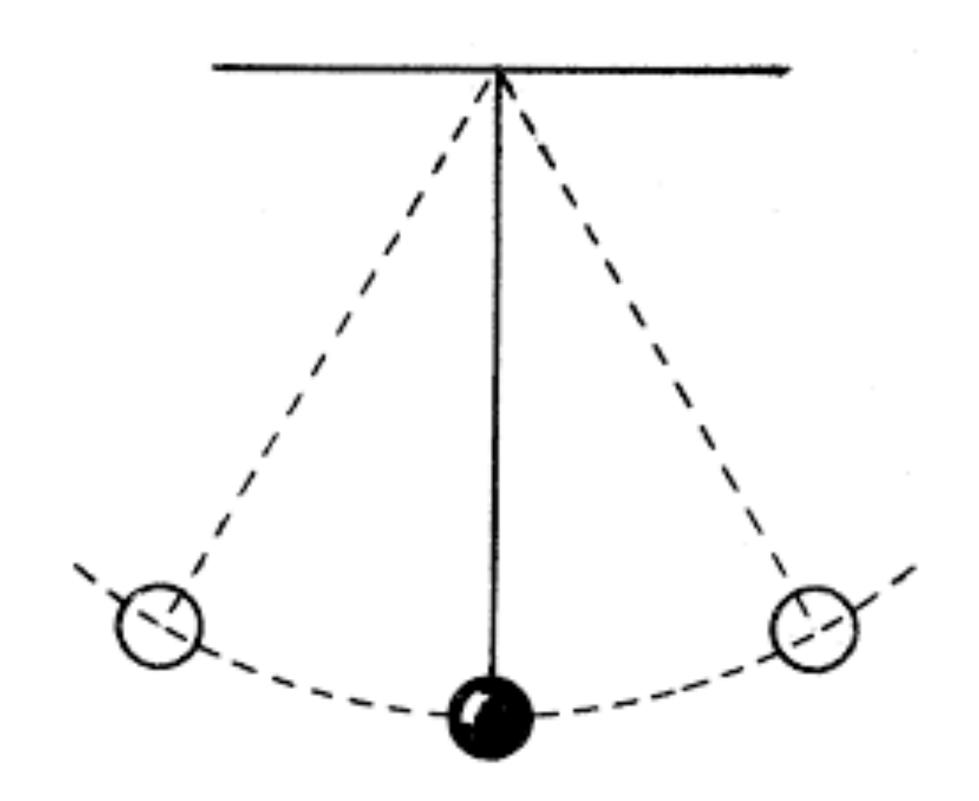
sintependent

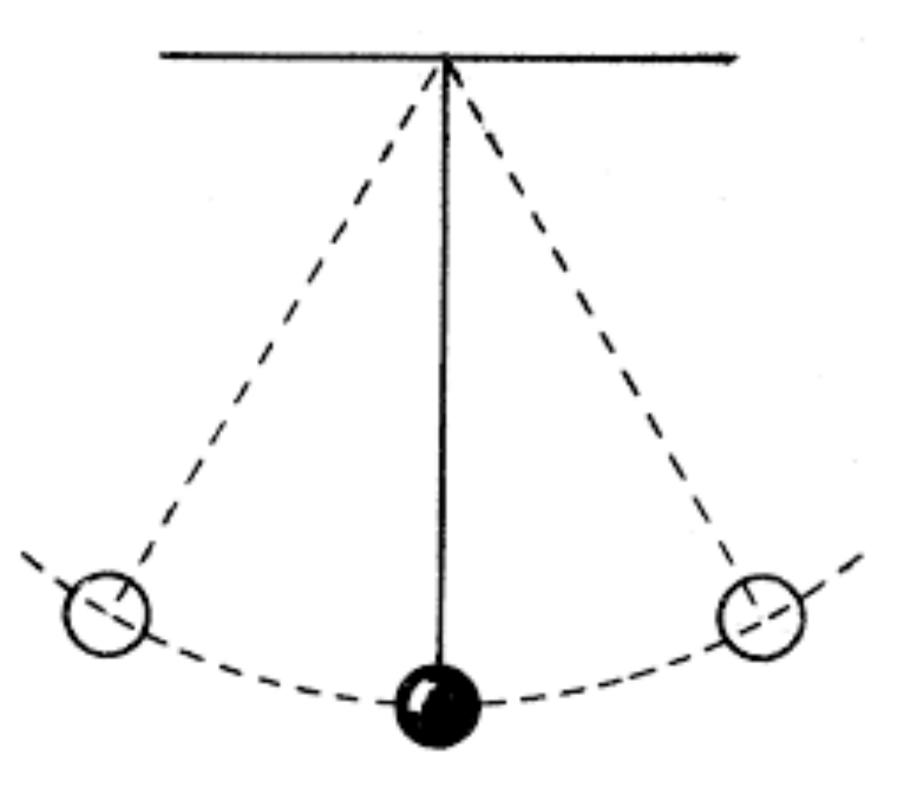
$$S_{1} \leq \frac{3y}{3x \delta x^{2}} + \dots + \frac{3y}{3z \delta z^{2}} + \dots + \frac{3y}{3z \delta$$

Today:

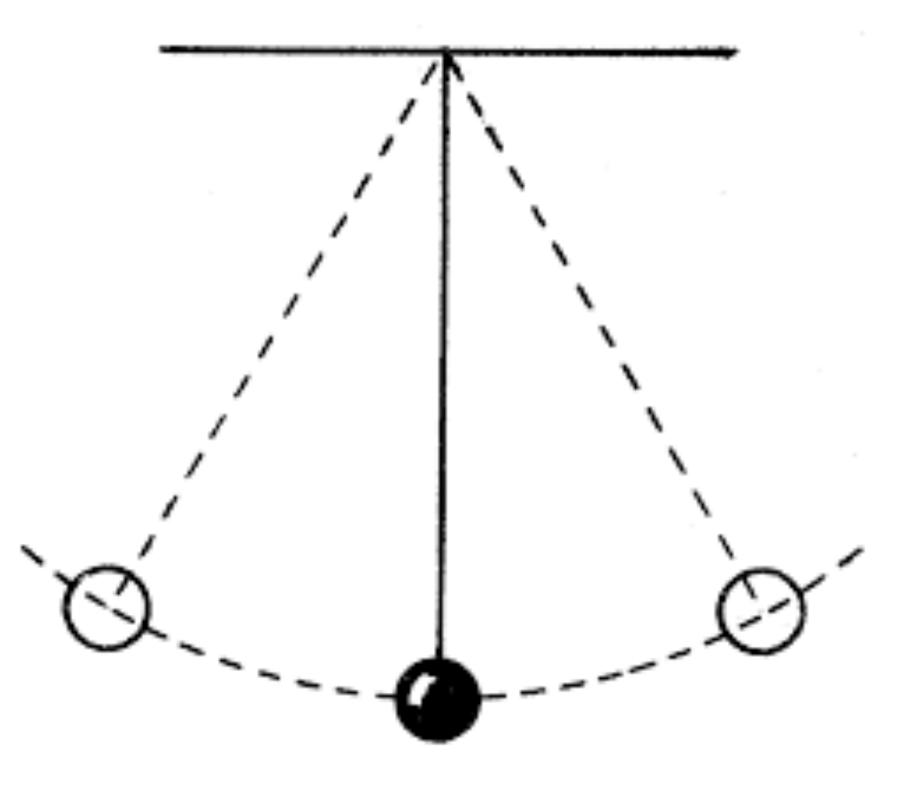
Suppose we want to confirm the value of g, the acceleration

due to gravity



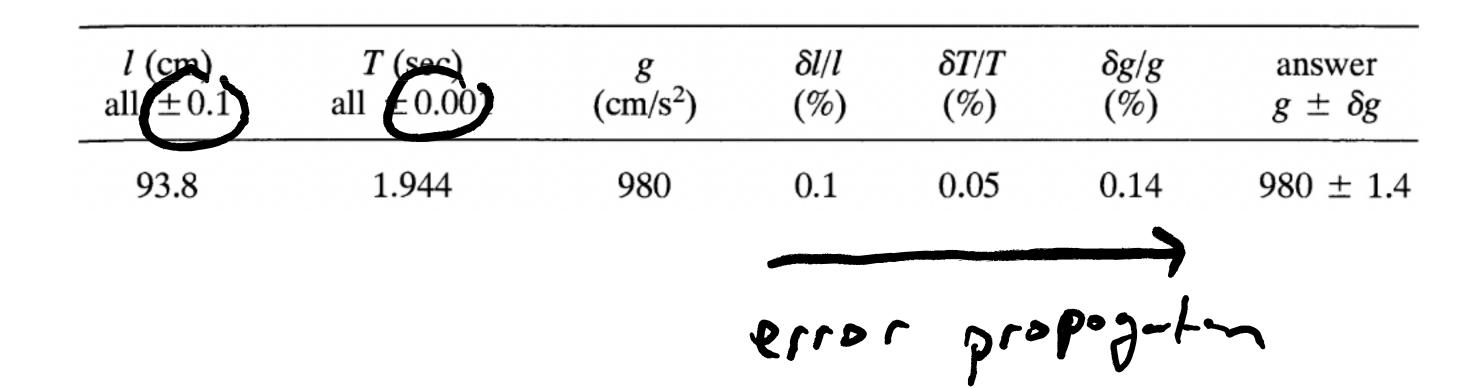


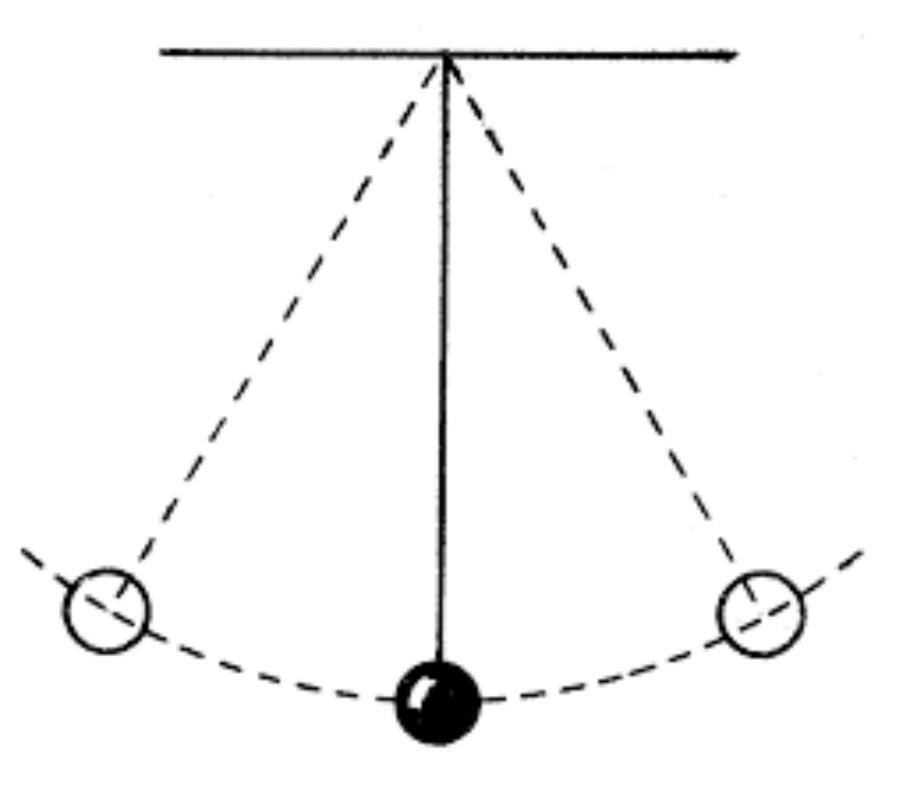
How can we track error propagation?



How can we track error propagation?

$$g = 4\pi^2 l/T^2$$





How can we track error propagation?

$$g = 4\pi^2 l/T^2$$

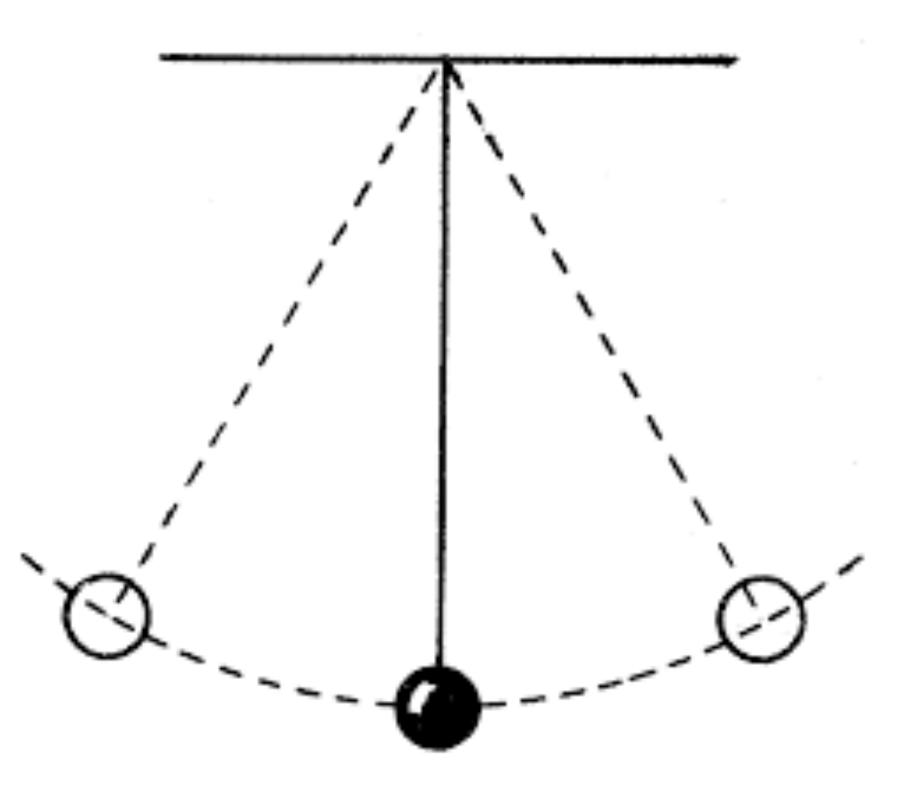
General Formula for Error Propagation: If q = q(x, ..., z) is any function of x, ..., z, then

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^2 + \dots + \left(\frac{\partial q}{\partial z} \delta z\right)^2}$$
(provided all errors are independent and random)

and

$$\delta q \leq \left| \frac{\partial q}{\partial x} \right| \delta x + \dots + \left| \frac{\partial q}{\partial z} \right| \delta z$$
(always). [See (3.47) & (3.48)]

We can apply the general formula



How can we track error propagation?

$$g = 4\pi^2 l/T^2$$

<i>l</i> (cm) all ±0.1	$T (sec)$ all ± 0.001	g (cm/s ²)
93.8 70.3 45.7 21.2	1.944 1.681 1.358 0.922	980

How can we leverage repeated measured to estimate uncertainty directly from data? A: Statistics!

First, which types are errors can be estimated statistically?

Random Errors: uncertainties that can be revealed by <u>repeating the</u> measurements

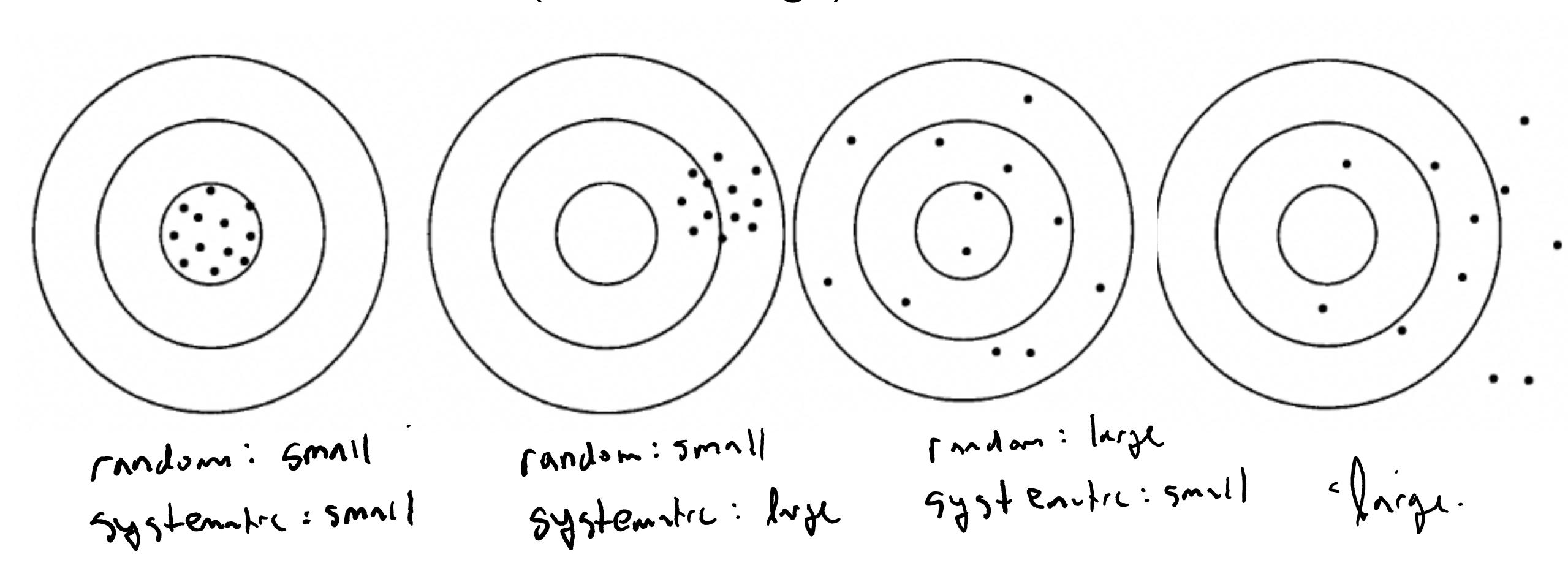
Systematic Errors: errors that are not random are systematic

Consider timing the revolutions of a turntable using a stop watch

maybe we want to test whether a vintage record playing is at the correct RPM

Where do the errors come from? - reaction time for 5top writch (random, different everytime) · ALLUract of Stop watch (Systematic)

Conceptual example: 'experiment' is series of 'shots' at target accurate measurement == center of target. qualify systematic and random error for each (small or large)



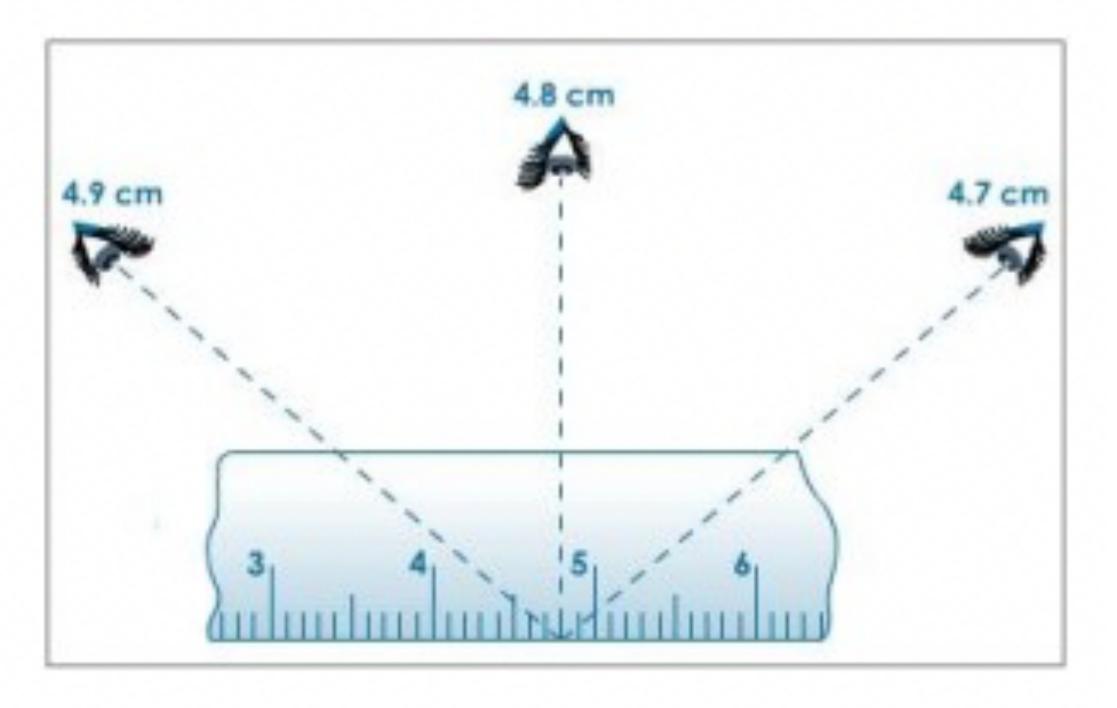
In reality we don't know the target!

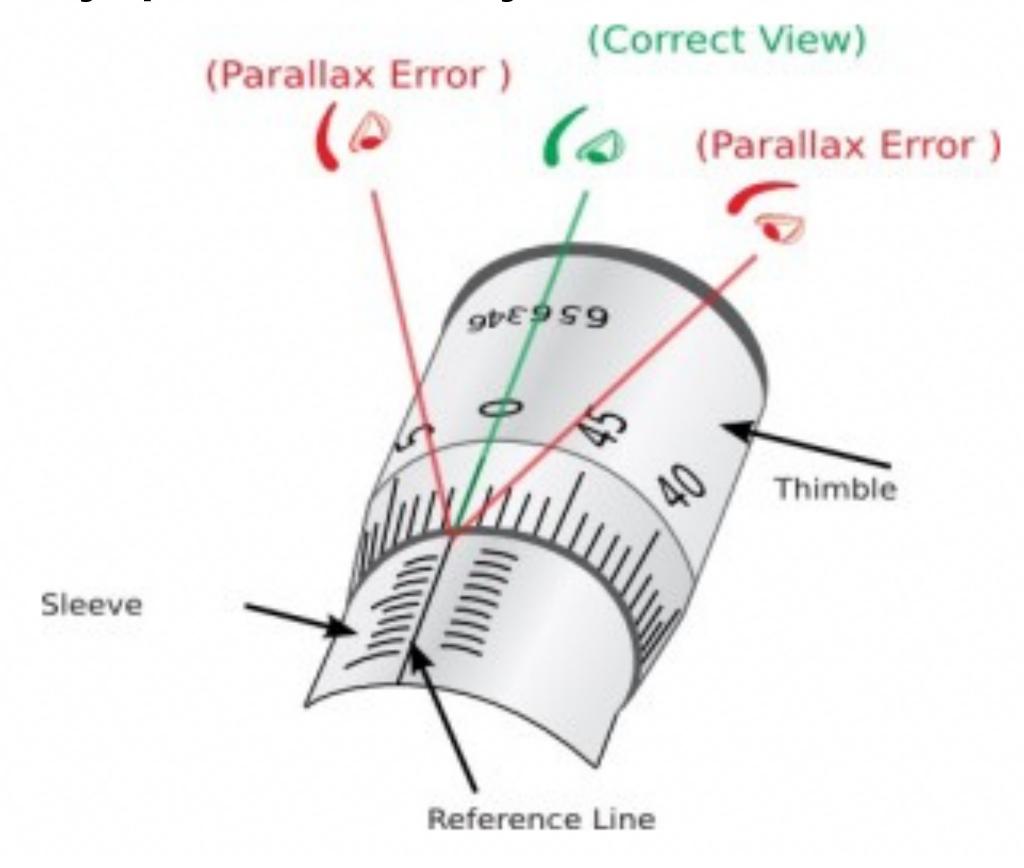
Key iden: we can identify random error even we don't know the target by repenting men sures!

Errors are not always clear cut

random errors in one experiment may produce systematic errors in

another





Dealing with errors

- (1) Random errors

 Deaster to deal with

 Peaster to deal with

 Deaster t
- (2) Systematric errors

 -> hard to evaluate j detect

 -> Experimenters should carefully
 anticipate j eliminate source

 for systematric error.

 -> Calibrate device, control enough

Statistics: the very basics

> context: 545+cmntre error 50 thm/ all of uncertainty comes from rundom unintron Tepented mensurs 71, 72, 73, 71 what should we use for our X_best? Statistics: the very basics

71, 72, 72, 73, 71

How can we estimate uncertainty from our five measurements?

Standard Devintons?

What is a standard deviation?

71, 72, 72, 73, 71

$$\times_{1} \times_{2} \times_{3} \times_{4} \times_{5}$$

devintion for our uncertainty?

Trial number i	Measured value x_i	Deviation $d_i = x_i - \overline{x}$
1	71	_0.9
2	72	0.2
3	72	0-2
4	73	1.2
5	71	- v · B
	$\sum x_i = 359$	$\sum d_i = \emptyset$
mean, 3	$\bar{x} = \sum x_i/N = 359/5$	= 71.8

Definition of standard deviation

$$\delta_{x} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\lambda_{i})^{2}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$

$$\delta_{x}^{2} = \frac{1}{w} \int_{w}^{2} di$$
 unime

Bessels correction

$$\sigma_{x} = \sqrt{\frac{1}{N-1}} \sum_{i=1}^{N-1} (x_{i} - \overline{x})^{2}$$

Sample devintion - most appropriate for

Standard deviation as uncertainty of a single measurement

assumption — errors are random normally distributed Sx = Ox we re 68%. confidurt that mensurement fulls within this 34.1% 34.1% -3σ -2σ -1σ 0 1σ 2σ

Standard deviation of the mean (standard error)

$$\frac{\sqrt{x}}{\sqrt{x}} = \frac{\sqrt{x}}{\sqrt{x}} \quad \text{for uncertainty using all measurements}.$$

$$\frac{\sqrt{x}}{\sqrt{x}} = \frac{\sqrt{x}}{\sqrt{x}} \quad \text{more measurements doesn't really change}$$

* SE vill decrose with increasing N.

CH.5 The Normal Distribution Histograms and Distributions

By now, should be clear: serious uncertainty analysis, via statistics, requires taking many measurements. -P tools to visualize these measurants. 26, 24, 26, 28, 23, 24, 25, 24, 26, 25. written out, data doesn't convey much.

Table 5.1. Measured lengths x and their numbers of occurrences.

Different values, x_k Number of times found, n_k	23	24	25	26	27	28
Number of times found, n_k	1	3	2	3	0	1

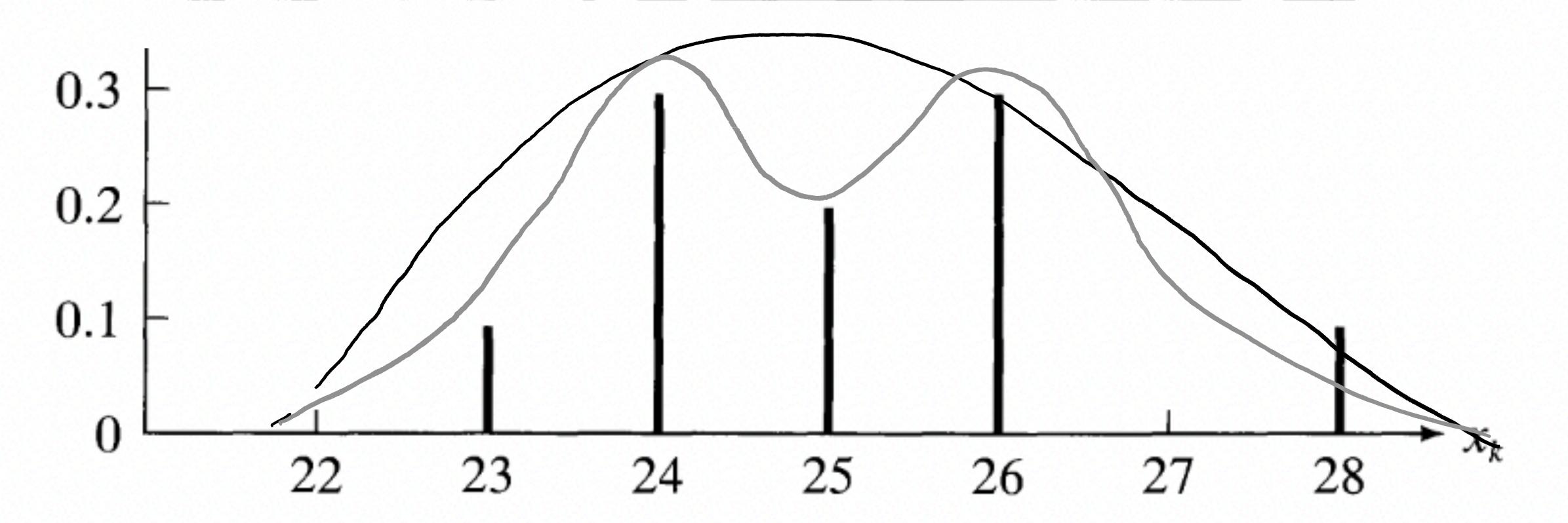
Table 5.1. Measured lengths x and their numbers of occurrences.

	oured rengm	, ,, and	111011 110			onces.		
Different values,	x_k	23	24	25	26	27	28	
Number of times	found, n_k	1	3	2	3	0	1	
\[\frac{\chi}{\chi} \] \[\frac{\chi}{\chi} \]	JXKFK	: All	W lond	eigh H Inlues	1 X		2+	N
			Whe	re	XK	15	we	1gh2d
1 F _K = 1				t to				ot tw

Now we are rold to display.

Table 5.1. Measured lengths x and their numbers of occurrences.

Different values, x_k	23	24	25	26	27	28
Number of times found, n_k	1	3	2	3	0	1



What about for 'untidy data'

26.4, 23.9, 25.1, 24.6, 22.7, 23.8, 25.1, 23.9, 25.3, 25.4.

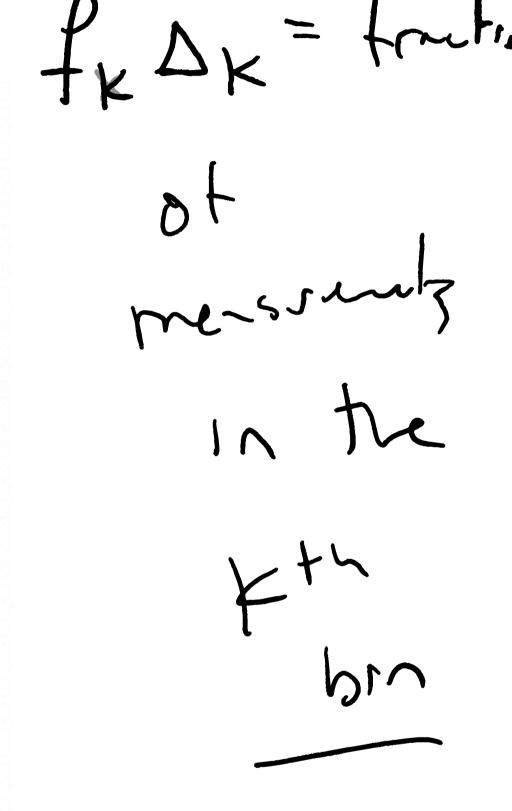
Bin	22 to 23	23 to 24	24 to 25	25 to 26	26 to 27	27 to 28
Observations in bin	1	•		4		

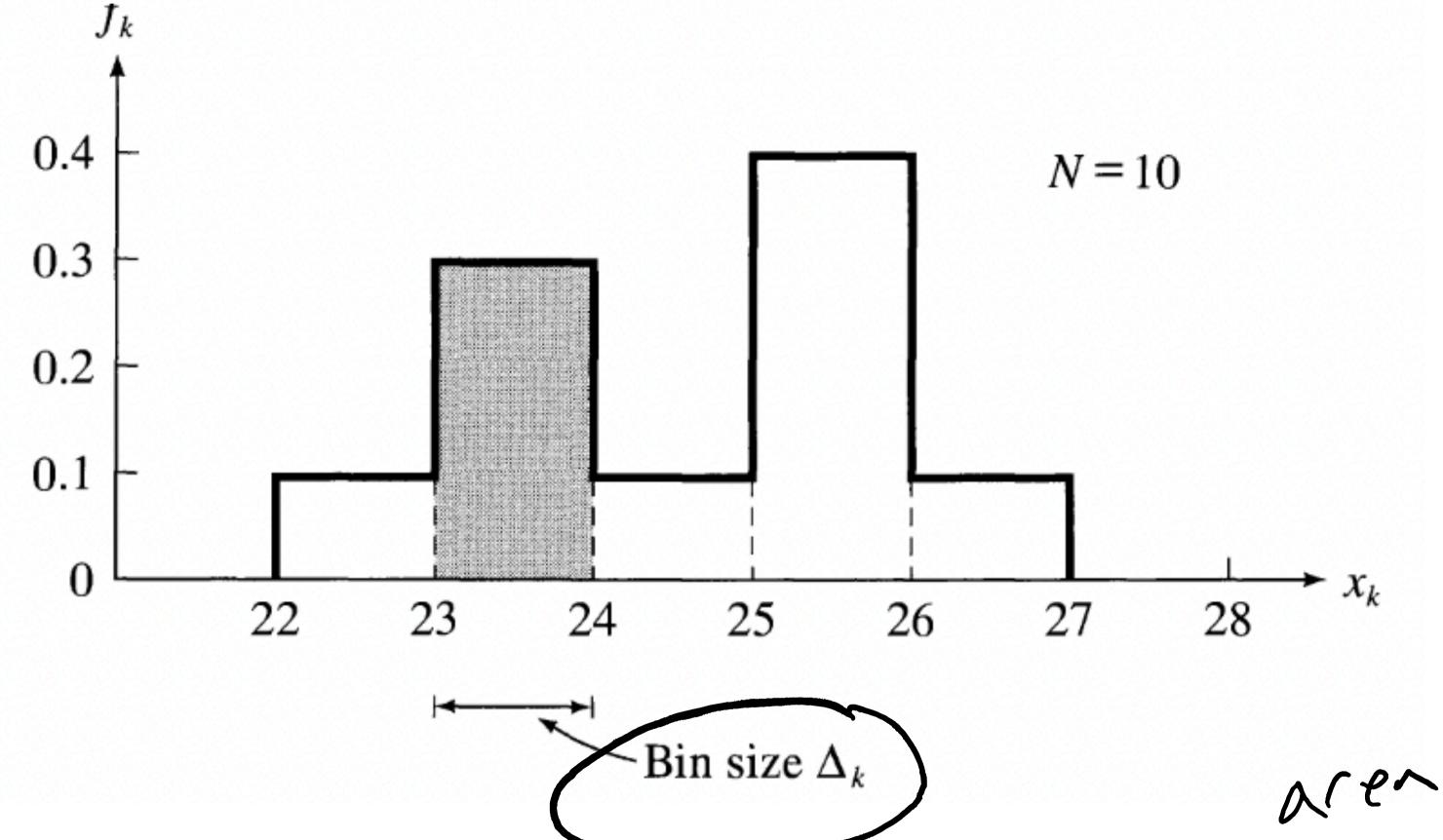
What about for 'untidy data'

26.4, 23.9, 25.1, 24.6, 22.7, 23.8, 25.1, 23.9, 25.3, 25.4.

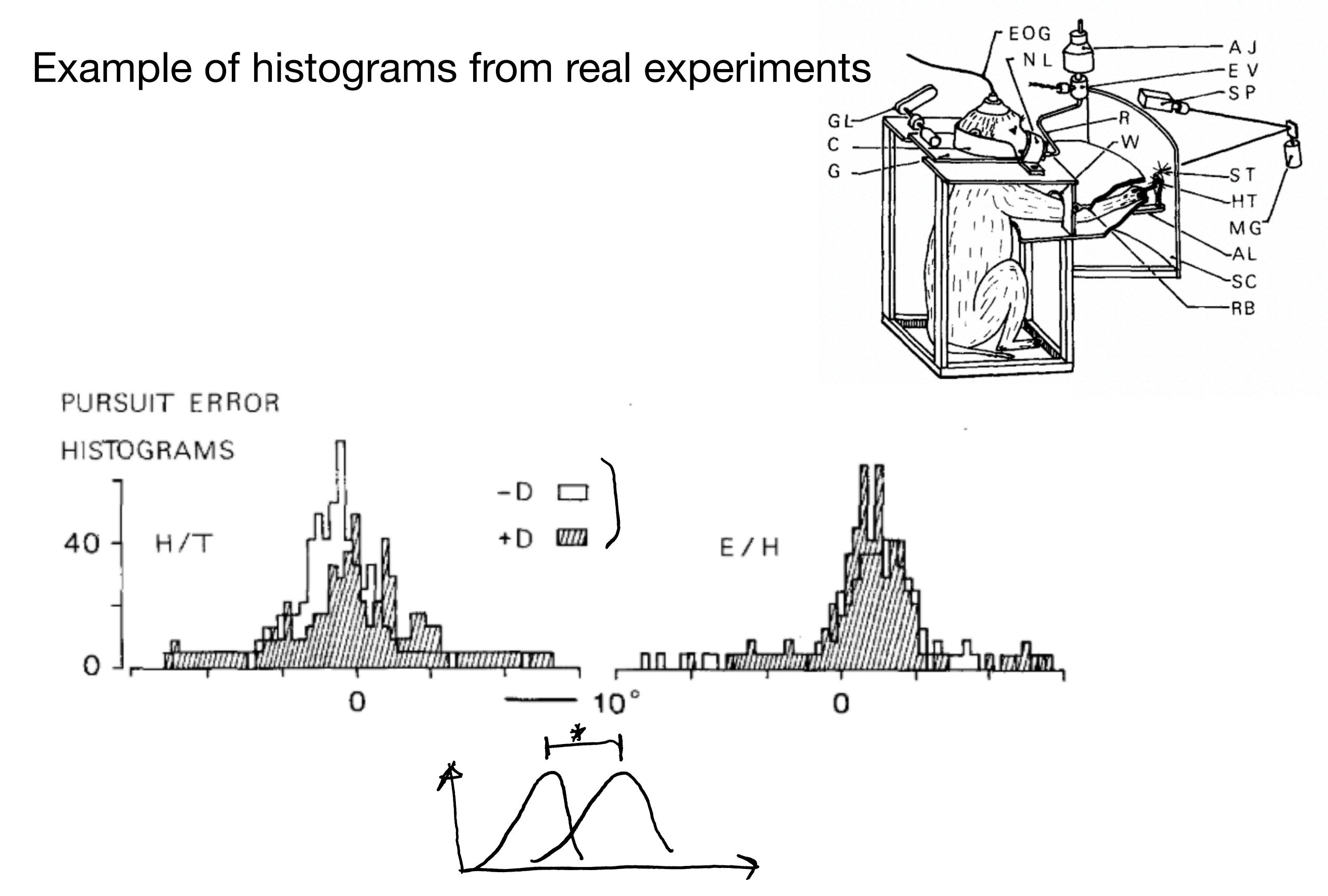
Table 5.2. The 10 measurements (5.9) grouped in bins.

Bin	22 to 23	23 to 24	24 to 25	25 to 26	26 to 27	27 to 28
Observations in bin	1	3	1	4	1	0

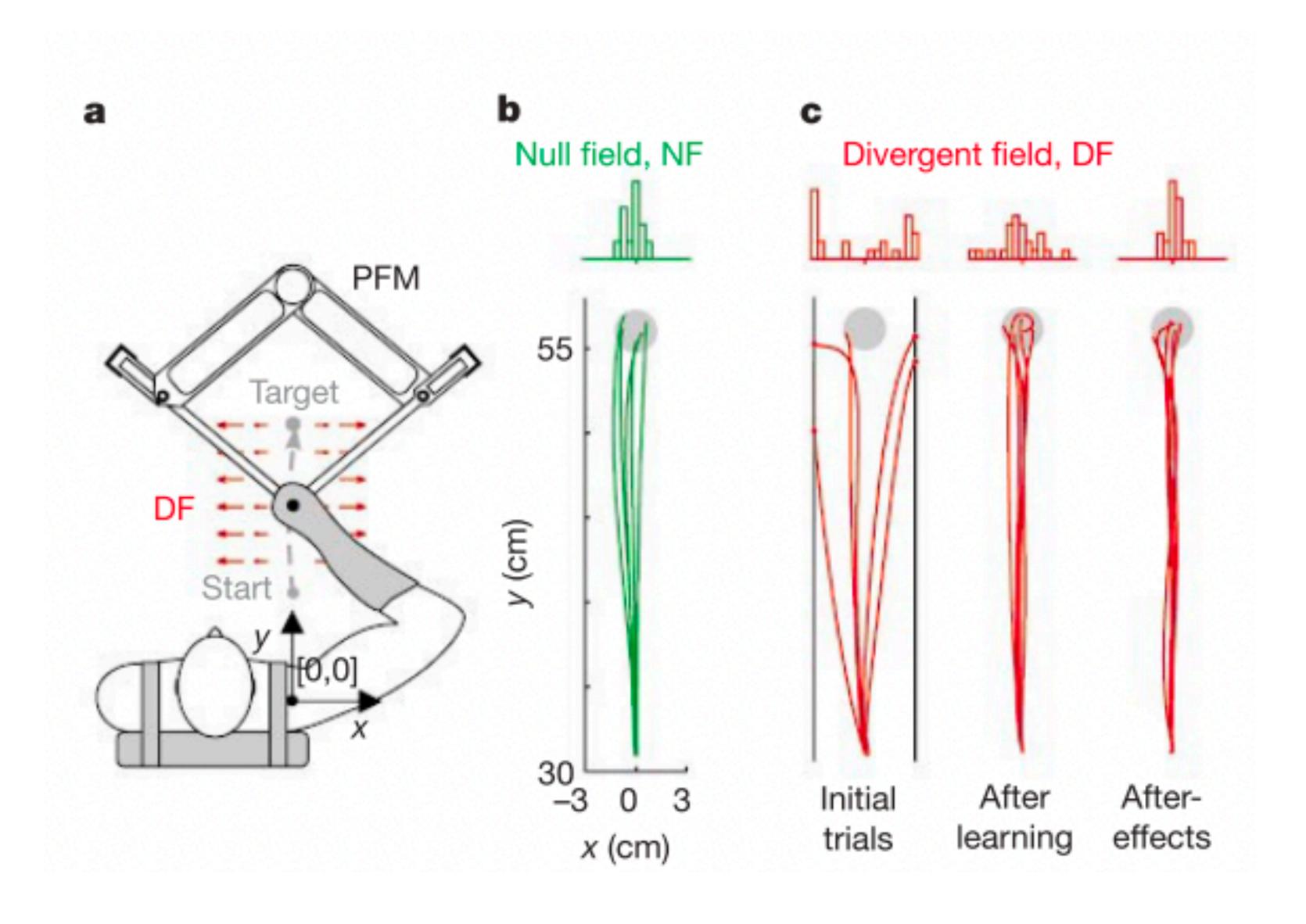




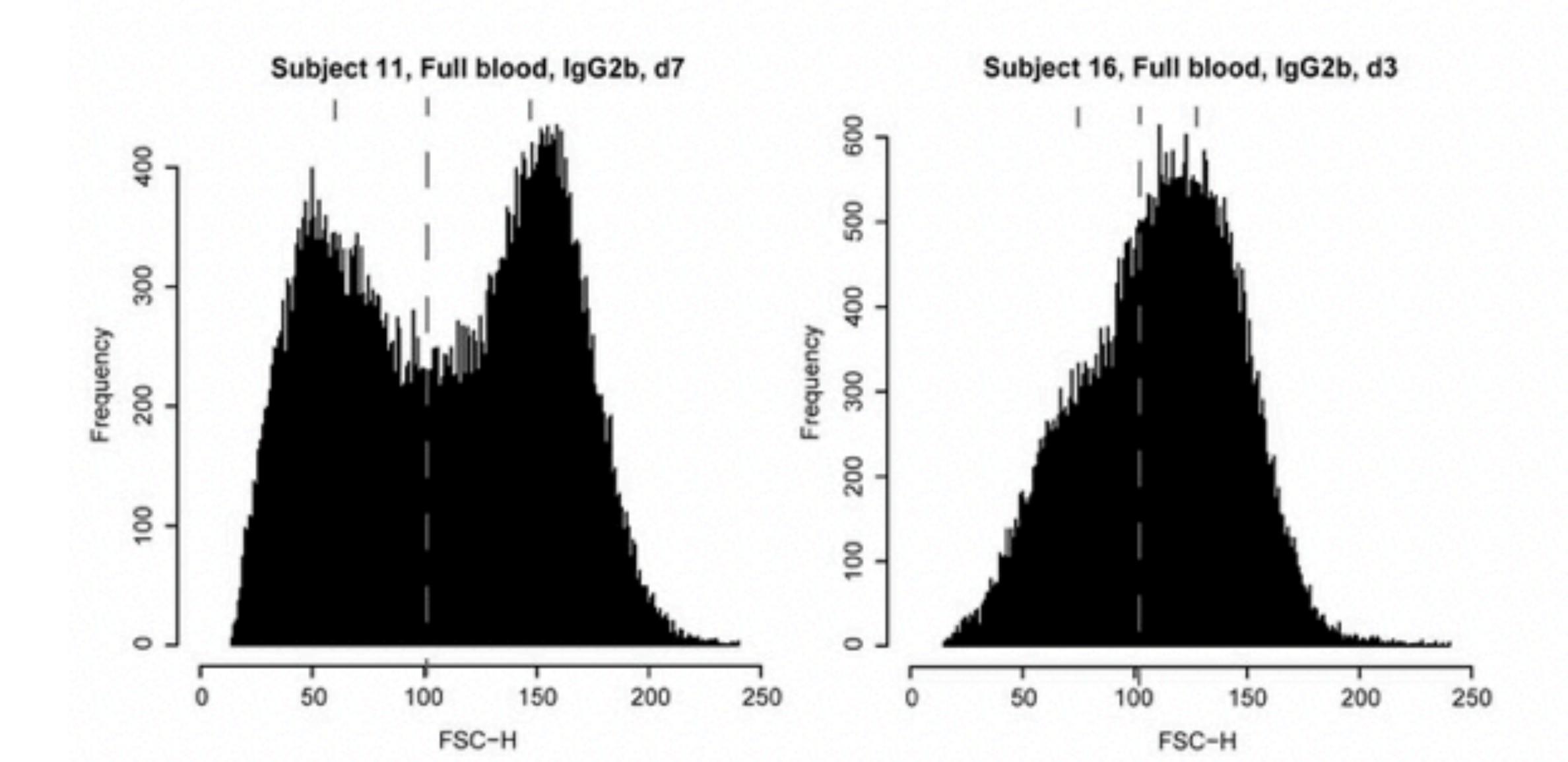
aren fx Ak Corresponds Fx in bur historian



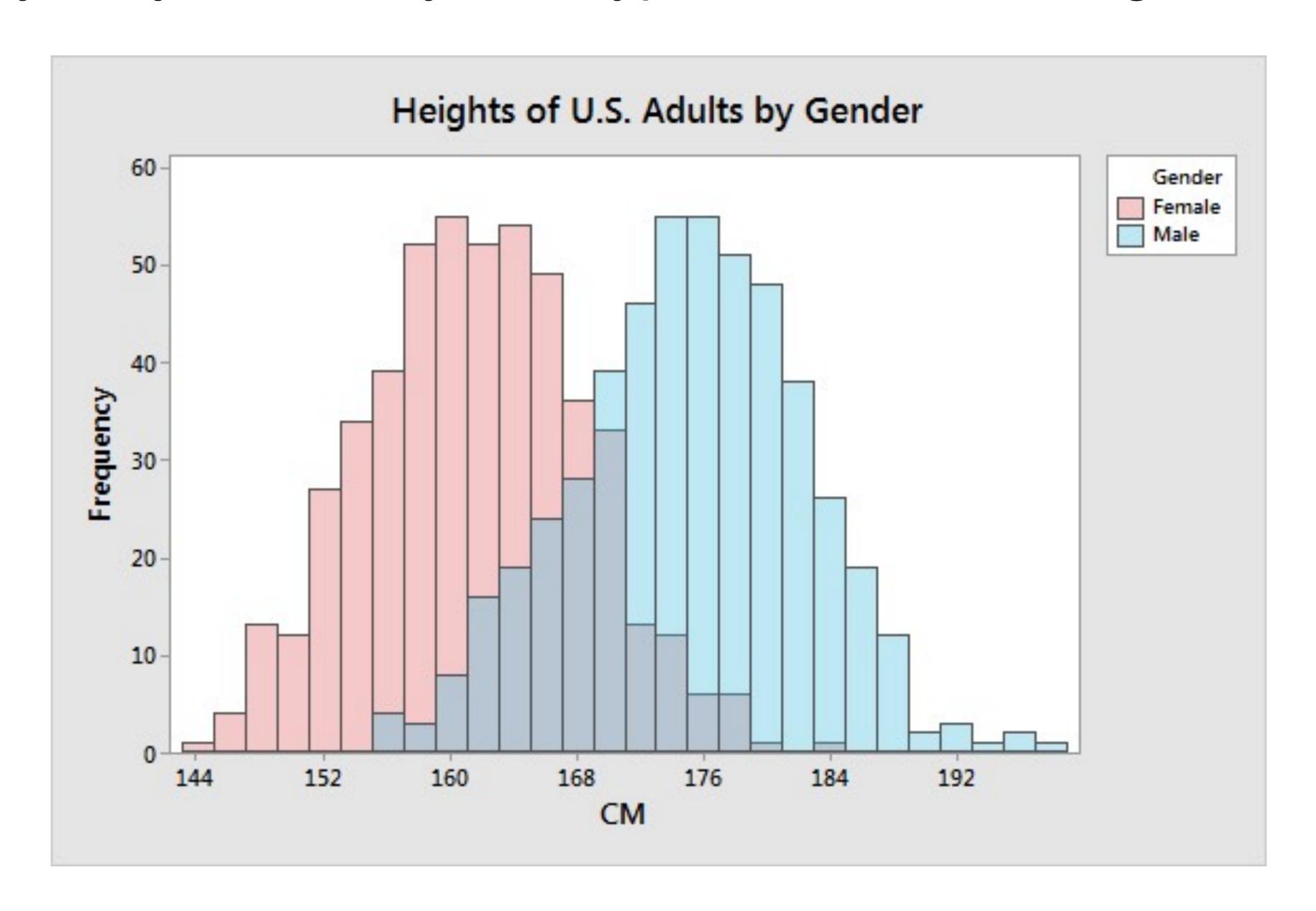
Example of histograms from real experiments



Example of histograms from real experiments



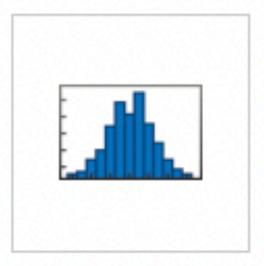
It's really easy to visually test hypothesis with histograms



histogram

Histogram plot

R2022b expand all in page



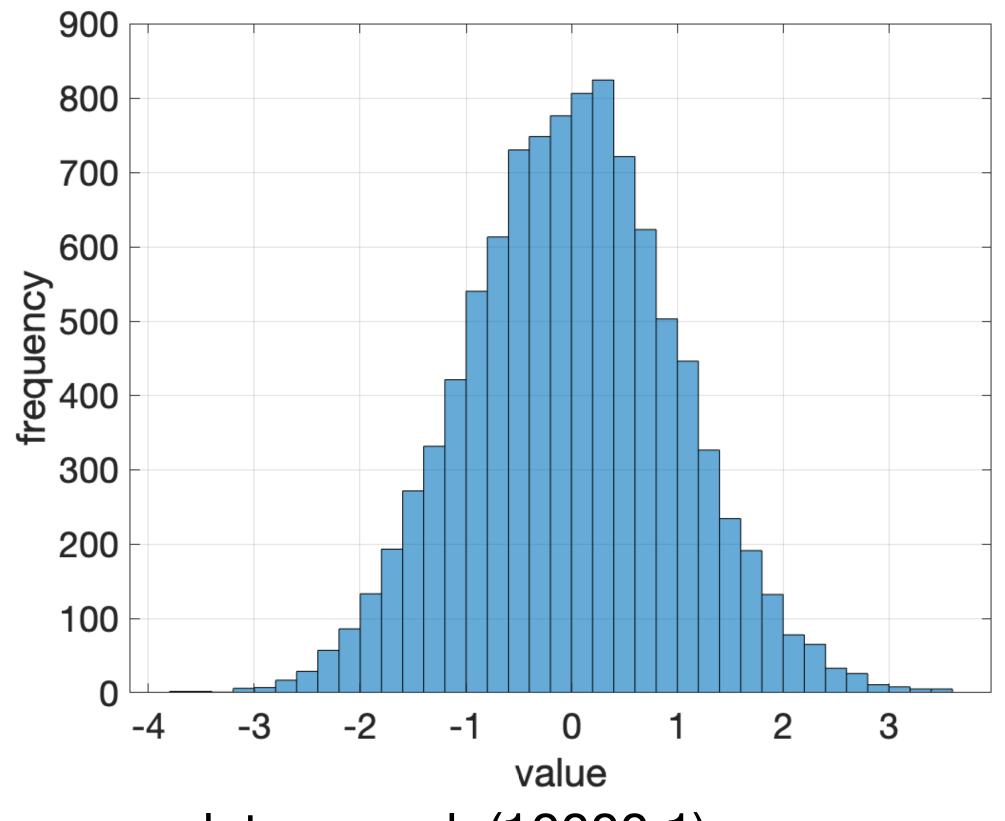
Description

Histograms are a type of bar plot for numeric data that group the data into bins. After you create a Histogram object, you can modify aspects of the histogram by changing its property values. This is particularly useful for quickly modifying the properties of the bins or changing the display.

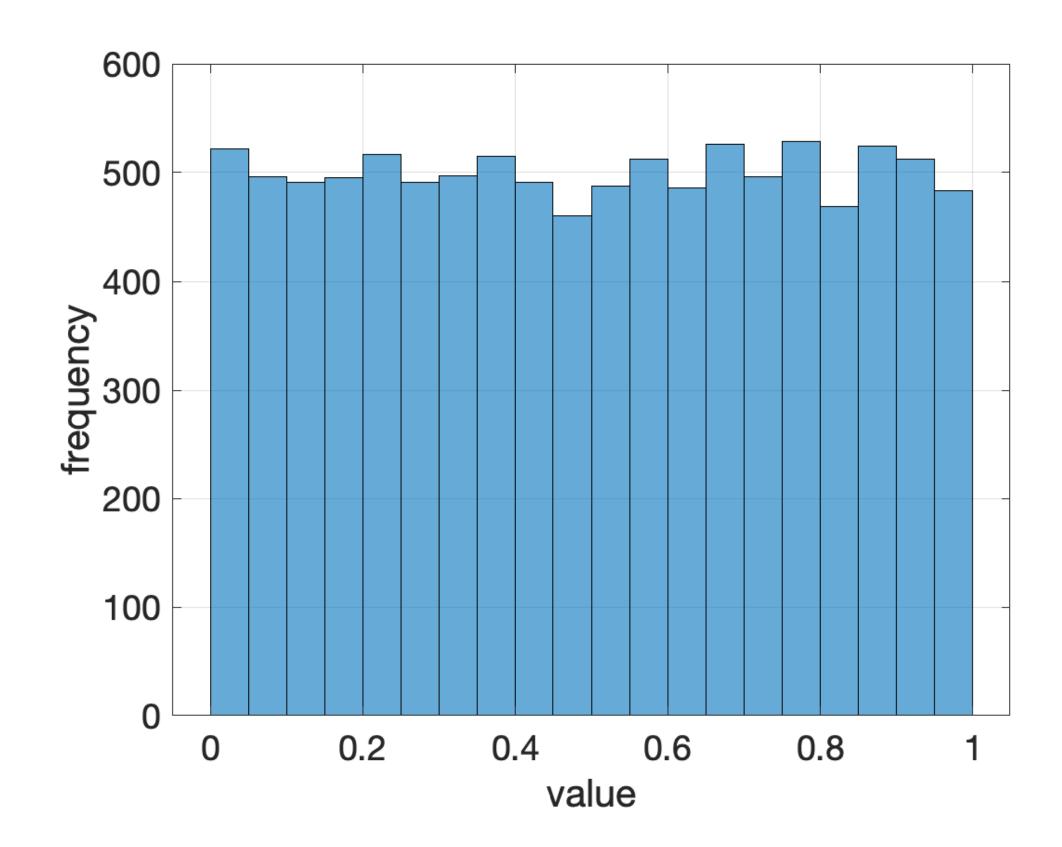
Creation

Syntax

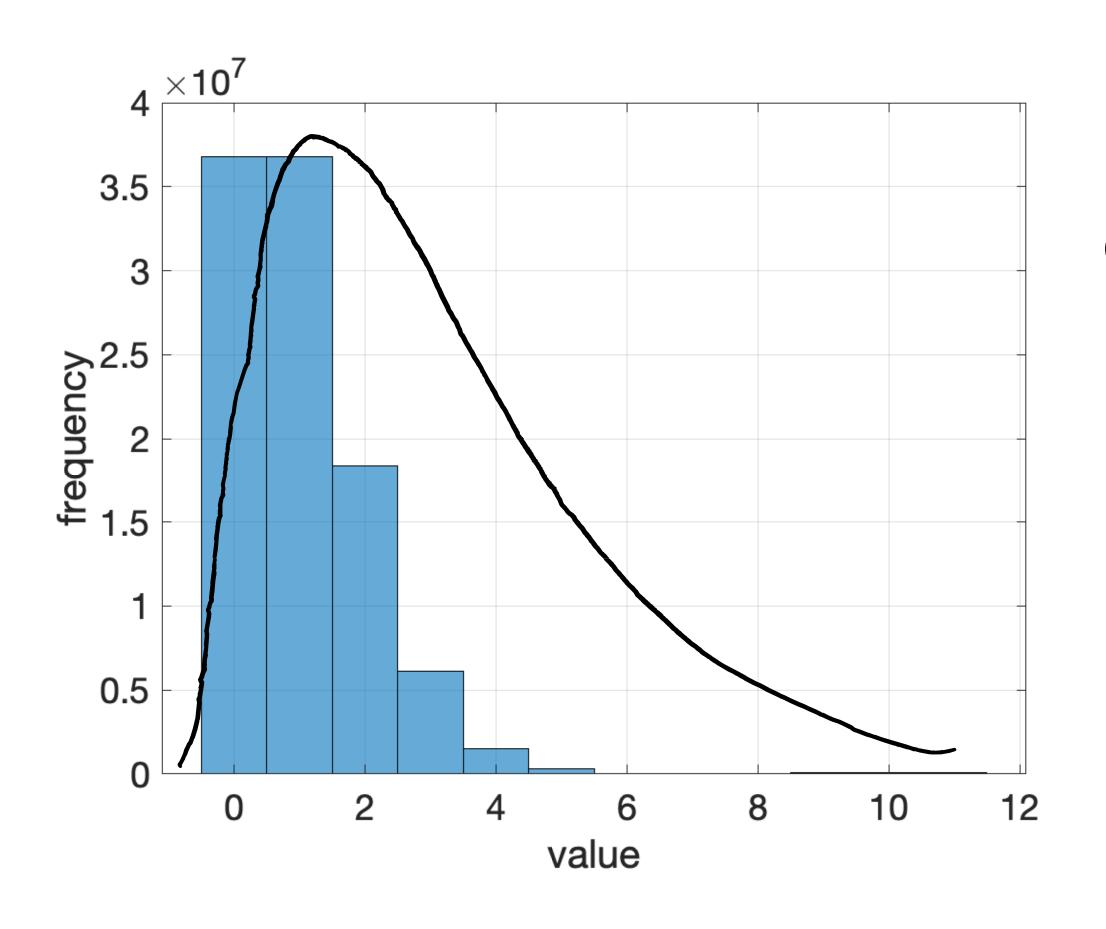
```
histogram(X)
histogram(X,nbins)
histogram(X,edges)
histogram('BinEdges',edges,'BinCounts',counts)
```



```
data = randn(10000,1);
figure; histogram(data);
    xlabel('value');
    ylabel('frequency');
```

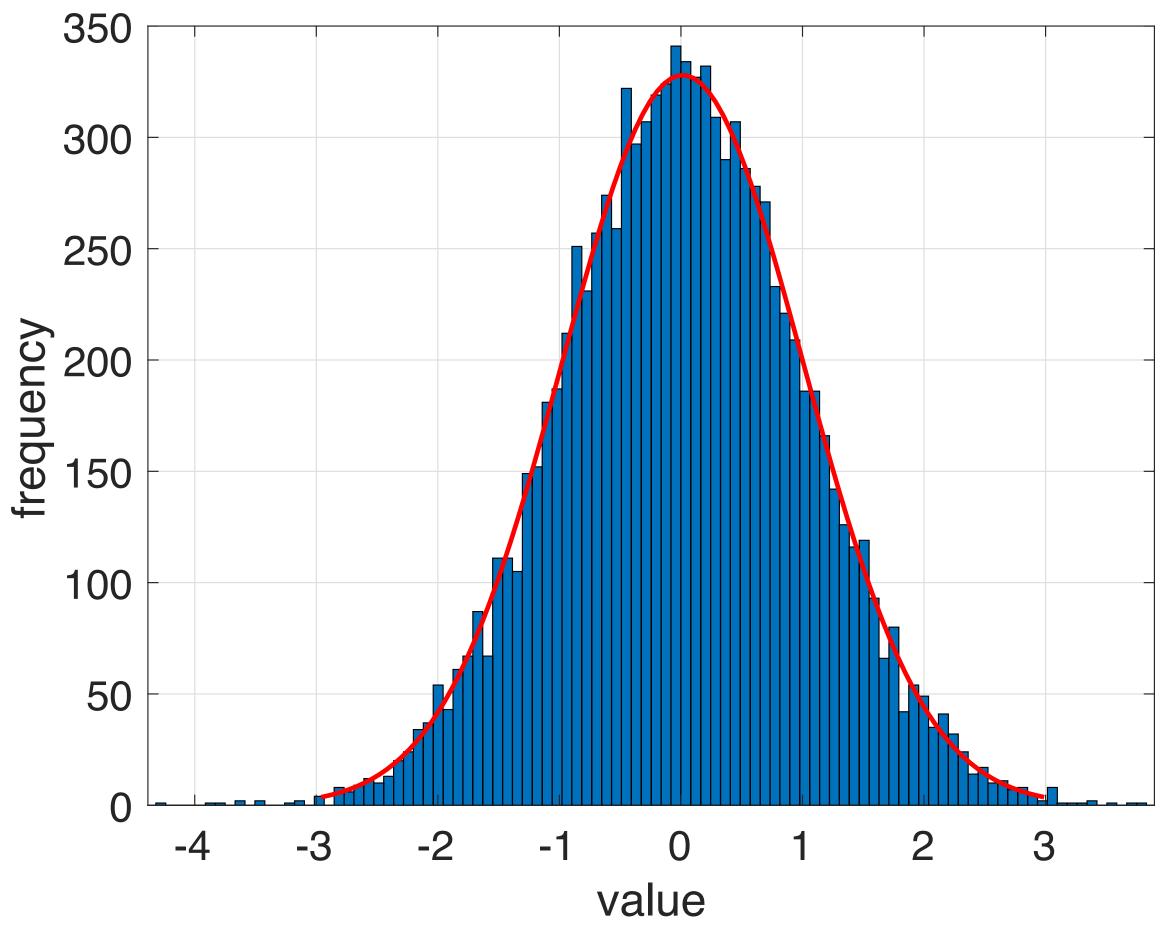


```
data = rand(10000,1);
figure; histogram(data);
    xlabel('value');
    ylabel('frequency');
```



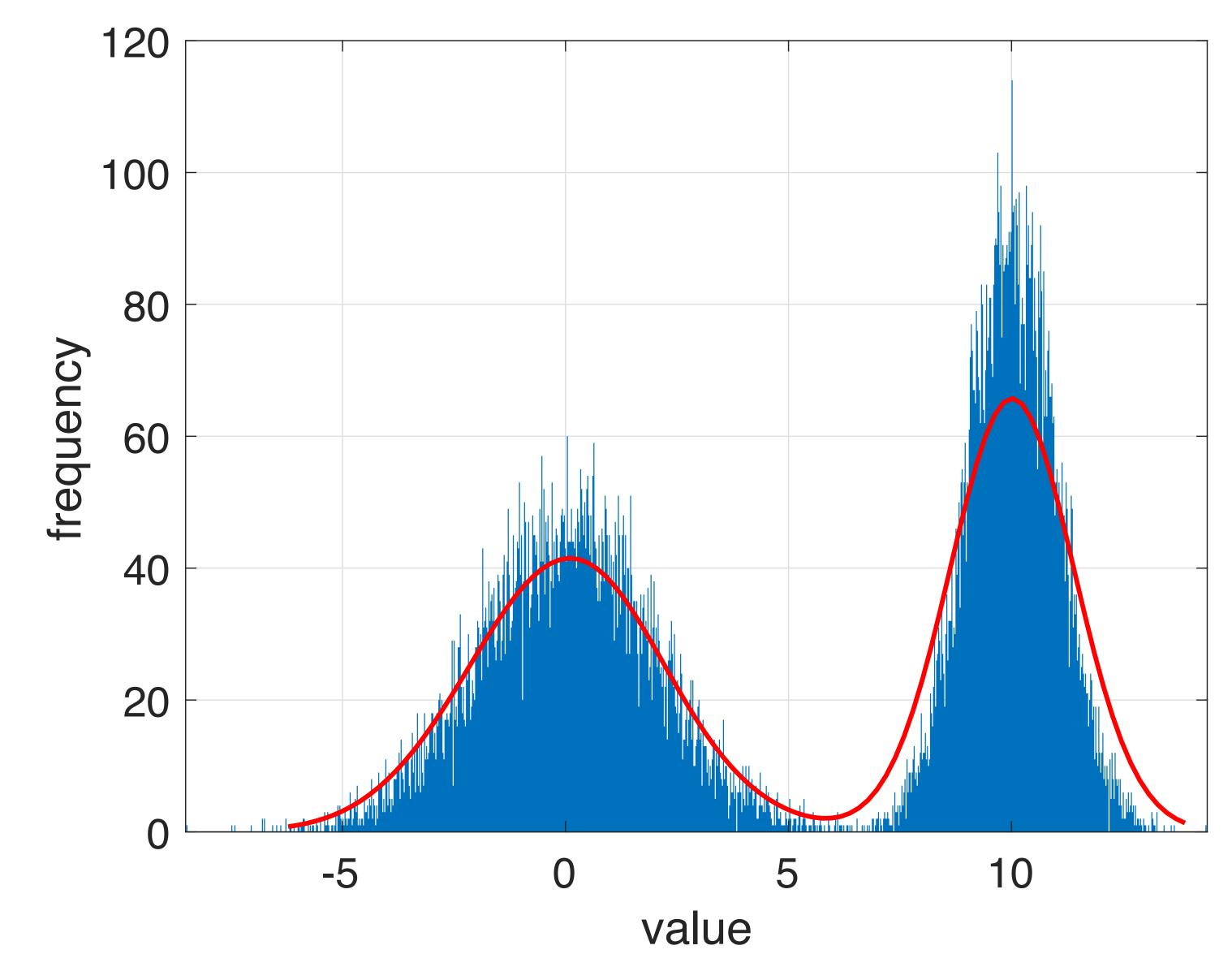
data = poissrnd(1,10000)

figure; histogram(data); xlabel('value'); ylabel('frequency');



data = randn(10000,1);
figure; histfit(data);
 xlabel('value');
 ylabel('frequency');

data = [(randn(10000,1) + 10); 2*randn(10000,1)]



figure; histfit(data,1000,'kernel'); xlabel('value'); ylabel('frequency');