ME170b Lecture 5

Experimental Techniques

Last time:

Today:

> Finish Ch.5 - Normal Distributions

$$= \sqrt{\frac{1}{N-1}} \sum_{i=1}^{N-1} (x_i - \overline{x})^2 \quad \sigma_{\overline{x}} = \frac{\sigma_{\overline{x}}}{\sqrt{N}}$$

бx

Limiting Distributions

24 25 26 27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26
so the	dists ibution	
suous	CUSSE	
furitini	distribution.	

Does every measurement have a limiting distribution?

Short answer, Yes u

Math of limiting distribution

What is the interpretation?

f(x) dx = fraction of measurements that fall between x and x + dx.

 $\int_{a}^{b} f(x) dx = \text{fraction of measurements that}$ fall between x = a and x = b.

What is the interpretation?

f(x) dx = fraction of measurements that fall between x and x + dx.

7(x)

 $\int_{a}^{b} f(x) dx =$ fraction of measurements that fall between x = a and x = b.

: probability Density function (PDF)

The limiting distribution (PDF) tells us a lot!

Dinneter à Snyle-Pebble

high pre usron

low prechsion

х

r it the measurement in precise Lynarrom ¥ in precise LD long tails

We can get mean and variance directly from PDF

true regardless at f(x).

If a measurement is subject to many small sources of random error and negligible systematic error, the limiting distribution will be the bell shaped normal curve

х

y, v approach

in the limit

ot

Gauss's Function - shifted $-(x - X)^2/2\sigma^2$

All 'limiting distributions' should be normalized such that:

This means:

$$f(x) = Ne^{-1}$$

With normalization factor chosen as:

This is the 'Gaussian Distribution':

(x-X)2/202

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$N = \frac{1}{\sigma \sqrt{2\pi}}$$

$$\int (X) = \frac{1}{\sigma \sqrt{2\pi}} - (X - X)^2 / 2\sigma^2$$

parameters: X, sigma – center, and width

Two Gaussian distributions with different 'centers' and 'widths'. Tall, narrow distributions (sharp peaked) correspond to more precise measurements (since measurements fall closer together!) while broad distributions correspond to low precise measurements (measurement fall farther away from each other)

The Normal Distribution — 'expected value' or 'average'

 $\overline{X} = \sigma \sqrt{2\pi} \left(\int_{-\infty}^{\infty} \frac{-\xi^2}{2\sigma^2} \frac{dx}{dy} + \frac{x}{dy} \int_{-\infty}^{\infty} \frac{-\xi^2}{2\sigma^2} \frac{dx}{dy} + \frac{x}{dy} \int_{-\infty}^{\infty} \frac{-\xi^2}{2\sigma^2} \frac{dy}{dy} \right)$

The Normal Distribution — 'expected value' or 'average'

$$\overline{x} = \int_{-\infty}^{\infty} x G_{X,\sigma}(x) dx = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{-(x-X)^2/2\sigma^2} dx$$

If we make the change of variables y = x - X, then dx = dy and x = y + X. Thus,

$$\overline{x} = \frac{1}{\sigma\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} y \, e^{-y^2/2\sigma^2} \, dy + X \int_{-\infty}^{\infty} e^{-y^2/2\sigma^2} \, dy \right)$$

The Normal Distribution — 'expected value' or 'average'

$$\overline{x} = \int_{-\infty}^{\infty} x G_{X,\sigma}(x) dx =$$

If we make the change of variables y = x - X, then dx = dy and x = y + X. Thus,

$$\overline{x} = \frac{1}{\sigma\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} y \, e^{-y^2/2\sigma^2} \, dy + X \int_{-\infty}^{\infty} e^{-y^2/2\sigma^2} \, dy \right)$$
$$= 0 \qquad \qquad = \frac{1}{\sigma\sqrt{2\pi}}$$

 $\overline{x} = X$ This shows that the average is exactly the 'center' parameter

 $\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty} x \, e^{-(x-X)^2/2\sigma^2} \, dx$

The Normal Distribution — 'standard deviation' is the 'width'

$$\sigma_x^2 = \int_{-\infty}^{\infty} (x - \bar{x})^2 G_{X,\sigma}(x) \, dx.$$

lem 5.16)

This integral is evaluated easily. We replace \overline{x} by X, make the substitutions x - X = y and $y/\sigma = z$, and finally integrate by parts to obtain the result (see Prob-

The standard deviation as 68% confidence limit

the probability that any measurement falls $\int_{a}^{b} f(x) dx$ within a <= x <= b, with any limiting distribution

What is the probability that a measurement falls within one standard deviation if the f(x) is Gaussian?

 $Prob(within \sigma) = \int_{X-\sigma}^{X+\sigma} f(X) dX = \int_{X-\sigma}^{X+$

f(x)

The standard deviation as 68% confidence limit

Prob(within
$$\sigma$$
) = $\int_{X-\sigma}^{X+\sigma} G_{X,\sigma}(x) dx$
= $\frac{1}{\sigma\sqrt{2\pi}} \int_{X-\sigma}^{X+\sigma} e^{-(x-X)^2/2\sigma^2} dx$

substituting $(x - X)/\sigma = z$.

Prob(within
$$\sigma$$
) = $\frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-z^2/2} dz$.

The standard deviation as 68% confidence limit

Prob(within
$$\sigma$$
) = $\frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-z^2/2} dz$.

More generally, what is the probability a measurement falls within t*sigma?

Prob(within
$$t\sigma$$
) = $\frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^2/2} dz$

The error function

Prob(within
$$t\sigma$$
) = $\frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^2/2} dz$

outside the range from x = 7 to 13?

t	0	0.25	0.5	0.75	1.0	1.25
t Prob (%)	0	20	38	55	68	79
Prob (with						
X	~ X			10 -	- 7	

Quick Check 5.4. The measurements of a certain distance x are distributed normally with X = 10 and $\sigma = 2$. What is the probability that a single measurement will lie between x = 7 and x = 13? What is the probability that it will lie

- Summary of what we've discussed so far: > 'limiting distribution' is the distribution is infinite measurements were taken
 - > we call this 'limiting distribution' f(x) > if f(x) is known (or approximated) we can directly calculate mean and standard deviation from f(x) alone > if the distribution is normal, than the mean x corresponds to the 'true value' (center) of the distribution

Main problem: we never actual know f(x), and in practice only have a finite number of measurements and our problem is to find the best estimate based on these!

Maximum likelihood estimator

 x_1, x_2, \ldots, x_N , data points

$$Prob(x between x_1 i x_1 + dx_1) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x_1 - x_1)^2/2\sigma^2} dx_1$$

$$Prob(x_1) \propto \frac{1}{\sigma} e^{-(x_1 - x_1)^2/2\sigma^2}$$

$$Ve \quad an \quad do \quad this \quad for \quad all \quad measured f$$

$$Prob(x_2) \propto \frac{1}{\sigma} e^{-(x_2 - \overline{x})^2/2\sigma^2} Prob(x_N) - -$$

Suppose we know the 'center' and 'width' parameters of a Gaussian that describes our finite set of data points

We can estimate the probability of observing x_1 given our Gaussian parameters : TT12 / -

The Principle of Maximum Likelihood

We can estimate the probability of obtaining each of the readings, x_1, x_2 ... x_n: = $Prob(x_1) \times Prob(x_2) \cdots Prob(x_n)$ $(N) d \sigma^{N} P$

$$P_{rob} X, \sigma (X_1, \dots, X_n)$$

or

$$Prob_X, \sigma(X_1 - - X$$

In reality, the Gaussian parameters X and sigma can not be known!

By iteratively adjusting X and sigma to maximize the probability of observing the data we can get a good estimate of X and sigma from our data points!

Maximum likelihood estimator: summary

Given: N observations, x_1, x_2 ... x_n Find: X and Sigma, expected value (mean) and standard deviation of the limiting distributions

The best estimate, maximizes the following probability: $Prob_{X,\sigma}(x_1,\ldots,x_N) \propto \frac{1}{\sigma^N} e^{-\sum (x_i-X)^2/2\sigma^2}$

mle

Maximum likelihood estimates

MATLAB MLE function

Syntax

```
phat = mle(data)
phat = mle(data,Name,Value)
[phat,pci] = mle( )
```

R2022b collapse all in page

Justification of mean as the best estimate

 $Prob_{X,\sigma}(x_1,\ldots,x_N) \propto \frac{1}{\sigma^N} e^{-\sum (x_i - X)^2/2\sigma^2}$ When is this maximum? $\sum_{i=1}^{n} (x_i - X)^2 / \sigma^2$ When is this minimum? i = 1

differentiate with respect to x, set to zero:

$$\sum_{i=1}^{N} (x_i - X) = 0$$

when sum term is minimum!

This proves that the mean is the best estimate if the limiting distribution is Gaussian!

Justification of mean as the best estimate

We can use same arguments for sigma:

$= \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}.$
$= \sqrt{\frac{1}{x^2} + \frac{x^2}{x^2}}$
$= \sqrt{\frac{1}{N-1}\sum_{i=1}^{N} (x_i - \bar{x})^2}.$
$= \sqrt{\frac{1}{x_i} + \frac{N}{2}} (x_i - \overline{x})^2.$
$= \sqrt{\frac{1}{x_i} + \frac{N}{2}} (x_i - \overline{x})^2.$
$= \sqrt{\frac{1}{x_i} + \frac{N}{x_i}} (x_i - x)^2.$
$= \sqrt{\frac{1}{x^2}} + \sum_{i=1}^{N} (x_i - \bar{x})^2$
$= \sqrt{\frac{1}{x_i} + \frac{N}{x_i}} (x_i - \overline{x})^2.$
$= \sqrt{\frac{1}{1}} + \sum_{i=1}^{N} (x_i - x)^2$
$= \sqrt{\frac{1}{x_i}} + \sum_{i=1}^{N} (x_i - x)^2$
$x(\frac{1}{x}+\frac{1}{x})^2$
$= \sqrt{\frac{1}{1} + \frac{1}{2}} (x_i - x)^2$
$= \sqrt{\frac{1}{1} + \frac{1}{2}} \sum (x_i - x)^2$
$= \sqrt{\frac{1}{2}} (x_i - \overline{x})^2$
$= (x_i - \overline{x})^2$
$= \sqrt{\frac{1}{1}} \frac{1}{2} (x_i - x)^2$
$X_{i} = Z_{i} X_{i} = X_{i}$
anne ein nie ein stellte in die ein an ein ein ein ein ein ein eine ein eine eine eine eine eine eine eine eine
and the set of the lot of the set and set and the set of the set o
states and the second s
NOT A 12 LOW LOW AND
static structure and the lot of the state and has been shown and the state
the set of
the set was not been and the set of the
THEY REPORT FOR MER AND THE REPORT OF THE PARTY OF THE REPORT OF THE WAY AND
A CALLER AND A DE ME ME ME ME ME ME ME ME ME AN
the first term and the first and with they and with \$10.000 for more and they are not the one and the other more and the state of the s
A 1 IS THE THE CAR AND THE THE REAL PROPERTY AND
····································
医白豆 化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯
· · · · · · · · · · · · · · · · · · ·
The state of the local state of the local state of the st

Let's revisit our previous uncertainty estimate with our new framework

width (sigma) doesn't change!

Sx Sx

A is a fixed number with no uncertainty

 $\rightarrow x$ (measured)

x is our measurement, but q is our experimental outcome, e.g., we need an uncertainty measure of q from x

= x + A (calculated)

Let's revisit our previous uncertainty estimate with our new framework

new sigma after B is B*sigma!

where B is a fixed number

x

q = Bx

$$\sigma = B \cdot \sigma_{x}$$

Let's revisit our previous uncertainty estimate with our new framework

both x and y have their own sigmas

Standard Deviation of the Mean

$$\sigma_{\overline{x}} = \sigma_x / \sqrt{N}$$
 recards of under the set of th

all that the SDM is best estimate ncertainty from N measurements

dth
$$\sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{10}}$$

Summary

If we measure a quantity x many times, the mean of the measurements corresponds to our best estimate, and the standard deviation of the mean a measure of our uncertainty

(value of x) = $\overline{x} \pm \sigma_{\overline{x}}$,

This statement means: we expect 68% of measurements, take in the same way, to fall within our estimated value

Using the Gaussian framework, we can now calculate probabilities directly. You can use this to determine if a 'discrepancy' is significant or not. Roughly, this is how 'p-values' or significance is calculated is practice.