ME170b Lecture 6

Experimental Techniques

Last time:

> Normal Distribution

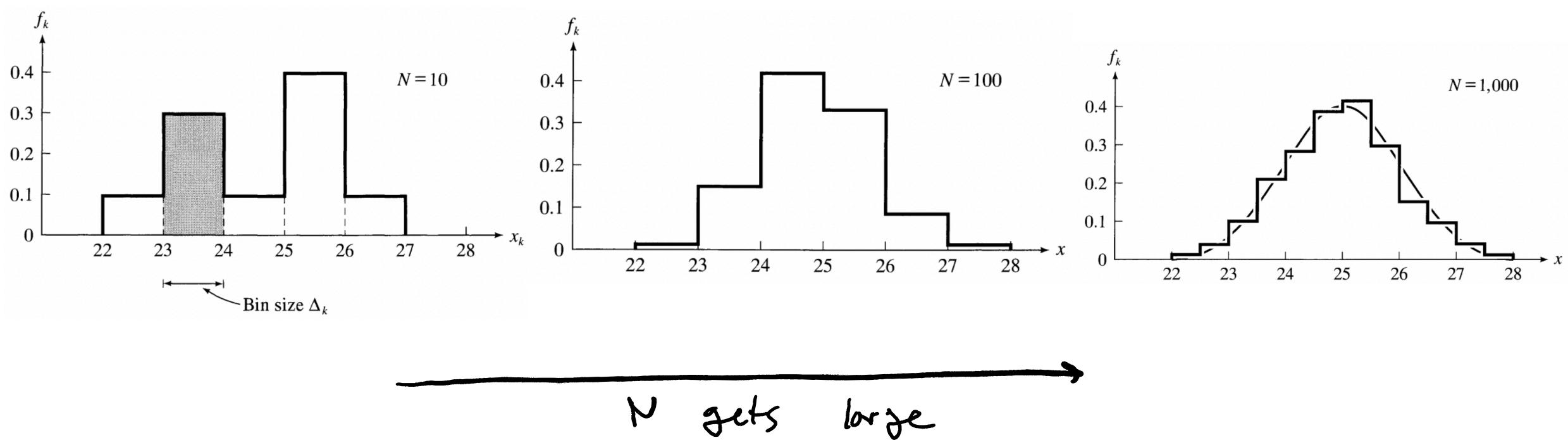
3/1/24

Today:

> Ch.6/7/8

> Rejection of data> Weighted Averages> Least Squares (start)

Last time: Limiting Distributions



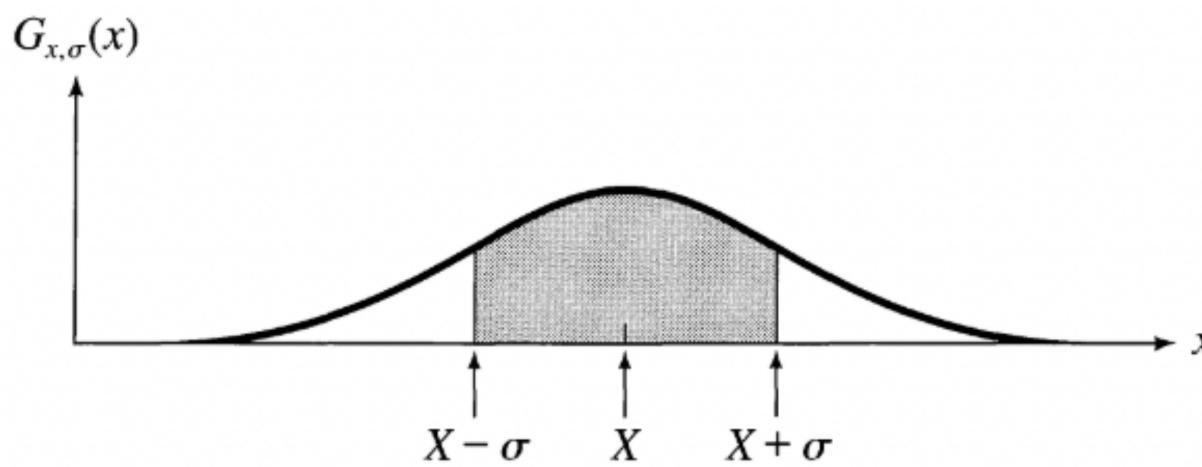
Key Idea: As N-> infinity, the distribution approaches a definite, continuous curve — this curve is called the "limiting distribution"

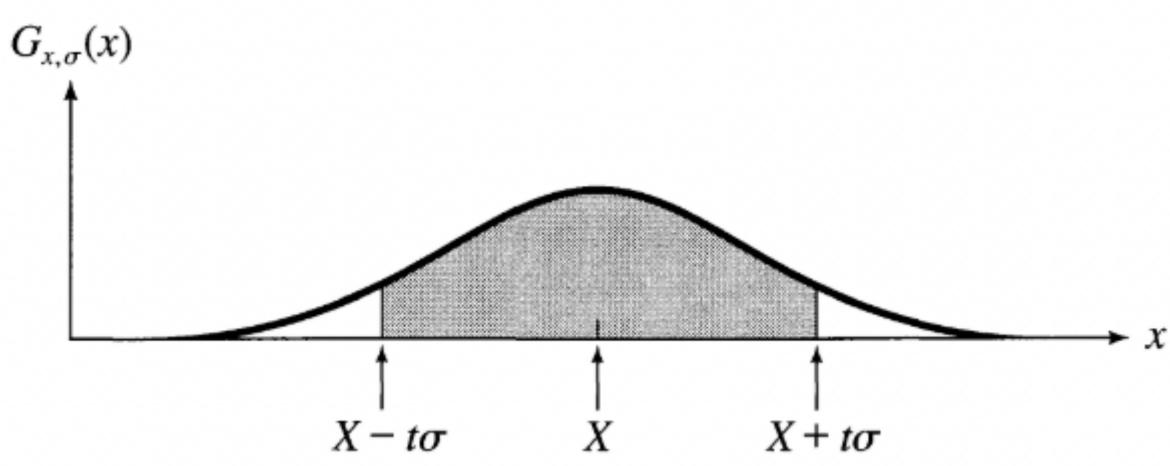
The standard deviation as 68% confidence limit

Prob(within σ) $\neq \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-z^2/2} dz$.

More generally, what is the probability a measurement falls within t*sigma?

Prob(within
$$t\sigma$$
) = $\frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^2/2} dz$





Gaussian probability table

		Pro	le A. The b(within to function o	$f(x) = \int_{X-1}^{X+1} f(x) dx$	-				tσ	x	X+tσ	
b (with to)		t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.01	0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
	0.0	0.1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
		0.2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
		0.3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
		0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
		0.5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
	1	0.6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
1 $205 - 1$		0.7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
1 1 1 1 1 1 1 1 1 1	<u> </u>	0.8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
(within 2.050)		0.9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78
		1.0	68.27	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
		1.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60
		1.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29
		1.3 1.4	80.64 83.85	80.98 84.15	81.32 84.44	81.65 84.73	81.98 85.01	82.30 85.29	82.62 85.57	82.93 85.84	83.24 86.11	83.55 86.38
	\mathbf{V}	1.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12		88.59	88.82
	V	1.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90
		1.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65
		1.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12
		1.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34
		2.0	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34
		2.1	96.43	96.51		96.68	96.76		96.92	97.00	97.07	97.15
		2.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80
		2.3 2.4	97.86 98.36	97.91 98.40	97.97 98.45	98.02 98.49	98.07 98.53	98.12 98.57	98.17 98.61	98.22 98.65	98.27 98.69	98.32 98.72
		2.5	98.76	98.79	98.83	98.86	98.89	98.92	98.95	98.98	99.01	99.04
		2.6	99.07	99.09	99.12	99.15	99.17	99.20	99.22	99.24	99.26	99.29
		2.7	99.31	99.33	99.35	99.37	99.39	99.40	99.42	99.44	99.46	99.47
		2.8	99.49	99.50	99.52	99.53	99.55	99.56	99.58	99.59	99.60	99.61
		2.9	99.63	99.64	99.65	99.66	99.67	99.68	99.69	99.70	99.71	99.72
		3.0	99.73									
		3.5	99.95									
		4.0	99.994									
	-	4.5	99.9993									
	えい	5.0	99.99994									

0. ^v "

0.01

95.96%

Acceptability of a measurement Known theoretall value X-expt we mensure our vulue X-best Know X-best 13 How |X-brst - X-expl + = Prob (outside t signa) = 100 - Prob (within tsigna) if Probloutide triam) < [5%, 1%, 0.1%]

Unacceptble

ナーナク

accepatble

Table A. The percentage probability, Prob(within $t\sigma$) = $\int_{x-t\sigma}^{x+t\sigma} G_{x,\sigma}(x) dx$,

is a	function of	of <i>t</i> .	10 4,0			<i>X</i> -	tσ	X	$X+t\sigma$	
t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
).1	7.97	8.76	9.55	10.34	11.13	11.92	12.71	13.50	14.28	15.07
).2	15.85	16.63	17.41	18.19	18.97	19.74	20.51	21.28	22.05	22.82
).3	23.58	24.34	25.10	25.86	26.61	27.37	28.12	28.86	29.61	30.35
).4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36.88	37.59
).5	38.29	38.99	39.69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
).6	45.15	45.81	46.47	47.13	47.78	48.43	49.07	49.71	50.35	50.98
).7	51.61	52.23	52.85	53.46	54.07	54.67	55.27	55.87	56.46	57.05
).8	57.63	58.21	58.78	59.35	59.91	60.47	61.02	61.57	62.11	62.65
).9	63.19	63.72	64.24	64.76	65.28	65.79	66.29	66.80	67.29	67.78
.0	68.27	68.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
.1	72.87	73.30	73.73	74.15	74.57	74.99	75.40	75.80	76.20	76.60
.2	76.99	77.37	77.75	78.13	78.50	78.87	79.23	79.59	79.95	80.29
.3	80.64	80.98	81.32	81.65	81.98	82.30	82.62	82.93	83.24	83.55
.4	83.85	84.15	84.44	84.73	85.01	85.29	85.57	85.84	86.11	86.38
.5	86.64	86.90	87.15	87.40	87.64	87.89	88.12	88.36	88.59	88.82
.6	89.04	89.26	89.48	89.69	89.90	90.11	90.31	90.51	90.70	90.90
.7	91.09	91.27	91.46	91.64	91.81	91.99	92.16	92.33	92.49	92.65
.8	92.81	92.97	93.12	93.28	93.42	93.57	93.71	93.85	93.99	94.12
.9	94.26	94.39	94.51	94.64	94.76	94.88	95.00	95.12	95.23	95.34
0.2	95.45	95.56	95.66	95.76	95.86	95.96	96.06	96.15	96.25	96.34
.1	96.43	96.51	96.60	96.68	96.76	96.84	96.92	97.00	97.07	97.15
.2	97.22	97.29	97.36	97.43	97.49	97.56	97.62	97.68	97.74	97.80
.3	97.86	97.91	97.97	98.02	98.07	98.12	98.17	98.22	98.27	98.32
.4	98.36	98.40	98.45	98.49	98.53	98.57	98.61	98.65	98.69	98.72
.5	98.76	98.79	98.83	98.86	98.89	98.92	98.95	98.98	99.01	99.04
.6	99.07	99.09	99.12	99.15	99.17	99.20	99.22	99.24	99.26	99.29
.7	99.31	99.33	99.35	99.37	99.39	99.40	99.42	99.44	99.46	99.47
.8	99.49	99.50	99.52	99.53	99.55	99.56	99.58	99.59	99.60	99.61
.9	99.63	99.64	99.65	99.66	99.67	99.68	99.69	99.70	99.71	99.72
.0	99.73									
.5	99.95									
0.	99.994									
.5	99.9993									

99.99994

Maximum likelihood estimator

$$x_1, x_2, .$$

Prob(x between x_1 and x_1 +

$$Prob(x_2) \propto \frac{1}{\sigma} e^{-(x_2 - X)^2/2\sigma^2}$$

$\dots, x_N, \text{ data points}$

Suppose we know the 'center' and 'width' parameters of a Gaussian that describes our finite set of data points

We can estimate the probability of observing x_1 given our Gaussian parameters :

$$dx_1) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x_1 - X)^2/2\sigma^2} dx_1.$$

 $Prob(x_1) \propto \frac{1}{\sigma} e^{-(x_1-X)^2/2\sigma^2}$

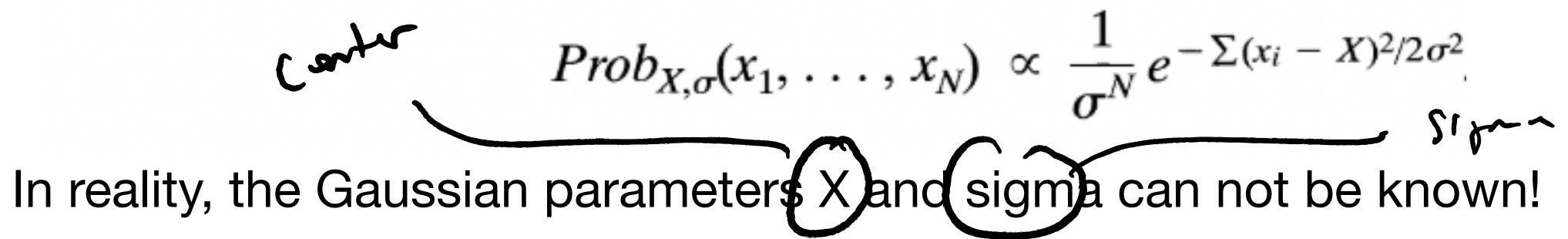
We can do the same for x_2 ... x_n:

$$Prob(x_N) \propto \frac{1}{\sigma} e^{-(x_N - X)^2/2\sigma^2}$$

Maximum likelihood estimator

$$Prob_{X,\sigma}(x_1,\ldots,x_N)$$

or



By iteratively adjusting X and sigma to maximize the probability of observing the data we can get a good estimate of X and sigma from our data points!

- We can estimate the probability of obtaining each of the readings, x_1, x_2 ... x_n:
 - $= Prob(x_1) \times Prob(x_2) \times \ldots$

Maximum likelihood estimator: summary

Given: N observations, x_1, x_2 ... x_n Find: X and Sigma, expected value (mean) and standard deviation of the limiting distributions

The best estimate, maximizes the following probability: $Prob_{X,\sigma}(x_1,\ldots,x_N) \propto \frac{1}{\sigma^N} e^{-\sum (x_i-X)^2/2\sigma^2}$

mle

Maximum likelihood estimates

Syntax

```
phat = mle(data)
phat = mle(data,Name,Value)
[phat,pci] = mle( )
```


Rejection of Data - Ch.6

What wrong here?

3.8, 3.5, 3.9. 3.9, 3.4, 1.8

Q: what to do about it?

Rejection of Data

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

Let's calculate our an estimate of x with and without the "outlier"

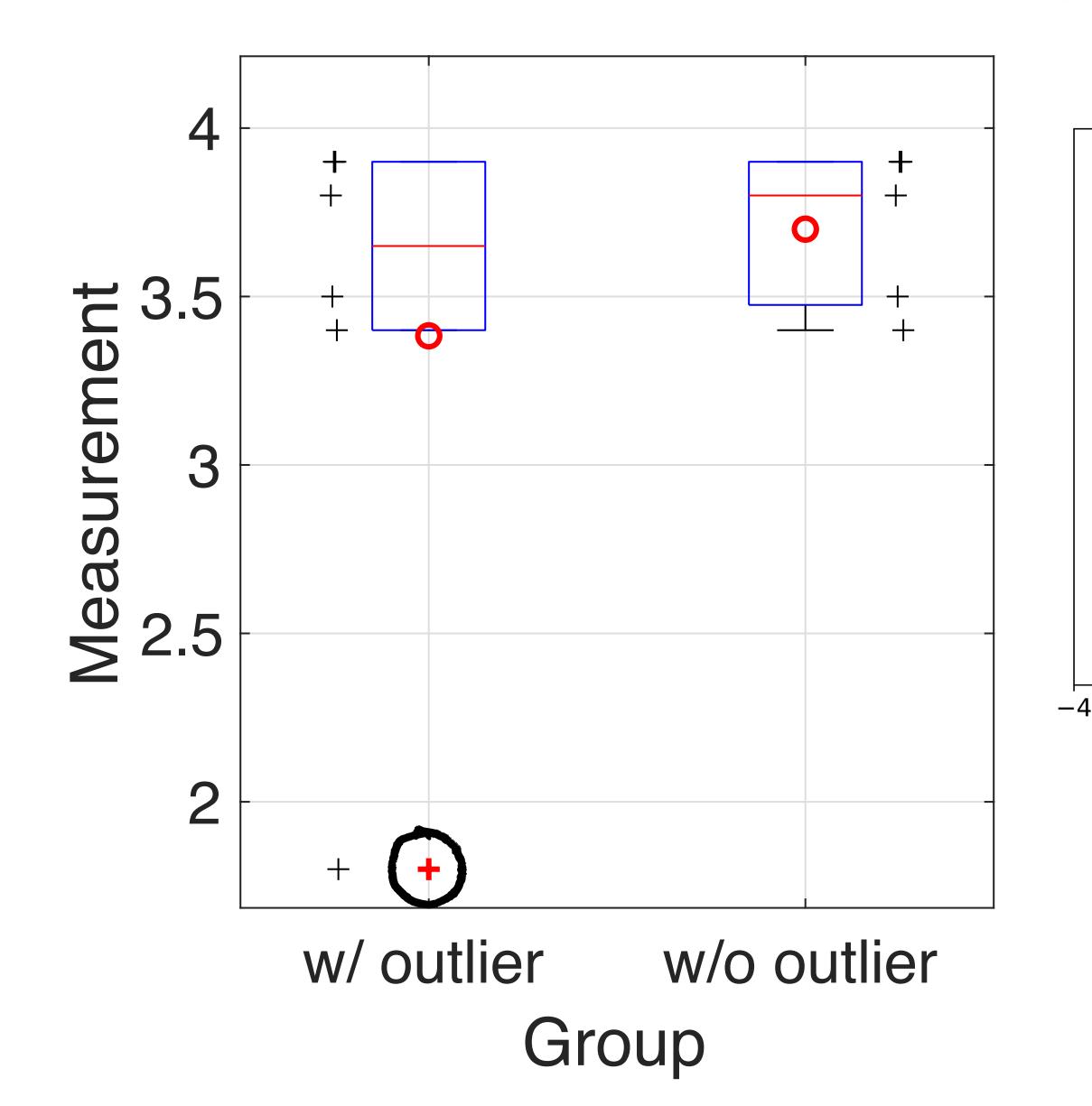
 $\int_{0}^{1} \int_{0}^{1} \int_{0$

These are significantly different!

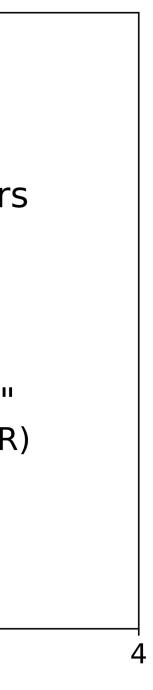
$$mean = 3.7$$

$$sigma = 0.2$$

$$v/o$$



3.8, 3.5, 3.9. 3.9, 3.4, 1.8 Interquartile Range (IQR) Outliers Outliers **V** \bigcirc "Minimum" "Maximum" Median Q3 (Q1 - 1.5*IQR) (Q3 + 1.5*IQR)Q1 (25th Percentile) (75th Percentile) -2 -3 $^{-1}$ 3 2 0



Rejection of Data

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

What should we do about it?

When should an experimenter "reject data"?

Controversial topic!

- Some experiments think you should never "remove" data - ultimately rejection of data is subjective!

Chauvenet's criterion: a means of assessing whether one piece of experimental data — an outlier — from a set of observations, is likely to be spurious

Chauvenet's criterion

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

Let's calculate the mean and std

X =	3.4	4
Ø,	= U.8	

What's the probability of obtaining the outlier measurement?

Prob(within
$$t\sigma$$
) = $\frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^2/2} dz$

$$3.4 - 1.8 = 1.6 = 20$$

 $Prsb(outside 25) = 1 - Prsb(uith 25)$
 0.95

= 0.05

Chauvenet's criterion

3.8, 3.5, 3.9, 3.9, 3.4, 1.8

What's the probability of obtaining the outlier measurement?

Prob(within $t\sigma$) = $\frac{1}{\sqrt{2\pi}} \int_{-t}^{t} e^{-z^2/2} dz$

 $3.4 - 1.8 = 1.6 = 2 \$

$$Prob(\text{outside } 2\sigma) = 1 - Prob(\text{within } 2\sigma)$$
$$= 1 - 0.95$$
$$= 0.05.$$

What does this mean? 5% of measurements should be as deviant as the outlier 1/20 measurements!

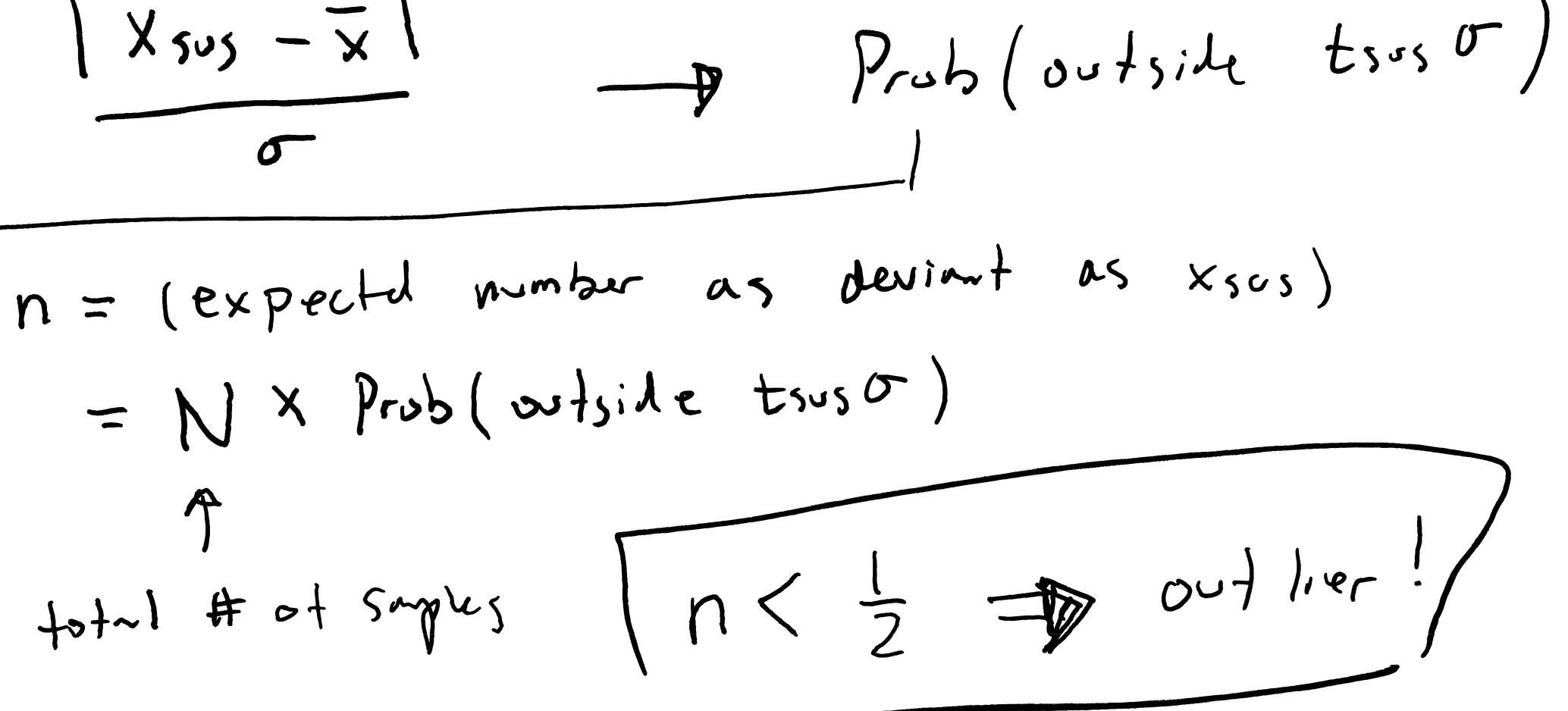
(the expected # of samples as deviat as 1.8) = N× Problatsile 20) $U \times 0.05 = 0.3$ we expect 0.3 samples a ! present as 1.9.

Chauvenet's criterion: main idea Set a probability boundary **6** decide if data is an outlier: if the expected <u>number of measure</u>ments at least as deviant as the suspect measurement is less than one-half. then the suspect measurement should be rejected. x_1, \ldots $t_{sus} = |X_{sus} - X|$ = N X Prob (outside trus 0)

total # of samples

$$, x_N$$

From all N measurements, you calculate \overline{x} and σ_{r}



Chauvenet's criterion: what to do if you have an outlier?

mean, with an uncertainty equal to the new SDOM.

If you do decide to reject x_{sus} , you would naturally recalculate \overline{x} and σ_x using just the remaining data; in particular, your final answer for x would be this new

Chauvenet's criterion: example $\overline{x} = 45.8$ $\sigma_{\rm x}=5.1$

N = 10



46, 48, 44, 38, 45, 47, 58, 44, 45, 43 $t_{sus} = | x_{sus} - \overline{x} | = \overline{58 - 45.8} = 2.4$ Probloutside tous or) = 1 - Problouthin 2.40) 2.40 - 1 - 0.984 - 0.016 n = N x Prob (outside tous or) = |0x 0.016 = 0.16 $n < \frac{1}{2}$ rejett!! = 44.4 $\sigma_x = 2.9$

Discussion: this topic is still contentious

Let's think about the issues, what's wrong with 'rejecting data'

- the measurement in question is incorrect
- how much the questionable values affect your final conclusion.
- arbitrary.
- Perhaps even more important, unless you have made a very large number of uncertain.

Chauvenet's criterion should be used only as a last resort, when you cannot check your measurements by repeating them!

- some scientists believe that data should never be rejected without external evidence that

reasonable compromise is to use Chauvenet's criterion to identify data that could be considered for rejection; having made this identification, you could do all subsequent calculations twice, once including the suspect data and once excluding them, to see

- the choice of one-half as the boundary of rejection (in the condition that n < 5) is

measurements (N ~ 50, say), the value of sigma, is extremely uncertain as an estimate for the true standard deviation of the measurements – number t_sus in (6.4) is very

Weigted Averages – CH. 7

Student A: $x = x_A \pm \sigma_A$

Student B: $x = x_B \pm \sigma_B$

How can we combine two or more separate and independent measurements of a single physical quantity?

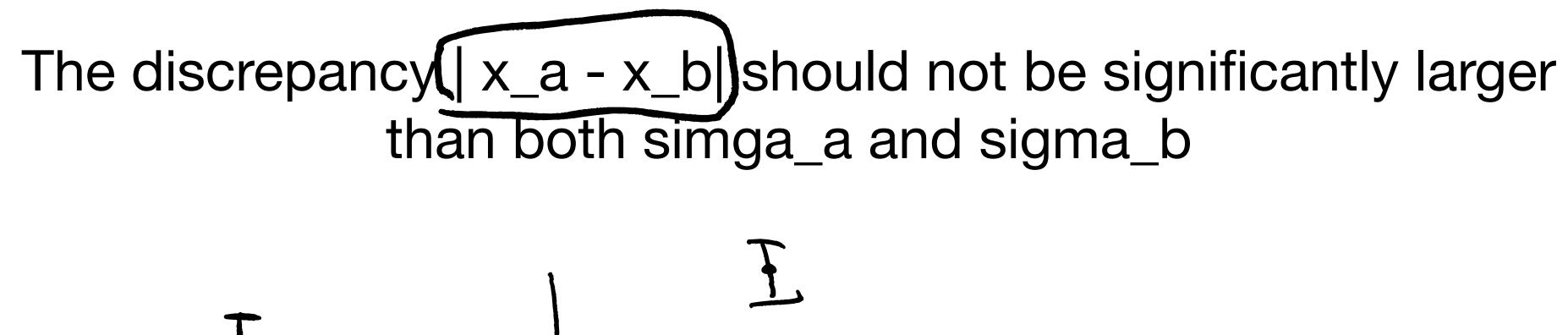
Before combining measurements must check consistency

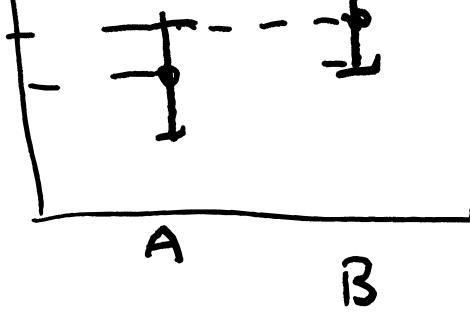
A

B

- Student A: $x = x_A \pm \sigma_A$
- Student B: $x = x_B \pm \sigma_B$

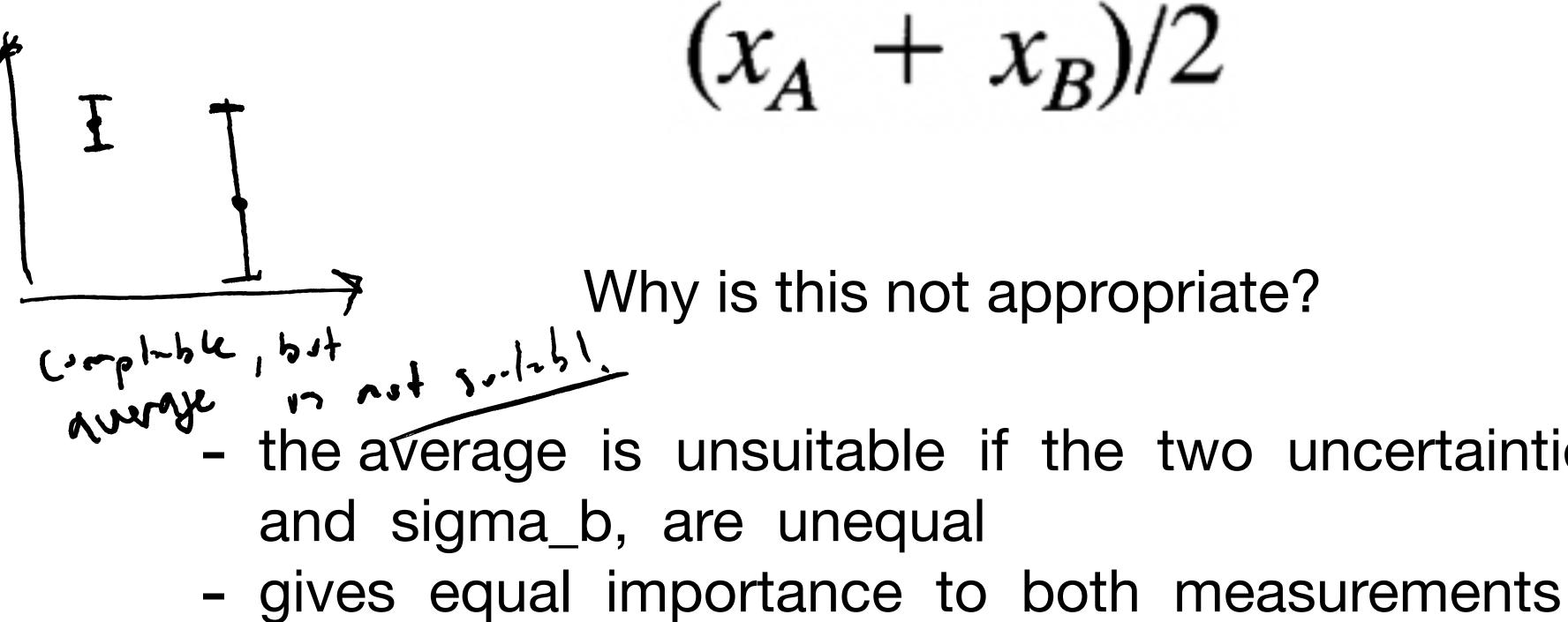
How?





than both simga_a and sigma_b

Naive approach — let's just average?



What if sigma_a << sigma_b — we should 'trust' x_a more then!

 $(x_A + x_B)/2$

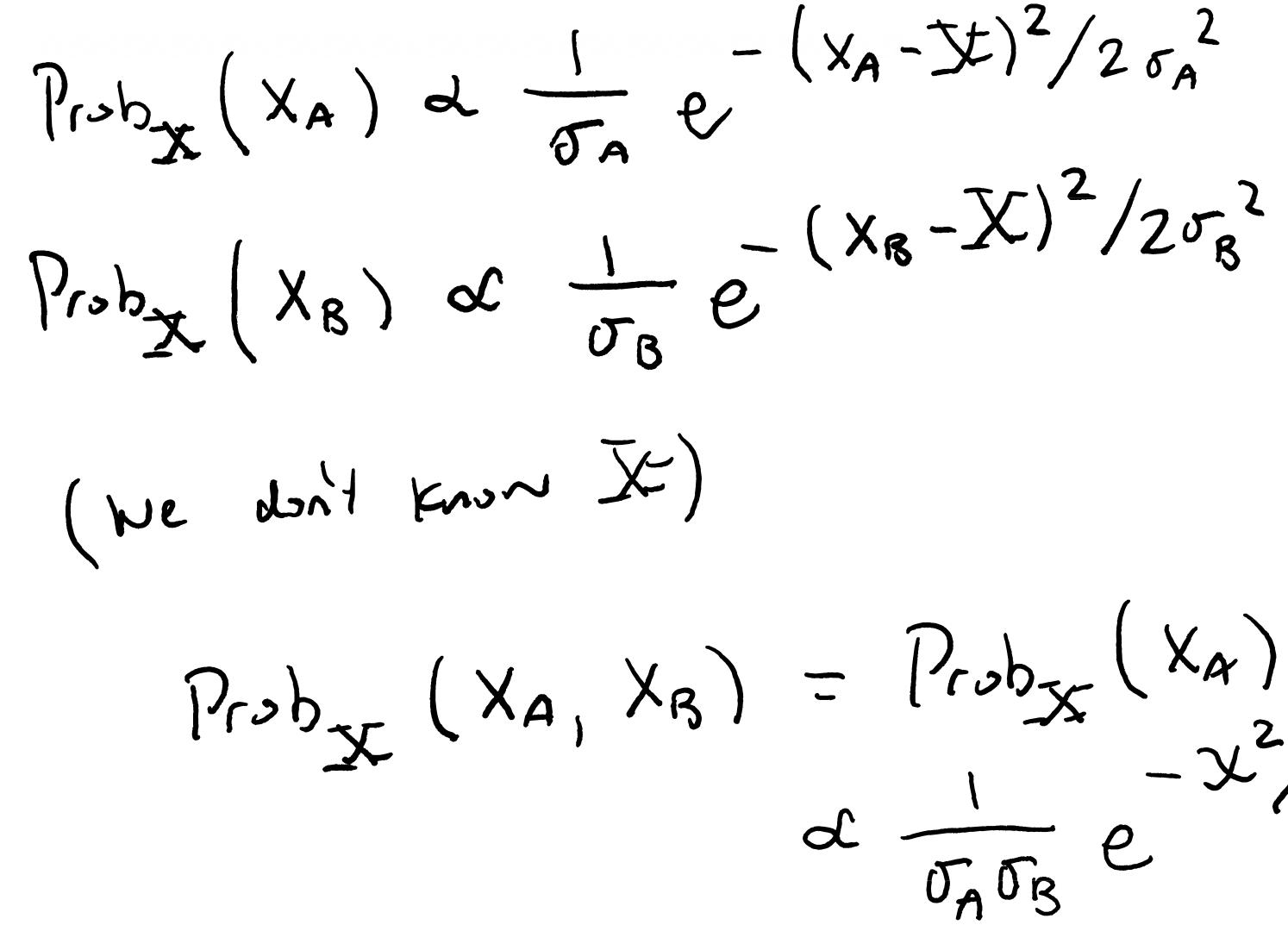
Why is this not appropriate?

- the average is unsuitable if the two uncertainties sigma_1,

We can use principles of maximum likelihood to solve this

assuming that both measurements are governed by the Gauss distribution

- errors are only random
- measurements are distributed normally



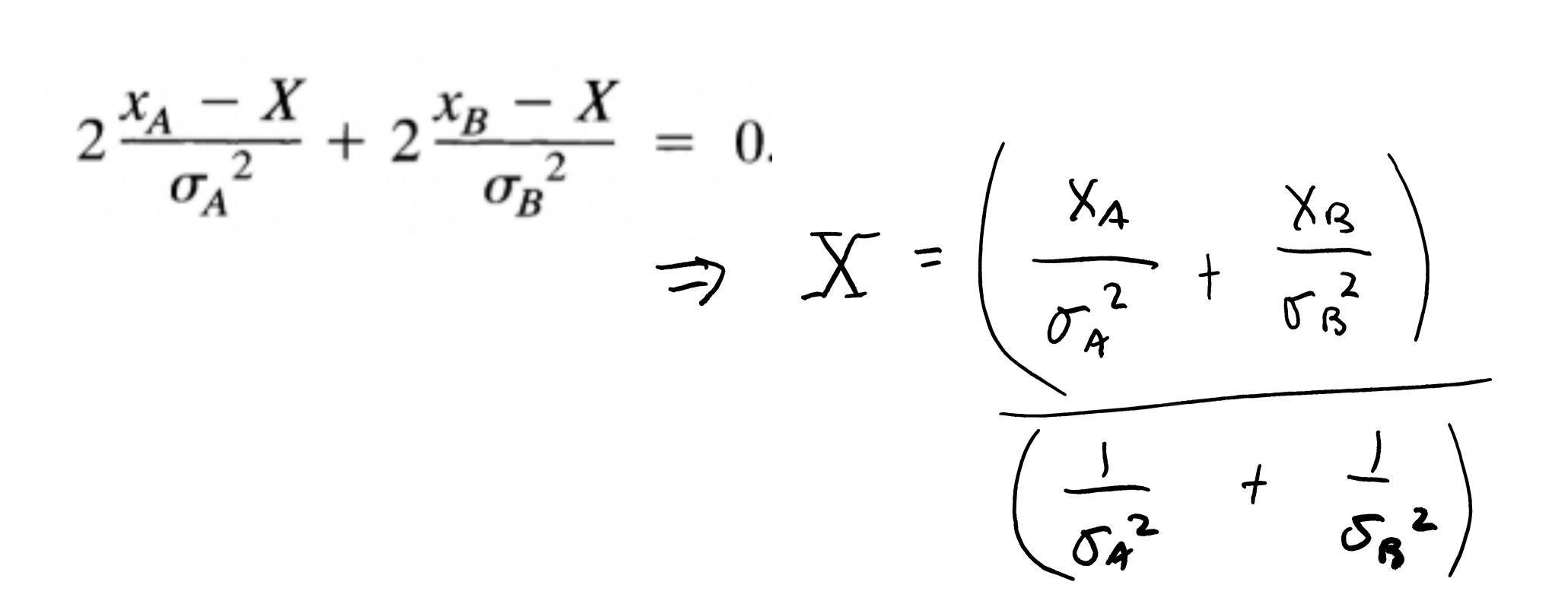
 $Prob_{X}(X_{A}, X_{B}) = Prob_{X}(X_{A}) - Prob_{X}(X_{B})$ $\propto \frac{1}{\sigma_{A}\sigma_{B}} e^{-\chi^{2}/2}$ $\chi^{2} = \left(\frac{X_{A}-Y}{\sigma_{A}}\right)^{2}, \left(\frac{X_{B}-X}{\sigma_{B}}\right)^{2}$

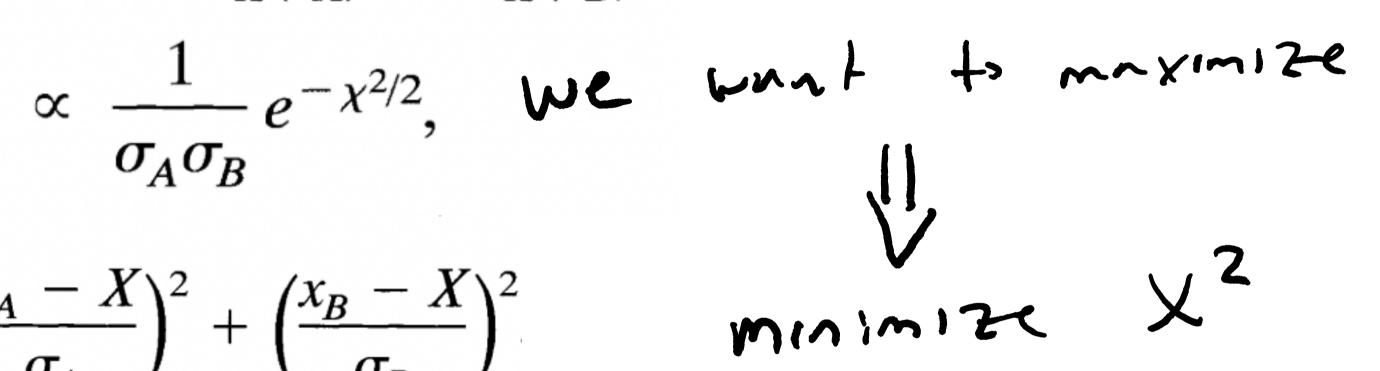
We can use principles of maximum likelihood to solve this

ML principle: our best estimate for the unknown true value X is that value for which the actual observations x_a and x_b are most likely

 $Prob_X(x_A, x_B) = Prob_X(x_A) Prob_X(x_B)$

$$\chi^2 = \left(\frac{x_A - X}{\sigma_A}\right)^2 + \left(\frac{x_B - X}{\sigma_B}\right)^2$$





We can use principles of maximum likelihood to solve this

(best estimate for X) = $\left(\frac{x_A}{\sigma_A^2} + \frac{x_B}{\sigma_A^2}\right)$

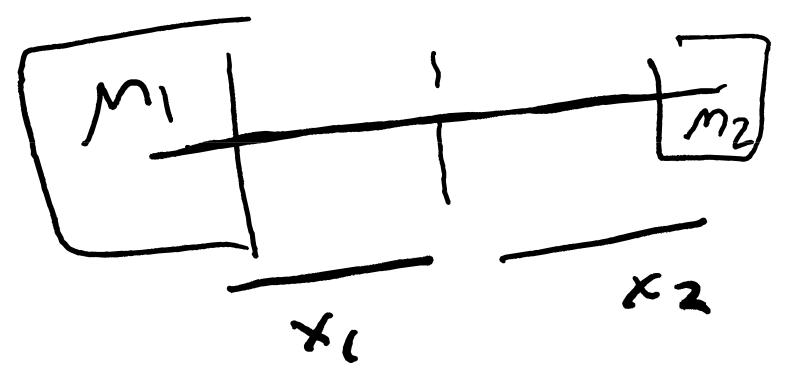
(best estimate for X) = x_{wav} =

 $w_A = \frac{1}{{\sigma_A}^2}$ and $w_B = \frac{1}{{\sigma_B}^2}$.

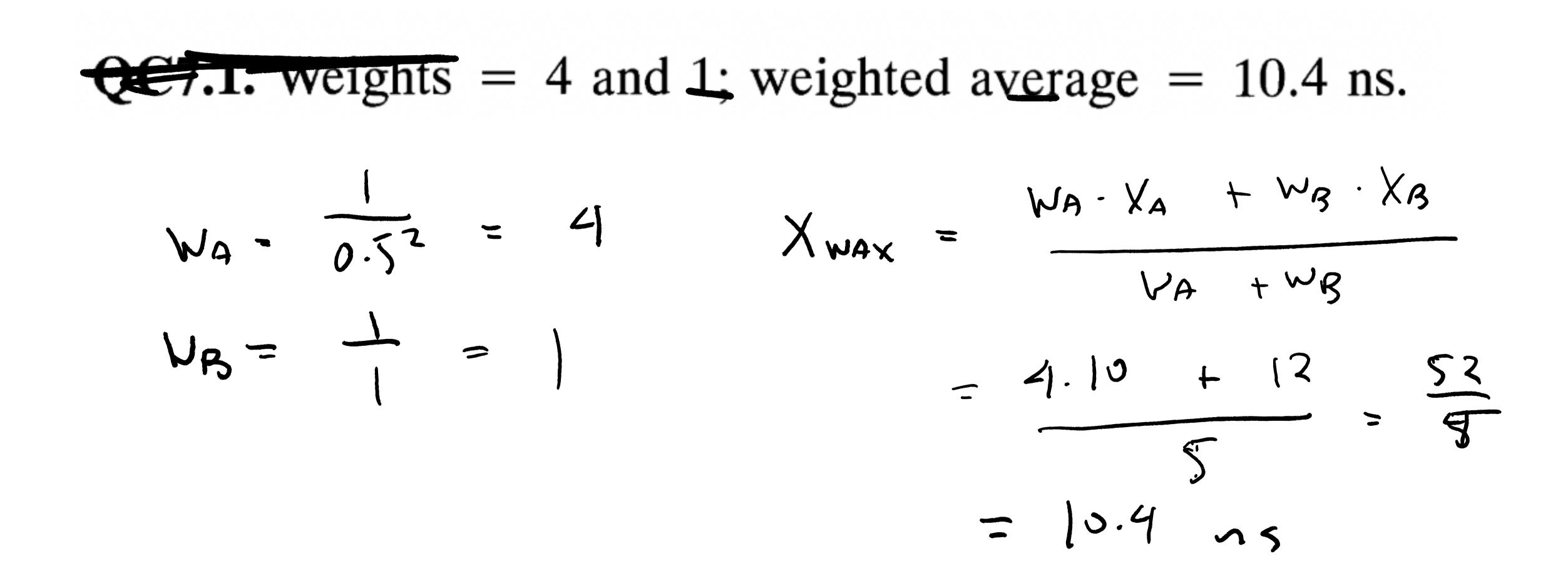
analogy: it is similar to the formula for the center of gravity of two bodies, where w_a, and w_b, are the actual weights of the two bodies, and x_a, and x_b, their positions.

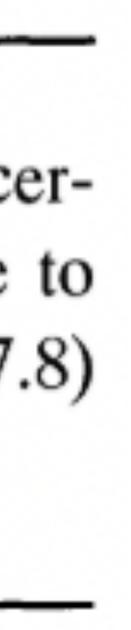
$$\frac{x_B}{\sigma_B^2}\bigg)\bigg/\bigg(\frac{1}{\sigma_A^2}+\frac{1}{\sigma_B^2}\bigg).$$

$$= \frac{w_A x_A + w_B x_B}{w_A + w_B}$$



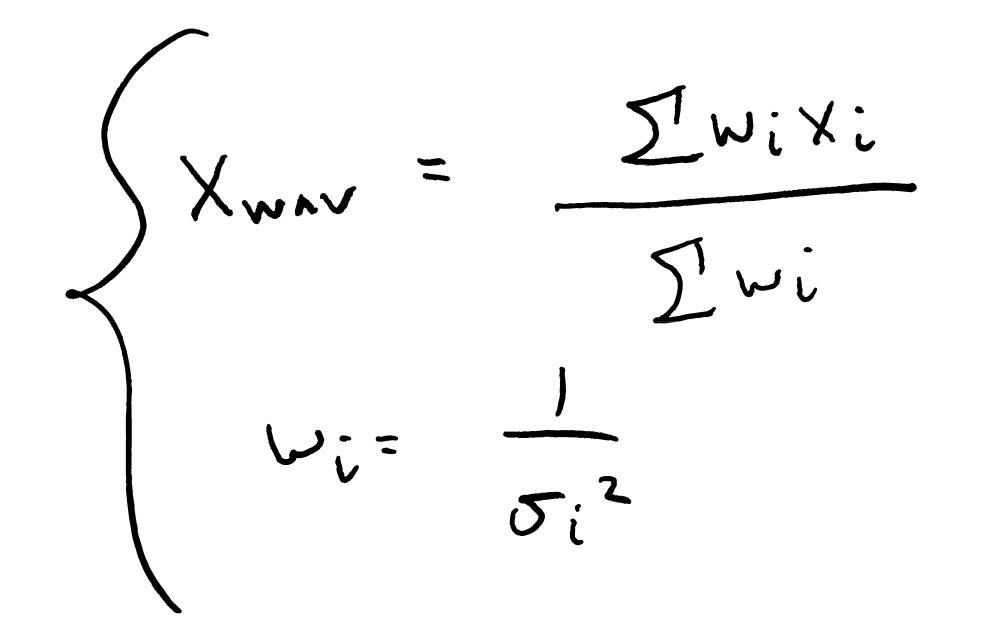
Quick Check 7.1. Workers from two laboratories report the lifetime of a certain particle as 10.0 ± 0.5 and 12 ± 1 , both in nanoseconds. If they decide to combine the two results, what will be their respective weights as given by (7.8) and their weighted average as given by (7.9)?





Easily generalizes for N measurements

 $x_1 \pm \sigma_1, \quad x_2 \pm \sigma_2, \ldots, \quad x_N \pm \sigma_N$



Uncertainty of the weighted average?

Because the weighted average is a function of the original measured values the uncertainty in x, can be calculated using error propagation.

Uncertainty of the weighted average?

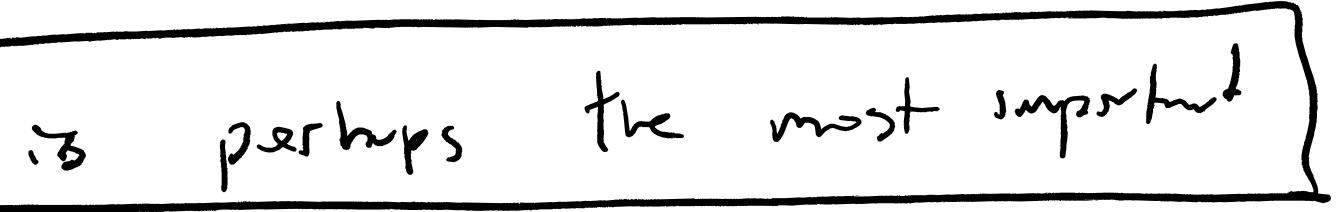
Because the weighted average is a function of the original measured values the uncertainty in x, can be calculated using error propagation.

Least-Squares — Ch.8

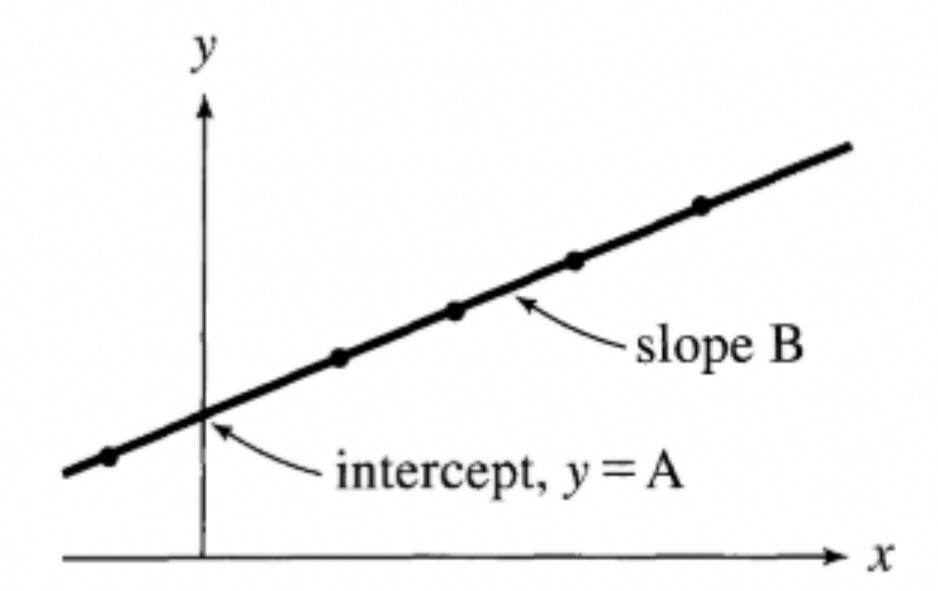
One of the most common and interesting types of experiment involves the measurement of several values of two different physical variables to investigate the mathematical relationship between the two variables.

7 S X

$$if measure for the second se$$

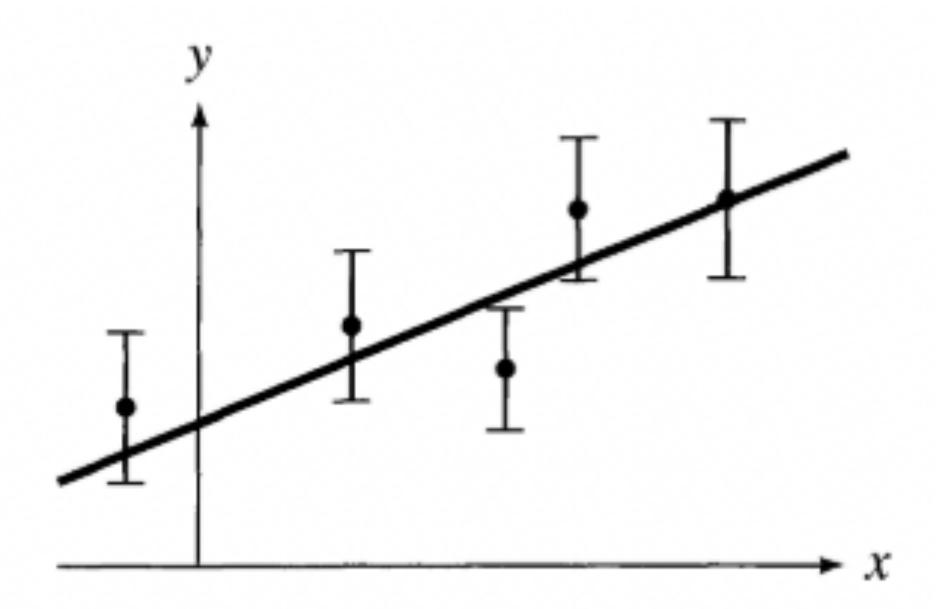


The least squares problem: how to find best fit?



No uncertainty — relationship is clear

Using principle of maximum likelihood we can find the best straight line to fit a series of experimental points. This is called linear regression, or the least-squares fit for a line



Uncertainty, we need a technique to find the 'best' line

What is the purpose?

y = A + Bx

- 1. We want to estimate the coefficients A and B
- 2. Another important determination is whether the data (x_i, y_i) rally are linear — "how well does the data fit our model?" (Ch.9)

How to estimate A and B? $(x_1, y_1), \ldots, (x_N, y_N)$

assume y suffer appreciable uncertainty, the uncertainty in our measurements of x is negligible.

$$(true unlue for $y_i) = A$
 $Prob_{A,B}(y_i) \propto \frac{1}{\sigma_y} e^{-(y_i - y_i)}$$$

let's use ML. first proceed as if we know A and B: + Bxi $-A-Bxi)^2 25y^2$ (fructs) $X = A + B \times i$ ProbAB (Vi YN) = ProbAB (Yi) · ProbAB (J2) ··· ProbAB (JN) $\frac{d}{\sigma_{x}} \frac{1}{e^{-\chi^{2}/2}} \qquad \chi^{2} = \sum_{i=1}^{N} (\frac{1}{2}i - A - B\chi_{i})^{2}$ [=1 Sz

