
ME170b Lecture 7 3/8/24

Experimental Techniques 

Today:


> Ch.9

  > Finish least squares


> correlation and covariance


Last time:


> Rejection of data

> Weighted Averages

> Least Squares




What is the purpose? 

1. We want to estimate the coefficients A and B


2. Another important determination is whether the data 
(x_i, y_i) rally are linear — “how well does the data fit 
our model?” (Ch.9)



How to estimate A and B?

assume y  suffer  appreciable  uncertainty,  the  uncertainty  in  our  
measurements  of  x  is  negligible. 

let’s use ML. first proceed as if we know A and B:

Best estimates of A and B maximize the probability, which corresponds to 
minimizing the CHI^2 term (hence least squares)



How to estimate A and B?

How to find and expression for the minimum?

Two unknowns, two equations!



How to estimate A and B?



How to estimate uncertainty in y?

Remember  that  the  numbers  y_1, y_2, … y_N  are  not  N  
measurements  of  the  same  quantity.  (They  might,  for  instance,  be  

the  times  for  a  stone  to  fall  from  N  different  heights.) 

The  measurement  of  each  y,  is  (we  are  assuming)  normally  distributed  about  
its  true  value  A  +  Bx,,  with  width  parameter  sigma. 



How to estimate uncertainty in A and B?

The uncertainties  in  A  and  B  are  given  by  simple  error  
propagation  in  terms  of  those  in  y_1 … y_N



Some caveats

1. What if the uncertainty of y is not equal for all measurements?

2. What if both  x  and  y  have  uncertainties

we  can  use  the  method  of  weighted  least  squares, 
(ex. in Prob. 8.9)

actually doesn’t make a bog difference



What if both  x  and  y  have  uncertainties

Assume error in x only

if  all  the  uncertainties  sigma_x,  are  equal,  the  same  is  true  of  
the  equivalent  uncertainties  simga_y(equiv).  



What if both  x  and  y  have  uncertainties

Now for the  case  that  both  x  and  y  have  uncertainties. 

If both x and y have uncertainties, we can combine in quadrature 
and replace with a single uncertainty 

The most complicated case is when each measurement x_i 
and y_i have their own uncertainties, then we need to use 

the equivalence and a weighted least squares 



We can use least squares to fit nonlinear curves!

polynomial

system of equations N+1 degree of poly



General case when least squares can fit

problems  in  which  the  function  y  =  f(x)  depends  
linearly  on  the  parameters  A, B, C, … 



Another look at least squares in matrix form

model: beta are our parameters

y and x measurements





Another look at least squares in matrix form



Another look at least squares in matrix form



Another look at least squares in matrix form

Solution is the ‘projection’ of the b on the space that matrix A spans





Another look at least squares in matrix form

Write the matrix X, Y, beta



Covariance and Correlation

First let’s review the principles of error propagation 

If we measuring  two  quantities  x  and  y  to  calculate  
some  function  q(x,  y):

our naive uncertainty

there  may  be  partial  cancellation  of  the  errors  in  x  and  y.

we can prove this

assuming Gaussians
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Covariance and Correlation
if  the  measurements  of  x  and  y  are  governed  

by  independent  normal  distributions,  with  
standard  deviations  sigma_x and  sigma_y  the  

values  of  q(x,  y)  are  also  normally  distributed,  
with  standard  deviation 

This  result  provides  the  justification  for  the  claim 

But what if we don’t meet the assumptions?  
does it still apply whether  or  not  the  errors  in  x  and  y  are  independent  and  

normally  distributed. 

Claim: the estimate always is upper bound estimate of uncertainty!



Recall STD

If  the  measurements  of  x  are  normally  distributed,  then  in  the  limit  that  N  is  
large,

simga_x  is  the  width  parameter 

If  the  underlying process is non-Gaussian — simga_x is still the STD, but this  
relationship  is  no  longer  available  to  us.



Covariance Propagation

Suppose  that  to  find  a  value  for  the  function  q(x,  y),  we  measure  
the  two  quantities  x  and  y  several  times,  obtaining  N  pairs  of  data,  

(x1, y1)…(xN, yN). 
We can still calculate:

 > mean x  and  sigma_x

 > mean y and sigma_y

 > mean q and sigma_q



Covariance Propagation

it  follows  from  the  definition  of  bar{x}  that  \sum(x_i  —  \bar{x})  =  0 



Covariance Propagation



Covariance Propagation

This  equation  gives  the  standard  deviation  sigma_q,  whether  or  not  the  
measurements  of  x  and  y  are  independent  or  normally  distributed.



Covariance Propagation

- If  the  measurements  of  x  and  y  are  not  independent,  the  
covariance  sigma_xy  is non zero. 


- if measurements are independent the covariance is zero

- When  the  covariance  is  not  zero  (even  in  the  limit  of  

infinitely  many  measurements,  we  say  that  the  errors  in  x  
and  y  are  correlated. 





Upper  limit  on sigma_q



Main Results on Covariance

naive estimate is 

still upper bound!


