ME170b Lecture 7

Experimental Techniques

Last time:

> Rejection of data> Weighted Averages> Least Squares

3/8/24

Today:

> Ch.9

- > Finish least squares
- > correlation and covariance

What is the purpose?

- 1. We want to estimate the coefficients A and B
- 2. Another important determination is whether the data (x_i, y_i) rally are linear — "how well does the data fit our model?" (Ch.9)

How to estimate A and B?
$$(x_1, y_1), \ldots, (x_N, y_N)$$

assume y suffer appreciable uncertainty, the uncertainty in our measurements of x is negligible.

let's use ML. first proceed as if we know A and B:

(true value for y_i) = $A + Bx_i$ $Prob_{A,B}(y_1, \dots, y_N) = Prob_{A,B}(y_1) \cdots Prob_{A,B}(y_N)$ $\propto \frac{1}{\sigma_y^N} e^{-\chi^2/2},$

How to estimate A and B?

 $\chi^2 = \sum_{i=1}^{N} \frac{(y_i - A - Bx_i)^2}{{\sigma_v}^2}$ How to find and expression for the minimum? $\frac{\partial \chi^2}{\partial A} = 0 \longrightarrow \frac{-2}{\sigma_y^2} \int_{i=1}^{N} (\lambda_i - A - B\lambda_i) = 0$ $\frac{\partial x^2}{\partial B} = 0 \longrightarrow \frac{-2}{\sigma g^2} \int_{i=1}^{M} x_i (y_i - \dot{A} - \dot{B} x_i)$ Solve Br BSSA

How to estimate A and B?

Ix2 Iy - Ix2 Ixy $\Delta = N \Sigma x^2 - (\Sigma x)^2$ R= NIX7 - ZXZY

How to estimate uncertainty in y?

$$\sigma_3 = \sqrt{\frac{1}{N} \frac{2}{4i} - A - R}$$

- Remember that the numbers $y_1, y_2, \dots y_N$ are not N measurements of the same quantity. (They might, for instance, be the times for a stone to fall from N different heights.)
- The measurement of each y, is (we are assuming) normally distributed about its true value A + Bx,, with width parameter sigma.

How to estimate uncertainty in A and B?

The uncertainties in A and B are given by simple error propagation in terms of those in y_1 ... y_N

Some caveats

1. What if the uncertainty of y is <u>not</u> equal for all measurements?

2. What if both x and y have uncertainties

actually doesn't make a bog difference

- we can use the method of weighted least squares, (ex. in Prob. 8.9)

What if both x and y have uncertainties

Assume error in x only

$\sigma_y(\text{equiv}) = \frac{dy}{dx} \sigma_x$

if all the uncertainties sigma_x, are equal, the same is true of the equivalent uncertainties simga_y(equiv).

$$\sigma_{v}(equiv) = B\sigma_{x}$$

What if both x and y have uncertainties

Now for the case that both x and y have uncertainties.

$\sigma_y(\text{equiv}) = \sqrt{2}$

If both x and y have uncertainties, we can combine in quadrature and replace with a single uncertainty

The most complicated case is when each measurement x_i and y_i have their own uncertainties, then we need to use the equivalence and a weighted least squares

$$\sigma_y^2 + (B\sigma_x)^2$$

We can use least squares to fit nonlinear curves!

General case when least squares can fit

 $y = \beta_1 x + \beta_0$ $y_i = \beta_1 x_i + \beta_0$ $\mathbf{Y} = \mathbf{X} \boldsymbol{\beta}$

model: beta are our parameters y and x measurements

 $\min_{\beta} ||\mathbf{Y} - \mathbf{X}\beta||^2 = \min_{\beta} \mathcal{J}$ $\mathcal{J} = (\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta)$ $= \mathbf{Y}^T \mathbf{Y} - 2\beta^T \mathbf{X}^T \mathbf{Y} - \beta^T \mathbf{X}^T \mathbf{X} \beta$

 $= \mathbf{Y}^T \mathbf{Y} - (\mathbf{X}\beta)^T \mathbf{Y} - \mathbf{Y}^T (\mathbf{X}\beta) + (\mathbf{X}\beta)^T (\mathbf{X}\beta)$

$$\beta^* = (\mathbf{X}^T)$$

Solution is the 'projection' of the b on the space that matrix (A) spans

$\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$

X

Geometric Interpretation OLS

$$\begin{aligned}
\mathcal{J} &= \beta_1 X + \beta_2 X^2 + \beta_0 \\
\mathcal{J} &= \begin{pmatrix} X_1 & X_1^2 & 1 \\ \vdots & \vdots & \vdots \\ X_N & X_N \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}
\end{aligned}$$

$$\begin{aligned} \mathcal{J} &= \mathcal{B}_{1} \sin(\mathbf{x}) + p_{2}^{\log}(\mathbf{x}) \\ \mathcal{J} &= \begin{bmatrix} \sin(\mathbf{x}_{1}) & \log(\mathbf{x}_{1}) \\ \vdots & \vdots \\ \sin(\mathbf{x}_{1}) & \log(\mathbf{x}_{n}) \end{bmatrix} \begin{bmatrix} \mathcal{B}_{1} \\ \mathcal{B}_{2} \end{bmatrix} \end{aligned}$$

$$y = \beta_1 \cos(x) +$$

Write the matrix X, Y, beta

 $-\beta_2 sin(\mathbf{x}) + \beta_3 x^2$

Covariance and Correlation

First let's review the principles of error propagation

If we measuring two quantities x and y to calculate some function q(x, y):

 $\delta_{T} \approx \left| \frac{\partial_{T}}{\partial x} \right| dx + \left| \frac{\partial_{T}}{\partial y} \right| dy$ "maine (ould canice) $\partial \gamma = \sqrt{\left(\frac{\partial \gamma}{\partial x} \partial x\right)^2 + \left(\frac{\partial \gamma}{\partial y} \partial z\right)^2}$ errors in x

Covariance and Correlation

First let's review the principles of error propagation

If we measuring two quantities x and y to calculate some function q(x, y):

$$\delta q \approx \left| \frac{\partial q}{\partial x} \right| \delta x + \left| \frac{\partial q}{\partial x} \right|$$

there may be partial cancellation of the errors in x and y.

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x}\,\delta x\right)^2} +$$

 $\frac{\partial q}{\partial v} \delta y$ our naive uncertainty

 ∂y

 $\left(\frac{\partial q}{\partial y}\delta_y\right)^2$, we can prove this assuming Gaussians

Covariance and Correlation

$$\delta q = \sqrt{\left(\frac{\partial q}{\partial x}\,\delta x\right)^2 + \left(\frac{\partial q}{\partial y}\,\delta y\right)^2} \qquad \text{if t} \\ \text{states} \\ \text{states}$$

$$\sigma_q = \sqrt{\left(\frac{\partial q}{\partial x} \,\sigma_x\right)^2 + \left(\frac{\partial q}{\partial y} \,\sigma_y\right)^2}.$$

This result provides the justification for the claim

- But what if we don't meet the assumptions? does it still apply whether or not the errors in x and y are independent and normally distributed.
 - Claim: the estimate <u>always</u> is upper bound estimate of uncertainty!

if the measurements of x and y are governed by independent normal distributions, with andard deviations sigma_x and sigma_y the values of q(x, y) are also normally distributed, with standard deviation las born reven it non-normal

Recall STD

 $\sigma_x^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$

If the measurements of x are normally distributed, then in the limit that N is large,

If the underlying process is non-Gaussian — simga_x is still the STD, but this relationship is no longer available to us.

simga_x is the width parameter

Covariance Propagation

We can still calculate: > mean x and sigma_x > mean y and sigma_y > mean q and sigma_q

Suppose that to find a value for the function q(x, y), we measure the two quantities x and y several times, obtaining M pairs of data, (x1, y1)...(xN, yN).

Covariance Propagation $q_i = q(x_i, y_i)$ L S. Zi 97 $J(X, \overline{J}) + ($ - *3* M

Covariance Propagation $\sigma_q^2 = \frac{1}{N} \sum (q_i - \overline{q})^2$ $= \left(\frac{\partial F}{\partial x}\right)^2 \frac{1}{N} \sum \left[\left(\frac{1}{X_i} - \frac{1}{X}\right)^2 + \left(\frac{\partial F}{\partial x}\right)^2 \frac{1}{N} \sum \left[\left(\frac{1}{X_i} - \frac{1}{X}\right)^2\right]$ $+2\frac{\partial b}{\partial x}\frac{\partial v}{\partial y}\left[\frac{1}{N}\sum_{i}(x_{i}-\overline{x})(y_{i}-\overline{y})\right]$ $\sigma_{q}^{2} = \left(\frac{\partial \gamma}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial \gamma}{\partial y}\right)^{2} \sigma_{y}^{2} + 2\frac{\partial \gamma}{\partial x} \frac{\partial \gamma}{\partial y} \sigma_{x}^{2}$

Covariance Propagation

This equation gives the standard deviation sigma_q, whether or not the measurements of x and y are independent or normally distributed.

Covariance Propagation

- If the measurements of x and y are not independent, the covariance sigma_xy is non zero.
- if measurements are independent the covariance is zero
- When the covariance is not zero (even in the limit of infinitely many measurements, we say that the errors in x and y are correlated.

Example: Two Angles with a Negative Covariance

Each of five students measures the same two angles α and β and obtains the results shown in the first three columns of Table 9.1.

Table 9.1. Five measurements of two angles α and β (in degrees).

Student	ά	β	$(\alpha - \overline{\alpha})$	$(\beta - \overline{\beta})$	$(\alpha - \overline{\alpha})(\beta - \overline{\beta})$	
Α	35	50	2	-2	-4	
В	31	55	-2	3	-6	
С	33	51	0	-1	0	
D	32	53	-1	1	-1	
Ε	34	51	1	-1	-1	
	$\sigma_{\alpha\beta} =$	J N	J (d-	J)(B-	$-\overline{B}) = \frac{1}{5}$	(-12)
						2.4

Upper limit on sigma_q

$$\sigma_q^2 \leq \left(\frac{\partial q}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial q}{\partial y}\right)^2 \sigma_y^2 + 2 \left|\frac{\partial q}{\partial x}\right|^2$$
$$= \left[\left|\frac{\partial q}{\partial x}\right|\sigma_x + \left|\frac{\partial q}{\partial y}\right|\sigma_y\right]^2;$$

Schwarz inequality $|\sigma_{xy}| \leq \sigma_x \sigma_y$

$\frac{\partial q}{\partial x} \frac{\partial q}{\partial y} \bigg| \sigma_x \sigma_y$

Main Results on Covariance

 $\delta q \approx \left| \frac{\partial q}{\partial x} \right| \delta x + \left| \frac{\partial q}{\partial y} \right| \delta y$

naive estimate is still upper bound!