ME170b Lecture 7

Experimental Techniques

Last time:
> Rejection of data
$>$ Weighted Averages
> Least Squares

Today:
$>$ Ch. 9
$>$ Finish least squares
$>$ correlation and covariance

What is the purpose?

$$
y=A+B x \leftarrow \text { fit twe }
$$

1. We want to estimate the coefficients A and B
2. Another important determination is whether the data (x_i, y_i) rally are linear - "how well does the data fit our model?" (Ch.9)

How to estimate A and B ?

$\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$

assume y suffer appreciable uncertainty, the uncertainty in our measurements of x is negligible.
let's use ML. first proceed as if we know A and B :
(true value for y_{i}) $=A+B x_{i}$

$$
\operatorname{Prob}_{A, B}\left(y_{i}\right) \propto \frac{1}{\sigma_{y}} e^{-\left(y_{i}-A-B x_{i}\right)^{2} / 2 \sigma_{y} y^{2}}
$$

$\operatorname{Prob}_{A, B}\left(y_{1}, \ldots, y_{N}\right)=\operatorname{Prob}_{A, B}\left(y_{1}\right) \cdots \operatorname{Prob}_{A, B}\left(y_{N}\right)$

$$
\propto \frac{1}{\sigma_{y}^{N}} e^{-x^{2 / 2}},
$$

Best estimates of A and B maximize the probability, which corresponds to minimizing the $\mathrm{CHI} \wedge 2$ term (hence least squares)

minimize

maximize $R_{r o b}\left(y_{1} \cdots y_{n}\right)$

How to estimate A and B ?
$\chi^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-A-B x_{i}\right)^{2}}{\sigma_{y}{ }^{2}} \quad$ How to find and expression for the minimum?

$$
\begin{aligned}
& \frac{\partial x^{2}}{\partial A}=0 \rightarrow \frac{-2}{\sigma_{y}^{2}} \sum_{i=1}^{N}\left(y_{i}-A-B x_{i}\right)=0 \\
& \frac{\partial x^{2}}{\partial B}=0 \quad \rightarrow \frac{-2}{\sigma_{y}^{2}} \sum_{i=1}^{N} x_{i}^{N}\left(y_{i}^{*}-A-B x_{i}^{-}\right)
\end{aligned}
$$

Sole Br Bis

How to estimate A and B ?

$$
\left.\begin{array}{l}
A=\frac{\Sigma x^{2} \Sigma y-\Sigma x \Sigma x y}{\Delta} \\
\Delta=N \Sigma x^{2}-(\Sigma x)^{2} \\
B=\frac{N \Sigma x y-\Sigma x \Sigma y}{\Delta}
\end{array}\right\}
$$

How to estimate uncertainty in y ?

Remember that the numbers $\mathrm{y}_{-} 1, \mathrm{y} _2, \ldots \mathrm{y}$ _N are not N measurements of the same quantity. (They might, for instance, be the times for a stone to fall from N different heights.)

The measurement of each y , is (we are assuming) normally distributed about its true value $A+B x$,, with width parameter sigma.

$$
\sigma_{y}=\sqrt{\frac{1}{N} \sum\left(y_{i}-A-B x_{i}\right)^{2}}
$$

How to estimate uncertainty in A and B ?

The uncertainties in A and B are given by simple error propagation in terms of those in y_1 ... y_N

$$
\begin{aligned}
& \sigma_{A}=\sigma_{y} \sqrt{\frac{\sum x^{2}}{\Delta}} \\
& \sigma_{B}=\sigma_{y} \sqrt{\frac{N}{\Delta}}
\end{aligned}
$$

Some caveats

1. What if the uncertainty of y is not equal for all measurements? we can use the method of weighted least squares, (ex. in Prob. 8.9)
2. What if both x and y have uncertainties
actually doesn't make a bog difference

What if both x and y have uncertainties

Assume error in x only

$$
\sigma_{y}(\text { equiv })=\frac{d y}{d x} \sigma_{x} . \quad \sigma_{y} \text { (equiv) }=B \sigma_{x}
$$

if all the uncertainties sigma_x, are equal, the same is true of the equivalent uncertainties simga_y(equiv).

What if both x and y have uncertainties

Now for the case that both x and y have uncertainties.

$$
\sigma_{y}(\text { equiv })=\sqrt{\sigma_{y}^{2}+\left(B \sigma_{x}\right)^{2}}
$$

If both x and y have uncertainties, we can combine in quadrature and replace with a single uncertainty

The most complicated case is when each measurement x _ i and y_i have their own uncertainties, then we need to use the equivalence and a weighted least squares

We can use least squares to fit nonlinear curves!

$$
\begin{aligned}
& y=A+B x+C x^{2} \quad \text { polynomial } \\
& \operatorname{Prob}_{A, B, C}\left(y_{1} \ldots y_{N}\right) \& e^{-x^{2 / 2}} \\
& x^{2}=\sum_{i=0}^{N}\left(y_{i}-A-B x_{i}-C x_{i}^{2}\right)^{2} \\
& v_{y}^{2}
\end{aligned}
$$

General case when least squares can fit

problems in which the function $y=f(x)$ depends linearly on the parameters A, B, C, \ldots

Another look at least squares in matrix form

$$
y=\beta_{1} x+\beta_{0}
$$

model: beta are our parameters y and x measurements

$$
y_{i}=\beta_{1} x_{i}+\beta_{0}
$$

$$
\mathbf{Y}=\mathbf{X} \beta
$$

$$
\begin{gathered}
\mathbf{Y}=\left[\begin{array}{c}
y_{i} \\
\vdots \\
y_{n}
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
x_{i} & 1 \\
\vdots & \vdots \\
x_{N} & 1
\end{array}\right] \\
\beta=\left[\begin{array}{l}
\beta_{1} \\
\beta_{0}
\end{array}\right]
\end{gathered}
$$

$$
y=\beta_{1} x+\beta_{0}
$$

β_{1} : slope

β_{0} : intercpt
$y_{i}=\beta_{1} x_{i}+\beta_{0}$ for all duta $\left\{y_{i}, x_{i}\right\}$
rewrite us a matix?

$$
\begin{array}{r}
\left.Y=X \beta \quad Y: \underset{N \times 1}{\left(\begin{array}{c}
y_{1} \\
\vdots \\
\vdots \\
y_{N}
\end{array}\right]_{N \times 2}} \underset{N_{N}}{ } X: \begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{N} & 1
\end{array}\right]
\end{array}
$$

$$
Y=X \beta
$$

$\min _{\beta}\|Y-X \beta\|^{2} \quad$ (optimization problem)

$$
\begin{aligned}
J & =(Y-X \beta)^{\top}(Y-X \beta) \\
& =Y^{\top} Y-\frac{(X X)^{\top} Y-Y^{\top}(X-\beta)}{\text { combme }}+(X X \beta)^{\top}(X \beta) \\
J & =Y^{\top} Y-2 \beta^{\top} X^{\top} Y-\beta^{\top} X^{\top} X x \beta \\
\frac{\partial J}{\partial \beta} & =0 \\
& =-2 X^{\top} Y+2 X^{\top} X \beta \quad \text { psoedo-invese } \\
\beta^{*} & =\left[\left(X^{\top} X\right)^{-1} X^{\top}\right] Y \quad \text { pinv }(\cdot)
\end{aligned}
$$

$$
Y=\underset{N \times 1}{X} \underbrace{}_{2 \times 1} \quad \text { if } \quad N=2
$$

Another look at least squares in matrix form

$$
\begin{aligned}
& \min _{\beta}\|\mathbf{Y}-\mathbf{X} \beta\|^{2}=\min _{\beta} \mathcal{J} \\
& \mathcal{J}=(\mathbf{Y}-\mathbf{X} \beta)^{T}(\mathbf{Y}-\mathbf{X} \beta) \\
&=\mathbf{Y}^{T} \mathbf{Y}-(\mathbf{X} \beta)^{T} \mathbf{Y}-\mathbf{Y}^{T}(\mathbf{X} \beta)+(\mathbf{X} \beta)^{T}(\mathbf{X} \beta) \\
&=\mathbf{Y}^{T} \mathbf{Y}-2 \beta^{T} \mathbf{X}^{T} \mathbf{Y}-\beta^{T} \mathbf{X}^{T} \mathbf{X} \beta
\end{aligned}
$$

Another look at least squares in matrix form

$$
\begin{aligned}
\frac{\partial \mathcal{J}}{\partial \beta} & =0 \\
& =-2 \mathbf{X}^{T} \mathbf{Y}+2 \mathbf{X}^{T} \mathbf{X} \beta \\
\beta^{*} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

Another look at least squares in matrix form

$$
\beta^{*}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

Solution is the 'projection' of the b on the space that matrix (A) spans X

Geometric Interpretation OLS

$$
\begin{aligned}
& y=\beta_{1} x+\beta_{2} x^{2}+\beta_{0} \\
& Y=\left[\begin{array}{ccc}
x_{1} & x_{1}^{2} & 1 \\
\vdots & \vdots & \vdots \\
x_{0} & x_{0}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{9}
\end{array}\right] \\
& y=\beta_{1} \sin (x)+p_{2} \log (x) \\
& Y=\left[\begin{array}{cc}
\sin \left(x_{1}\right) & \log \left(x_{1}\right) \\
\vdots & \vdots \\
\sin \left(x_{1}\right) & \log \left(x_{N}\right)
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]
\end{aligned}
$$

Another look at least squares in matrix form

$$
y=\beta_{1} \cos (x)+\beta_{2} \sin (\mathbb{x})+\beta_{3} x^{2}
$$

Write the matrix X, Y, beta

$$
\begin{gathered}
X=\left[\begin{array}{ccc}
\cos \left(x_{1}\right) & \sin \left(x_{1}\right) & x_{1}^{2} \\
\vdots & \vdots & \vdots \\
\cos \left(x_{n}\right) & \sin \left(x_{1}\right) & x_{\mu}^{2}
\end{array}\right] \\
\min ^{|y-x| l|l+\lambda| \beta \mid} \\
x=\left[\begin{array}{llll}
x^{2} & \sin (x) & \dot{x} x^{2} & \dot{x}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{\mu}
\end{array}\right]
\end{gathered}
$$

Covariance and Correlation

First let's review the principles of error propagation
If we measuring two quantities x and y to calculate some function $q(x, y)$:

$$
\begin{aligned}
& \delta \delta \approx\left|\frac{\partial q}{\partial x}\right| \delta_{x}+\left|\frac{\partial \dot{p}}{\partial y}\right| \delta y \quad \begin{array}{l}
\text { hive } \\
\text { they }
\end{array} \\
& \partial_{\delta}=\sqrt{\left(\frac{\partial \nu}{\partial x} \partial x\right)^{2}+\left(\frac{\partial \nu}{\partial \gamma} \partial y\right)^{2}} \\
& \text { could cancel } \\
& \text { errors in } x \\
& y \text {. }
\end{aligned}
$$

Covariance and Correlation

First let's review the principles of error propagation
If we measuring two quantities x and y to calculate some function $q(x, y)$:

$$
\delta q \approx\left|\frac{\partial q}{\partial x}\right| \delta x+\left|\frac{\partial q}{\partial y}\right| \delta y . \quad \text { our naive uncertainty }
$$

there may be partial cancellation of the errors in x and y.

$$
\delta q=\sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \delta y\right)^{2}} .
$$

we can prove this assuming Gaussians

Covariance and Correlation

$$
\delta q=\sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \delta y\right)^{2}}
$$

$$
\frac{\sigma_{q}}{\underline{2}}=\sqrt{\left(\frac{\partial q}{\partial x} \sigma_{x}\right)^{2}+\left(\frac{\partial q}{\partial y} \sigma_{y}\right)^{2}}
$$

if the measurements of x and y are governed by independent normal distributions, with standard deviations sigma_x and sigma_y the values of $\mathrm{q}(\mathrm{x}, \mathrm{y})$ are also normally distributed, with standard deviation

This result provides the justification for the claim
\longrightarrow But what if we don't meet the assumptions?
does it still apply whether or not the errors in x and y are independent and normally distributed.

Claim: the estimate always is upper bound estimate of uncertainty!

Recall STD

$$
\sigma_{x}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

If the measurements of x are normally distributed, then in the limit that N is large,

$$
\frac{1}{\sigma_{x} \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma_{x}^{2}}
$$

simga_x is the width parameter

If the underlying process is non-Gaussian - simga_x is still the STD, but this Telationship is no longer available to us.

Covariance Propagation

$f=$
Suppose that to find a value for the function $q(x, y)$, we measure the two quantities x and y several times, obtann pairs of data, ($\mathrm{x} 1, \mathrm{y} 1$) $\ldots(\mathrm{xN}, \mathrm{yN})$.

We can still calculate:
$>$ mean x and sigma_x
$>$ mean y and sigma_y
$>$ mean q and sigma_q

Covariance Propagation

$$
\begin{aligned}
& q_{i}=q\left(x_{i}, y_{i}\right) \\
& \approx q(\bar{x}, \bar{y})+\frac{\partial \hat{p}}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial v}{\partial y}\left(y_{i}-\bar{y}\right) \\
& \bar{q}=\frac{1}{N} \sum q_{i} \\
& =\frac{1}{N} \sum[\underbrace{q(\bar{x}, \bar{y})}_{\substack{\frac{x}{y} \\
f^{\prime}}}+\left\{\begin{array}{l}
\frac{\partial \eta}{\partial x}\left(x_{i}-\bar{x}\right) \\
+\frac{\partial \nu}{\partial y}\left(z_{i}-\bar{y}\right)
\end{array}\right\}
\end{aligned}
$$

Covariance Propagation

$$
\begin{aligned}
& \sigma_{q}^{2}= \frac{1}{N} \sum\left(q_{i}-\bar{q}\right)^{2} \\
&=\left(\frac{\partial \sigma}{\partial x}\right)^{2} \frac{1}{N} \sum\left(x_{i}-\bar{x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2} \frac{1}{N} \sum^{1}\left(y_{i}-\bar{y}\right)^{2} \\
&+2 \frac{\partial y}{\partial x} \frac{\partial x}{\partial y} \frac{1}{N} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& \sigma_{x y}
\end{aligned} \quad \begin{aligned}
\sigma_{q}^{2}= & \left(\frac{\partial \gamma}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial y}{\partial y}\right)^{2} \sigma_{y}^{2}+2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \sigma_{x y}
\end{aligned}
$$

Covariance Propagation

$\sigma_{x y}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$

$$
\sigma_{q}^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}^{2}+2 \frac{\partial q}{\partial x} \frac{\partial q}{\partial y} \sigma_{x y}
$$

This equation gives the standard deviation sigma_q, whether or not the measurements of x and y are independent or normally distributed.

Covariance Propagation

- If the measurements of x and y are not independent, the covariance sigma_xy is non zero.
- if measurements are independent the covariance is zero
- When the covariance is not zero (even in the limit of infinitely many measurements, we say that the errors in x and y are correlated.

Example: Two Angles with a Negative Covariance

Each of five students measures the same two angles α and β and obtains the results shown in the first three columns of Table 9.1.

Table 9.1. Five measurements of two angles α and β (in degrees).

Student	α	β	$(\alpha-\bar{\alpha})$	$(\beta-\bar{\beta})$	$(\alpha-\bar{\alpha})(\beta-\bar{\beta})$
A	35	50	2	-2	-4
B	31	55	-2	3	-6
C	33	51	0	-1	0
D	32	53	-1	1	-1
E	34	51	1	-1	-1

$$
\begin{aligned}
\sigma_{\alpha \beta}=\frac{1}{N} \sum(\alpha-\bar{\alpha})(\beta-\bar{\beta}) & =\frac{1}{5} \cdot(-12) \\
& =-2.4
\end{aligned}
$$

Upper limit on sigma_q
Schwarz inequality

$$
\left|\sigma_{x y}\right| \leqslant \sigma_{x} \sigma_{y}
$$

$$
\begin{gathered}
\sigma_{q}^{2} \leqslant\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}^{2}+2\left|\frac{\partial q}{\partial x} \frac{\partial q}{\partial y}\right| \sigma_{x} \sigma_{y} \\
=\left[\left|\frac{\partial q}{\partial x}\right| \sigma_{x}+\left|\frac{\partial q}{\partial y}\right| \sigma_{y}\right]^{2} ;
\end{gathered}
$$

Main Results on Covariance

$$
\delta q \approx\left|\frac{\partial q}{\partial x}\right| \delta x+\left|\frac{\partial q}{\partial y}\right| \delta y \quad \begin{aligned}
& \text { naive estimate is } \\
& \text { still upper bound! }
\end{aligned}
$$

