ME170b Lecture 8 3/15/24

Experimental Technigues
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Coefficient of Linear Correlation

Q: Given a set of measurements (x1,y1) .... (XN,yN), how well do they
support the hypothesis that x and y are linearly related?

y = A+ Bx

Using the method o we can find the values of A and B for
the lIN€

at best fits the points

If we already have a reliable estimate of the uncertainties in the
measurements, we can see whether the measured points do lie reasonably
close to the line

We don’t have uncertainty measures (each measurement is different range),
how can we determine how well our data fits



Example Professor plots HW vs Exam score
Hypothesis: better HW -> better score

The professor hopes to show
that high exam scores tend
to be correlated with high
homework scores, and vice

Versa

100

This kind of experiment has no
uncertainties in the points; each
student’s two scores are known
l exactly.

Exam score y —
N
S

0 50 105 o Really, what we want to
understand the correlation

Homework score x —
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Correlation Coefficient - perfect correlation
y; = A + Dx,
y=A + Bx
Py = B - %)

BY (x, — %)

VX (x; — X)°B? Y. (x; — X)°

r:



Correlation Coefficient revisit data
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Table 9.3. Students’ scores.
Student 1 2 3 4 5 6 ¥ 3 . 10
Homework x; 90 60 45 100 15 23 52 30 7l 88
Exam y;, 90 71 65 100 45 60 75 85 100 30



Quantitative Significance of r
But how can we decide objectively what is good ‘r’?

Suppose the two variables x and y are in reality uncorrelated; that is, in
the Iimit of infinitely many measurements, the correlation coefficient r
would be zero.

We can calculate the probability that r will exceed any specific value:

Proby (|7] 2 Proby(Jr| = 0.8)



Not straight forward calculation

Prob N measurements of two uncorrelated variables x and y would produce
a correlation coefficient with
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Back to our original qguestion

Q: Given a set of measurements (x1,y1) .... (XN,yN), how well do they
support the hypothesis that x and y are linearly related?

1. we can calculate correlation coefficient
2. we can find the probability of observing r with uncorrelated
3. If the value is sufficiently small, we support our hypothesis!

“significant” if the probability of obtaining a coefficient r with |r| = |r| from
uncorrelated variables is less than 5%. A correlation Is sometimes called
“nighly significant” if the corresponding probability is less than 1%.

Main result: we have a quantitative measure of how improbable it is that they
are uncorrelated.



Correlation Coefficient revisit data . .

r = 0.8

Exam score y —
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Homework score x —

Table 9.3. Students’ scores.

Student ¢ 1 2 3 4 S 6 7 3 9
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