
ME 221, Fall 2021
University of California, Riverside
Department of Mechanical Engineering

HW 2
Due: 10/14/2021

1. Find the homogeneous transformation matrices for each of the following:

a. Translation by +2 units in the Z direction and translation of -4 units along the X direction.

b. Rotation of 45° about an axis with unit vector û =
√
3
3

[
1 1 1

]T .
c. The combined translation and rotation from (a) and (b).

2. Derive the homogeneous transformation matrix that rotates a point P about an axis located d
from the origin as illustrated in Figure 1.

Figure 1: Schematic for Problem 2.

3. Figure 2 illustrates a pick and place scenario. A robot with attached global fixed reference frame-0
is located next to a table (frame-1) with an cube on the table (frame-2). A camera (frame-3) is
centered above the table and is used to localize the cube. Suppose that the cube can only move in
a planar motion on the tabletop and the camera output consists of xc and yc – the cube position in
the camera’s local coordinate frame-3. Derive the transformation matrix of the cube in the global
fixed reference frame-0 as a function of the camera outputs:

0T2(xc, yc) = ?

Figure 2: Schematic for Problem 3.

1



Figure 3: IRB 120 details. Lengths are reported in meters.

4. Find the Denavit-Hartenberg parameters for the 6-DOF IRB 120 industrial robot shown in Fig. 3.
(It is recommend to use the reference frame assignment shown in the image.)

5. Download the MATLAB code hw2_5.m. The code renders the IRB 120 robot in a virtual environment.
The function call:

r = loadrobot(’abbIrb120’,’DataFormat’,’column’);

loads the robot model object into the variable r and specifies that a column vector format will be
used to describe the pose of the robot (e.g., the joint parameters are specified as a column vector).
Since the IRB 120 is 6 DOF, the pose vector is dimension 6× 1. The function call:

ax = show(r,pose, ...
’Visuals’,’on’, ...
’PreservePlot’,0, ...
’Fastupdate’,1); hold all;

renders the robot with joint parameters specified by pose.

a. Use the DH-parameters from Problem 4 to create a function that takes as input the joint
parameters (pose) and returns the homogeneous transformation matrix from the end-effect
frame to the base frame: 0T6. That is, solve the forward kinematics problem for the IRB 120.
The function should take the form:

function T06 = fkine(pose)
...

end

One suggestion is to define a helper function that converts the DH-parameters to the corre-
sponding transformation i−1Ti:

function im1_T_i = dh2T(d_i,theta_i,a_i,alpha_i)
...

end

You can call this function inside fkine to create each transformation. Evaluate your forward
kinematics function and create the plots for the following test poses:

i. q1 = (π/2, 0, π/4, 0, 0, 0)

ii. q2 = (−π/2, π/4, π/8, 0, 0, 0)
iii. q3 = (0, −π/2, −π/8, 0, π/2, 0)
To create the plots move the robot to the test pose and use your forward kinematics function
to get the Cartesian position Gre of the end-effect:

2

https://intra.engr.ucr.edu/~jrealmuto/courses/me221-f21/files/hw2_5.m


Figure 4: Images for Problem 5a.. Test pose plots.

Joint Space Trajectory

0 50 100

min

max q
1

0 50 100

time

min

max
q

3

Configuration Space Trajectory

0 50 100
-0.5

0

0.5

x

0 50 100

-0.2

0

0.2

y
0 50 100

time

0.5

1

z

Figure 4: Images for Problem 5b.. Joint space (pose) trajectory, Cartesian trajectory in the virtual
environment, and Cartesian trajectory in time.

Figure 4: Images for Problem 5c.. Robot workspace.

Gre = fkine(pose1)*[0;0;0;1];
Gre = Gre(1:3);

Plot a line from the origin to Gre and place a large marker at the end effector position as
shown in Fig. 4.

3



b. Create a time varying pose trajectory with the following characteristics:

i. q1(t) = A1 sin (2π
1
T t) +K1

ii. q3(t) = A3 sin (2π
2
T t) +K2

where T is the simulation period. Choose A1, A2, K1, K2 such that the sinusoids span the
full range of joint motion for each joint. You can find the joint ranges uses:

jointConstraints = constraintJointBounds(r);
limits = jointConstraints.Bounds;

The variable limits contains the min/max of each joint, stored as a 2 × 6 matrix. In a for
loop, plot the end-effector position using your function fkine (use a smaller marker this time)
and rendered the robot pose for each time step. Save the final figure to show the trajectory in
the virtual environment and plot the resulting Cartesian end-effector trajectory as a function
of time. Fig. 4 shows the joint space trajectory in time, and the Cartesian trajectory in the
virtual environment and in time. An example video is posted on the website.

c. Generate a visual representation of the reachable workspace as shown in Fig. 4. Fix the last
three joints to reduce the number of test points. Also, don’t render the robot for each test
point, rather use your fkine function to generate all the points in a for loop, then plot all of
them simultaneously using scatter. (Hint : the function meshgrid can help.)

4

https://intra.engr.ucr.edu/~jrealmuto/courses/me221-f21/files/hw2-5b.mp4

