1. Consider the planar robot in Fig. 1. The forward kinematics can be found from the following transformation matrices:

$$
\begin{aligned}
{ }^{0} T_{1} & =\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 & l_{1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & 0 & l_{1} \sin \theta_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }^{1} T_{2} & =\left[\begin{array}{cccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 & l_{2} \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & 0 & l_{2} \sin \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }^{2} T_{3} & =\left[\begin{array}{cccc}
\cos \theta_{3} & -\sin \theta_{3} & 0 & l_{3} \cos \theta_{3} \\
\sin \theta_{3} & \cos \theta_{3} & 0 & l_{3} \sin \theta_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Solve the inverse kinematics, e.g., find joint angles given the end-effector pose:

$$
\left[\begin{array}{l}
X \\
Y \\
\varphi
\end{array}\right] \rightarrow\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right] .
$$

Figure 1: Schematic for Problem 1 .
2. Consider a rotation matrix parameterized using z-y-x Euler angles:

$$
{ }^{G} R_{B}=R_{z}\left(\phi_{1}\right) R_{y}\left(\phi_{2}\right) R_{x}\left(\phi_{3}\right)
$$

a. Find the angular velocity vector ${ }_{G} \boldsymbol{\omega}_{B}$
b. Find a matrix M such that:

$$
\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{x}
\end{array}\right]=M\left[\begin{array}{l}
\dot{\phi}_{1} \\
\dot{\phi}_{2} \\
\dot{\phi}_{3}
\end{array}\right]
$$

3. Show that for a homogeneous transformation matrix T :

$$
\dot{T} T^{-1}=\left[\begin{array}{cc}
\tilde{\omega} & \dot{d}-\tilde{\omega} \boldsymbol{d} \\
0 & 0
\end{array}\right]
$$

4. Find the Jacobian matrix $J(\boldsymbol{q})$ of the 2R planar robot in Fig. 4 through direct differentiation.

Figure 2: Schematic for Problem 4.
5. In this exercise you will explore inverse kinematics with the MATLAB simulation we have been developing. The idea is to simulate a task where the orientation of the end-effector is important. Make sure you can render the IRB 120 robot in the virtual environment. The goal of this problem is to use inverse kinematics to following a semi-circle trajectory. The challenge will be to ensure the orientation of the end-effector remains normal to the trajectory. This simulation is motivated by industrial applications such as sanding or welding operations where the tool must remain normal to the surface.
a. The end-effector trajectory is the top half of a circle located in the $Y-Z$ plane. The circle has radius 0.25 and is centered at $x=0.25, y=0$, and $z=0.25$ (see Fig. 33). First you will need to express the desired end-effector trajectory as a time varying vector:

$$
\boldsymbol{r}(t)=x(t) \hat{I}+y(t) \hat{J}+z(t) \hat{K}
$$

To find the desired orientation note that in the MATLAB simulation the tool frame is parallel with the Global axis when the robot is at the home position (e.g., $\boldsymbol{q}=0$), as shown in Fig. 3 . You want the x-axis of the tool frame to be normal to $\boldsymbol{r}(t)$, or put another way, the z-axis of the tool frame should be tangent to $\boldsymbol{r}(t)$. To find the proper orientation, consider what rotations are need to move the end effector from is home position to the proper normal orientation. (Hint: The desired orientation can be expressed as $x-y-z$ Euler angles with $\phi_{x}=\alpha, \phi_{y}=0$ and $\phi_{z}=\frac{-\pi}{2}$, where α is the direction cosine of the vector tangent to the curve with the unit z-axis.)
b. Use one of the MATLAB inverse kinematic method we discussed in class (see example script ik_ex.m) to create an animation of the robot following the desired trajectory. Use getTransform to store the achieved end-effector the pose at each time step. Example animation hw3-ik-analytic.mp4.
c. Use the resolved rates method to find the inverse kinematics solution. Recall that we can derive a simple update rule from the Jacobian:

$$
\begin{aligned}
\dot{\boldsymbol{q}} & =J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}} \\
\Delta \boldsymbol{q} & =J(\boldsymbol{q})^{-1} \boldsymbol{v} \\
\boldsymbol{q}_{k+1} & =J(\boldsymbol{q})^{-1} \boldsymbol{v}_{k}+\boldsymbol{q}_{k}
\end{aligned}
$$

Implement the above, using geometricJacobian and starting with \boldsymbol{q}_{0} from one of the $I K$ solvers. Generate a subplot to compare the end-effector pose from the actual desired trajectory, and the two IK methods implemented by calculated the error for each component as shown in Fig. 4. You can decompose the end-effector orientation using rotm2eul to compare. Jacobian animation: hw3-ik-jacobian.mp4.

Figure 3: Desired semi-circle trajectory with robot in the home position.

Figure 4: Snapshots from the IK sequence and error for each component for both methods.

