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1. Consider the planar robot in Fig. 1. The forward kinematics can be found from the following
transformation matrices:

0T 1 =


cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0
0 0 0 1


1T 2 =


cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1


2T 3 =


cos θ3 − sin θ3 0 l3 cos θ3
sin θ3 cos θ3 0 l3 sin θ3

0 0 1 0
0 0 0 1


Solve the inverse kinematics, e.g., find joint angles given the end-effector pose:XY

ϕ

→
θ1θ2
θ3

 .

Figure 1: Schematic for Problem 1.

2. Consider a rotation matrix parameterized using z-y-x Euler angles:

GRB = Rz(φ1)Ry(φ2)Rx(φ3)

a. Find the angular velocity vector GωB
b. Find a matrix M such that: ωxωy

ωx

 = M

φ̇1φ̇2
φ̇3



1



3. Show that for a homogeneous transformation matrix T :

Ṫ T−1 =

[
ω̃ ḋ− ω̃d
0 0

]

4. Find the Jacobian matrix J(q) of the 2R planar robot in Fig. 4 through direct differentiation.

Figure 2: Schematic for Problem 4.

5. In this exercise you will explore inverse kinematics with the MATLAB simulation we have been
developing. The idea is to simulate a task where the orientation of the end-effector is important.
Make sure you can render the IRB 120 robot in the virtual environment. The goal of this problem
is to use inverse kinematics to following a semi-circle trajectory. The challenge will be to ensure the
orientation of the end-effector remains normal to the trajectory. This simulation is motivated by
industrial applications such as sanding or welding operations where the tool must remain normal
to the surface.

a. The end-effector trajectory is the top half of a circle located in the Y − Z plane. The circle
has radius 0.25 and is centered at x = 0.25, y = 0, and z = 0.25 (see Fig. 3). First you will
need to express the desired end-effector trajectory as a time varying vector:

r(t) = x(t)Î + y(t)Ĵ + z(t)K̂

To find the desired orientation note that in the MATLAB simulation the tool frame is parallel
with the Global axis when the robot is at the home position (e.g., q = 0), as shown in Fig. 3.
You want the x-axis of the tool frame to be normal to r(t), or put another way, the z-axis of the
tool frame should be tangent to r(t). To find the proper orientation, consider what rotations
are need to move the end effector from is home position to the proper normal orientation.
(Hint: The desired orientation can be expressed as x-y-z Euler angles with φx = α, φy = 0
and φz = −π

2 , where α is the direction cosine of the vector tangent to the curve with the unit
z-axis.)

b. Use one of the MATLAB inverse kinematic method we discussed in class (see example script
ik_ex.m) to create an animation of the robot following the desired trajectory. Use get-
Transform to store the achieved end-effector the pose at each time step. Example animation
hw3-ik-analytic.mp4.

c. Use the resolved rates method to find the inverse kinematics solution. Recall that we can derive
a simple update rule from the Jacobian:

q̇ = J(q)−1ẋ

∆q = J(q)−1v

qk+1 = J(q)−1vk + qk
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https://intra.engr.ucr.edu/~jrealmuto/courses/me221-f22/files/ik_ex.m
https://intra.engr.ucr.edu/~jrealmuto/courses/me221-f22/files/hw3-ik-analytic.mp4


Implement the above, using geometricJacobian and starting with q0 from one of the IK
solvers. Generate a subplot to compare the end-effector pose from the actual desired trajectory,
and the two IK methods implemented by calculated the error for each component as shown in
Fig. 4. You can decompose the end-effector orientation using rotm2eul to compare. Jacobian
animation: hw3-ik-jacobian.mp4.

Figure 3: Desired semi-circle trajectory with robot in the home position.
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Figure 4: Snapshots from the IK sequence and error for each component for both methods.
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https://intra.engr.ucr.edu/~jrealmuto/courses/me221-f22/files/hw3-ik-jacobian.mp4

