ME 221: Kinematics and Dynamics of Robots Fall 2022

Lecture 1 Logistics & Course Overview

Prof. Jonathan Realmuto 9/22/2022

Today's Agenda

- 1. Introductions
- 2. Logistics
- 3. What are 'Robots'?
- 4. Course Overview
- 5. Project Specifics

Let's introduces ourselves

- Name, department, year of study
- If you're doing research, what area? If not, what area are you most interested in?
- Why are you taking this course?

Today's Agenda

1. Introductions

2. Logistics

- 3. What are 'Robots'?
- 4. Course Overview
- 5. Project Specifics

Course Website

https://intra.engr.ucr.edu/~jrealmuto/courses/me221-f22/

Canvas

- 1. Grades
- 2. Piazza Discussion Board (??)

Typical Class Schedule

Today's Agenda

- 1. Introductions
- 2. Logistics
- 3. What are 'Robots'?
- 4. Course Overview
- 5. Project Specifics

The idea of 'robots' is very old

- ~1000 BC (China) / Yan Shi, an artisan, presents lifesize mechanical humanoid to King Mu of Zhou
- Jewish Folklore / Golem is a creature formed out of a lifeless substance such as dust or earth, who Loew the Rabbi gave life to
- Greek Mythology / Hephaestus, god of fire, metalworking, blacksmiths, sculptors, built golden servants who helped people

Hephaestus, credit: wikipedia

content credit: Oscar Ramos, UTEC

Etymology of 'Robot'

• R.U.R. by Karel Čapel (1920)

Science fiction play "Rossum's Universal Robots" Robota (in czech) = forced laborer

Initially happy to work for humans, the robots revolt and cause the extinction of the human race

R.U.R., credit: wikipedia content credit: Oscar Ramos, UTEC

R.U.R., credit: wikipedia

Issac Asimov's Robotic Laws

• Issac Asimov (1920-1922)

Writer and Professor of Biochemistry

- First to use 'Robotics' in print ("Liar!", 1947)
- IOL (I)

- Robotic Laws
 - 1. A robot may not injure a human being
 - 2. A robot must obey orders given by humans
 - 3. A robot must protect its own existent

Issac Asimov, credit: Quartz

(Very Brief) History of Robotics

- 1948 / Norbert Wiener formulates the principles of cybernetics laying the foundation for robotics
- 1949 / William Grey Walter constructs *Elmer and Elsie*, three-wheeled tortoise like robots they used *phototaxis* to find charging stations
- 1954 / George Devol invents Unimate, widely recognized as the first digitally operated programmable robot
- 1969 / Victor Scheinman, ME student, creates the Stanford Arm
- 1978-79 / Puma and Scara robots introduced
- 1986 / Honda begins humanoid research program
- 1990 / Cyberknife, first robotic-assisted surgery appliance cleared by FDA
- 2002 / Roomba, a robotic vacuum, released by iRobot
- 2004 / DARPA Grand Challenge, none of the 15 cars completed
- 2012-2015 / DARPA Robotics Challenge, "complex tasks in dangerous, degraded, human-engineered environments."

What is a Robot?

International Federation of Robotics (IFR):

A robot is an *actuated mechanism* programmable in two or more axes with a degree of autonomy, moving with its environment to perform intended tasks.

- <u>Remark 1:</u> A robot includes the control system and interface of the control system.
- <u>Remark 2:</u> The classification of a robot into industrial robot or service robot is done according to its intended application.

Autonomy: Ability to perform intended tasks based on current state and sensing, without human intervention.

Types of Robots: Manipulators

a. Industrial Robots

b. Collaborative Robots ("cobots")

Types of Robots: Terrestrial Mobile

Legged Mobile Robots

RoboSimian

Boston Dynamics's Robots

Aibo

Festo's Robot

Types of Robots: Terrestrial Mobile

• Wheeled Mobile Robots

Hospi (Panasonic)

asonic)

Sojourner Rover

Robot Podador

Turtlebot 3

E-puck

Roomba

@NREC

Types of Robots: Aerial Mobile

• Also known as: "Unmanned Aerial Vehicle" (UAV)

Parrot AR. Drone

Erle Hexacopter

Types of Robots: Underwater Mobile

• Also known as "Autonomous underwater vehicles" (AUV)

Mbari robot tiburón

@Heriot Watt

Girona 500

Types of Robots: Mobile Manipulators

PR-2

Reem

Armar

Pepper

slide credit: Oscar Ramos, UTEC

Spot mini

Justin

Types of Robots: Humanoid

Hubo

Atlas

Sci slide credit: Oscar Ramos, UTEC

Kenshiro

Valkyrie

Sarcos

Talos

Types of Robots: Micro

Harvard's Robobee https://youtu.be/hEZ7rHRifVc

Max Planck's micro-scallop https://youtu.be/eZ05z6ebKDQ

Technion: ViRob

MIT, TUMunich: Self-assembling origami robots

https://youtu.be/f0CluQiwLRg

SRI International: micro-manufacture https://youtu.be/uL6e3co4Qqc

Types of Robots: Soft

Octopus Project (FP7) https://youtu.be/Xn-bG8_aazM

SoftRobotics, Inc. https://youtu.be/o8DoSvv4P3w

EPFL, Reconfig Robotics Lab https://youtu.be/enMIWpHxPDs

Wyss Institute, Artif. Muscles https://youtu.be/_tKI8BUHFLo

Columbia Univ. Soft materials https://youtu.be/1J47difr3oo

Harvard's Whitesides Group https://youtu.be/2DsbS9cMOAE

J Realmuto, T Sanger. IEEE RoboSoft. 2019

Of course many other types...

Snake Robot (CMU)

Salamander Robot EPFL)

Exoskeletons

Legged chair

Geminoid (Ishiguro Lab, Osaka)

Sophia (Hanson Robotics)

XLR (UPenn)

Hand

Applications

Industrial

Service

Medical

Exploratory

Consumer

In this course we will focus almost exclusively on manipulators

Anatomy of a manipulator

- Links (rigid bodies)
- Joints
- End-effector
- Actuators
- Sensors
 - proprioceptors
 - exteroceptors
- Controller

'Lower pair joints'

Prismatic (P)

Cylindrical (C)

Revolute (\mathbf{R})

Helical (H)

Spherical (S)

Anatomical joints analogs

Typically active manipulator joints come in two main flavors

Revolute

Prismatic

Naming convention based on joints Z_0 z_1 $+ \theta_2$ z_0 Shoulder Elbow ×θ, Forearm d Base Z_2 Base **R-R-R R-R-P**

Degrees-of-freedom (dof)

• The minimum number of independent coordinates needed to represent the configuration of a robot

 $dof = \sum dof of every rigid body - independent constraints$

~244 dof

Serial vs Parallel Manipulators

Open kinematic chain

Closed kinematic chain

Today's Agenda

- 1. Introductions
- 2. Logistics
- 3. What are 'Robots'?
- 4. Course Overview
- 5. Project Specifics

Problems in Robots: Spatial Descriptions

Given: The geometric parameters of the manipulator and targets

Specify: The position and orientation of the manipulator and targets

Solution

Use coordinate frames attached to joints and environmental objects

Problems in Robots: Forward Kinematics

Given: The manipulator geometry and joint angles (joint or configuration space)

Compute: The position and orientation of the end effector (tasks or cartesian space)

Solution

Transformation matrices to map joint space to cartesian space

Problems in Robots: Inverse Kinematics

Given: End effort (desired) position relative to base frame

Compute: The set of joint angles which result in the desired end effector position

Solution

In general much more challenging than forward kinematics. Some times analytic solution is possible. Often numeric solution is required.

Problems in Robots: Velocity Transformation

Given: Joint velocities

Compute: End effector velocity

Solution

The time derivative of the position and orientation is taken given the forward kinematics to extract the *Jacobian*

$$\nu = \mathbf{J}(\Theta)\dot{\Theta}$$

Problems in Robots: Force Transformation

Given: Applied loads at the end effector

Compute: Joint torques

Solution

Force/Moment propagation from the end effector to the base. The Jacobian transposec maps cartesian force/moment to joint torques

$$\tau = \mathbf{J}^T f$$

Problems in Robots: Forward Dynamics

Given: Joint torques, mass and inertia of the links

Compute: Angular acceleration of the links (equations of motion)

Solution

Use the Newton-Euler method or Lagranian Dynamics

$$\tau = \mathbf{M}(\Theta) \ddot{\Theta} + \mathbf{C}(\Theta, \dot{\Theta}) + \mathbf{G}(\Theta)$$

Problems in Robots: Inverse Dynamics

Given: (Desired) Angular acceleration, velocity of links

Compute: Required joint torques

Solution

Use the Newton-Euler method or Lagranian Dynamics

 $\tau = \mathbf{M}(\Theta) \ddot{\Theta} + \mathbf{C}(\Theta, \dot{\Theta}) + \mathbf{G}(\Theta)$

Problems in Robots: Trajectory Generation

Given: Desired start and end configuration

Compute: Smooth trajectory

Solution

Polynomial splines

Problems in Robots: Robot Control (Position)

Given: Desired end effector trajectory

Compute: Joint torques required to follow the trajectory

Solution

Feedback control

Problems in Robots: Robot Control (Force)

Given: Desired force interaction

Compute: Joint torques

Solution

Force feedback control

Potential Advance Topics to Introduce

Walking Robots

Soft Robots

Parallel Robots

Human Robot Interaction

Index Cards

- 1. What are the specific things you are hoping to learn? (list a few)
- "I want to learn how to model the dynamics of robots."
- "I want to learn how to design robots."
- 2. What specific applications are you hoping to learn about?
- "I want to learn how about walking robots."
- "I want to learn about rehabilitation robots."

Today's Agenda

- 1. Introductions
- 2. Logistics
- 3. What are 'Robots'?
- 4. Course Overview

5. Project Specifics

Course Website

https://intra.engr.ucr.edu/~jrealmuto/courses/me221-f22/

Last Years Projects

Last Years Projects

Last Years Projects

Project Example: Pick and Pour

Project Example: Pick and Toss

Project Example: Assistive Robot

Project Example: Passive Walker

	$\left(\right)$	
Play (k)		
▶ ► • • • • • • • • • • • • • • • • • •		• • • • • • •