Last time: Velocity Transformation Matrix

The velocity transformation matrix is related to the derivative of the homogeneous transformation matrix

$$
{ }^{G} \dot{T}_{B}={ }^{G} V_{B}{ }^{G} T_{B}
$$

or

$$
{ }^{G} V_{B}={ }^{G} \dot{T}_{B}{ }^{G} T_{B}^{-1}
$$

recall that this is the end-effector twist, in matrix form:

$$
{ }^{G} \tilde{\nu}_{B}={ }^{G} V_{B}={ }^{G} \dot{T}_{B}{ }^{G} T_{B}^{-1}=\left[\begin{array}{cc}
{ }^{G} \tilde{\omega}_{B} & { }^{G} \boldsymbol{v}_{B} \\
0 & 0
\end{array}\right]
$$

rearranging into a vector:

$$
{ }^{G} \boldsymbol{\nu}_{B}=\left[\begin{array}{l}
{ }^{G} \boldsymbol{\omega}_{B} \\
{ }^{G} \boldsymbol{v}_{B}
\end{array}\right]
$$

Jacobian Agenda

- Jacobian
- Direct Differentiation
- Forward Velocity Kinematics
- Jacobian Generating vectors
- Inverse Velocity Kinematics
- Other types of Jacobians
- Maneuverability Analysis

Do you remember chain rule for functions? Find:

$$
\frac{d}{d t} f(x(t))=
$$

Do you remember chain rule for functions? Find:

$$
\frac{d}{d t} f(x(t))=\frac{d}{d x} f(x(t)) \frac{d}{d t} x(t)=
$$

Do you remember chain rule for functions? Find:

$$
\frac{d}{d t} f(x(t))=\frac{d}{d x} f(x(t)) \frac{d}{d t} x(t)=\frac{d}{d x} f(x(t)) \dot{x}(t)
$$

What about for the multivariate case?

$$
f(\boldsymbol{x}(t))=f\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)
$$

$$
\frac{d}{d t} f(\boldsymbol{x})=
$$

What about for the multivariate case?

$$
\begin{gathered}
f(\boldsymbol{x}(t))=f\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \\
\frac{d}{d t} f(\boldsymbol{x})=\frac{\partial}{\partial x_{1}} f(\boldsymbol{x}) \dot{x}_{1}+\frac{\partial}{\partial x_{2}} f(\boldsymbol{x}) \dot{x}_{2}+\ldots \frac{\partial}{\partial x_{n}} f(\boldsymbol{x}) \dot{x}_{n}
\end{gathered}
$$

What about for the multivariate case?

$$
\begin{gathered}
f(\boldsymbol{x}(t))=f\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \\
\frac{d}{d t} f(\boldsymbol{x})=\frac{\partial}{\partial x_{1}} f(\boldsymbol{x}) \dot{x}_{1}+\frac{\partial}{\partial x_{2}} f(\boldsymbol{x}) \dot{x}_{2}+\ldots \frac{\partial}{\partial x_{n}} f(\boldsymbol{x}) \dot{x}_{n} \\
= \\
\sum_{i}^{n} \frac{\partial}{\partial x_{i}} f(\boldsymbol{x}) \dot{x}_{i}
\end{gathered}
$$

Deriving the Jacobian from Velocity Transformation Matrix

The velocity of any body point can be found in the Global frame if we know the homogeneous transformation matrix:

$$
{ }^{G} V_{B}={ }^{G} \dot{T}_{B}{ }^{G} T_{B}^{-1}
$$

Deriving the Jacobian from Velocity Transformation Matrix

The velocity of any body point can be found in the Global frame if we know the homogeneous transformation matrix:

$$
{ }^{G} V_{B}={ }^{G} \dot{T}_{B}{ }^{G} T_{B}^{-1}
$$

Recall from forward kinematics we can find the transformation from the Global base frame to the end effector from the DH-parameters (or PoE):

$$
{ }^{0} T_{E}(\boldsymbol{q})={ }^{0} T_{1}\left(q_{1}\right){ }^{1} T_{2}\left(q_{2}\right) \ldots{ }^{n-1} T_{E}\left(q_{n}\right)
$$

Deriving the Jacobian from Velocity Transformation Matrix

The velocity of any body point can be found in the Global frame if we know the homogeneous transformation matrix:

$$
{ }^{G} V_{B}={ }^{G} \dot{T}_{B}{ }^{G} T_{B}^{-1}
$$

Recall from forward kinematics we can find the transformation from the Global base frame to the end effector from the DH-parameters (or PoE):

$$
{ }^{0} T_{E}(\boldsymbol{q})={ }^{0} T_{1}\left(q_{1}\right){ }^{1} T_{2}\left(q_{2}\right) \ldots{ }^{n-1} T_{E}\left(q_{n}\right)
$$

Then the velocity transformation matrix for the end-effector:

$$
{ }^{0} V_{E}={ }^{0} \dot{T}_{E}(\mathbf{q}){ }^{0} T_{E}^{-1}(\mathbf{q})
$$

Deriving the Jacobian from Velocity Transformation Matrix

Let's explore the velocity transformation matrix:

$$
{ }^{0} \tilde{\boldsymbol{\nu}}_{E}={ }^{0} V_{E}={ }^{0} \dot{T}_{E}(\mathbf{q}){ }^{0} T_{E}^{-1}(\mathbf{q})
$$

Deriving the Jacobian from Velocity Transformation Matrix

Let's explore the velocity transformation matrix:

$$
\begin{aligned}
{ }^{0} \tilde{\boldsymbol{\nu}}_{E}={ }^{0} V_{E} & ={ }^{0} \dot{T}_{E}(\mathbf{q})^{0} T_{E}^{-1}(\mathbf{q}) \\
& =\left(\sum_{i}^{n} \frac{\partial^{0} T_{E}(\boldsymbol{q})}{\partial q_{i}} \dot{q}_{i}\right){ }^{0} T_{E}^{-1}(\mathbf{q})
\end{aligned}
$$

Deriving the Jacobian from Velocity Transformation Matrix

Let's explore the velocity transformation matrix:

$$
\begin{aligned}
{ }^{0} \tilde{\boldsymbol{\nu}}_{E}={ }^{0} V_{E} & ={ }^{0} \dot{T}_{E}(\mathbf{q}){ }^{0} T_{E}^{-1}(\mathbf{q}) \\
& =\left(\sum_{i}^{n} \frac{\partial^{0} T_{E}(\boldsymbol{q})}{\partial q_{i}} \dot{q}_{i}\right){ }^{0} T_{E}^{-1}(\mathbf{q}) \\
& =\sum_{i}^{n}\left(\frac{\partial^{0} T_{E}(\boldsymbol{q})}{\partial q_{i}}{ }^{0} T_{E}^{-1}(\mathbf{q}) \dot{q}_{i}\right)
\end{aligned}
$$

Deriving the Jacobian from Velocity Transformation Matrix

We can re-write in vector form:

$$
{ }^{0} \boldsymbol{\nu}_{E}=\left[\begin{array}{c}
{ }^{0} \boldsymbol{\omega}_{E} \\
{ }^{0} \boldsymbol{v}_{E}
\end{array}\right]=\dot{\boldsymbol{X}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

Deriving the Jacobian from Velocity Transformation Matrix

We can re-write in vector form:

$$
{ }^{0} \boldsymbol{\nu}_{E}=\left[\begin{array}{c}
{ }^{0} \boldsymbol{\omega}_{E} \\
{ }^{0} \boldsymbol{v}_{E}
\end{array}\right]=\dot{\boldsymbol{X}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

with

$$
J(\boldsymbol{q})=\left[\begin{array}{lll}
\left(\frac{\partial^{0} T_{E}(\boldsymbol{q})}{\partial q_{1}}{ }^{0} T_{E}^{-1}(\mathbf{q})\right)^{\vee} & \ldots & \left(\frac{\partial^{0} T_{E}(\boldsymbol{q})}{\partial q_{n}}{ }^{0} T_{E}^{-1}(\mathbf{q})\right)^{\vee}
\end{array}\right]
$$

with the ${ }^{\vee}$ symbol denoting the "vector form" (as opposed to the skew symmetric form)

Deriving the Jacobian from Velocity Transformation Matrix

We can re-write in vector form:

$$
{ }^{0} \boldsymbol{\nu}_{E}=\left[\begin{array}{c}
{ }^{0} \boldsymbol{\omega}_{E} \\
{ }^{0} \boldsymbol{v}_{E}
\end{array}\right]=\dot{\boldsymbol{X}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

with

$$
J(\boldsymbol{q})=\left[\begin{array}{lll}
\left(\frac{\partial^{0} T_{E}(\boldsymbol{q})}{\partial q_{1}}{ }^{0} T_{E}^{-1}(\mathbf{q})\right)^{\vee} & \ldots & \left(\frac{\partial^{0} T_{E}(\boldsymbol{q})}{\partial q_{n}}{ }^{0} T_{E}^{-1}(\mathbf{q})\right)^{\vee}
\end{array}\right]
$$

with the ${ }^{\vee}$ symbol denoting the "vector form" (as opposed to the skew symmetric form)
Very Important: The Jacobian provides a linear relationship between the joint velocities (\boldsymbol{q}) and the end effector's linear (\boldsymbol{v}) and angular $(\boldsymbol{\omega})$ velocities. Therefor we can use linear methods e.g.,

$$
A x=b \rightarrow x=A^{-1} b \quad \text { (can be solved efficiently) }
$$

How to calculate the Jacobian

$$
\dot{\boldsymbol{X}}=\underbrace{J(\boldsymbol{q})}_{6 \times n} \dot{\boldsymbol{q}}
$$

We can split up the Jacobian into two parts:

$$
\dot{\boldsymbol{X}}=\left[\begin{array}{c}
{ }^{0} \boldsymbol{\omega}_{E} \\
{ }^{0} \boldsymbol{v}_{E}
\end{array}\right]=\left[\begin{array}{l}
J_{R} \\
J_{D}
\end{array}\right] \dot{\boldsymbol{q}}
$$

- rarely ever calculated as we derived (direct differentiation)
- more systematic approach: Jacobian generating vectors (next time)
- difference between analytic vs geometric Jacobian (next time)

Direct differentiation: Ex.242, pg. 446

If the robot is simple, it is easy to do direct differentiation:
Find forward kinematics:

$$
\begin{aligned}
& { }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2} \\
& { }^{0} T_{1}=
\end{aligned}
$$

Direct differentiation: Ex.242, pg. 446

If the robot is simple, it is easy to do direct differentiation:
Find forward kinematics:

$$
\begin{aligned}
& { }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2} \\
& { }^{0} T_{1}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{1} T_{2}=
\end{aligned}
$$

Direct differentiation: Ex.242, pg. 446

If the robot is simple, it is easy to do direct differentiation:
Find forward kinematics:

$$
\begin{aligned}
& { }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2} \\
& { }^{0} T_{1}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{1} T_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & r \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Direct differentiation

Find forward kinematics:

$$
{ }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2}
$$

$$
{ }^{0} T_{2}=
$$

Direct differentiation

Find forward kinematics:

$$
\begin{aligned}
& { }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2} \\
& { }^{0} T_{2}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & r \cos \theta \\
\sin \theta & \cos \theta & 0 & r \sin \theta \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Direct differentiation

Find forward kinematics:

$$
\begin{aligned}
& { }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2} \\
& { }^{0} T_{2}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & r \cos \theta \\
\sin \theta & \cos \theta & 0 & r \sin \theta \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Therefore:

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right]=
$$

Direct differentiation

Find forward kinematics:

$$
\begin{aligned}
& { }^{0} T_{2}={ }^{0} T_{1}{ }^{1} T_{2} \\
& { }^{0} T_{2}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & r \cos \theta \\
\sin \theta & \cos \theta & 0 & r \sin \theta \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Therefore:

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
r \cos \theta \\
r \sin \theta
\end{array}\right]
$$

Direct differentiation

The forward kinematics maps joint variables to Cartesian space:

$$
\begin{aligned}
{\left[\begin{array}{l}
X \\
Y
\end{array}\right] } & =\left[\begin{array}{l}
r \cos \theta \\
r \sin \theta
\end{array}\right] \\
\boldsymbol{x} & =f(\boldsymbol{q})
\end{aligned}
$$

with

$$
\boldsymbol{x}=\left[\begin{array}{l}
X \\
Y
\end{array}\right], \quad \boldsymbol{q}=\left[\begin{array}{l}
r \\
\theta
\end{array}\right],
$$

Direct differentiation

The displacement Jacobian is calculated by taking the time derivative of the displacement forward kinematics:

$$
\dot{\boldsymbol{x}}=J_{D}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

where

$$
\begin{aligned}
J_{D}(\boldsymbol{q}) & =\left[\begin{array}{ll}
\frac{\partial f(\boldsymbol{q})}{\partial q_{1}} & \frac{\partial f(\boldsymbol{q})}{\partial q_{2}}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f(\boldsymbol{q})}{\partial r} & \frac{\partial f(\boldsymbol{q})}{\partial \theta}
\end{array}\right] \\
& =
\end{aligned}
$$

Direct differentiation

The displacement Jacobian is calculated by taking the time derivative of the displacement forward kinematics:

$$
\dot{\boldsymbol{x}}=J_{D}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

where

$$
\begin{aligned}
J_{D}(\boldsymbol{q}) & =\left[\begin{array}{ll}
\frac{\partial f(\boldsymbol{q})}{\partial q_{1}} & \frac{\partial f(\boldsymbol{q})}{\partial q_{2}}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f(\boldsymbol{q})}{\partial r} & \frac{\partial f(\boldsymbol{q})}{\partial \theta}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right]
\end{aligned}
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
\begin{gathered}
0_{0} \tilde{\omega}_{2}={ }^{0} \dot{R}_{2}{ }^{0} R_{2}^{T} \\
{ }^{0} T_{2}=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & r \cos \theta \\
\sin \theta & \cos \theta & 0 & r \sin \theta \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{cc}
{ }^{0} R_{2} & { }^{0} \boldsymbol{d}_{2} \\
\mathbf{0} & 1
\end{array}\right]
\end{gathered}
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
{ }_{0} \tilde{\omega}_{2}={ }^{0} \dot{R}_{2}{ }^{0} R_{2}^{T}
$$

$$
{ }^{0} \dot{R}_{2}=
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
\begin{gathered}
{ }_{0} \tilde{\omega}_{2}={ }^{0} \dot{R}_{2}{ }^{0} R_{2}^{T} \\
{ }^{0} \dot{R}_{2}=\left[\begin{array}{ccc}
-\sin \theta & -\cos \theta & 0 \\
\cos \theta & -\sin \theta & 0 \\
0 & 0 & 0
\end{array}\right] \dot{\theta} \\
{ }^{0} R_{2}^{T}=
\end{gathered}
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
\begin{gathered}
0_{0} \tilde{\omega}_{2}={ }^{0} \dot{R}_{2}{ }^{0} R_{2}^{T} \\
{ }^{0} \dot{R}_{2}=\left[\begin{array}{ccc}
-\sin \theta & -\cos \theta & 0 \\
\cos \theta & -\sin \theta & 0 \\
0 & 0 & 0
\end{array}\right] \dot{\theta} \\
{ }^{0} R_{2}^{T}=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
{ }_{0} \tilde{\omega}_{2}={ }^{0} \dot{R}_{2}{ }^{0} R_{2}^{T}
$$

$$
=
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
\begin{aligned}
{ }_{0} \tilde{\omega}_{2} & ={ }^{0} \dot{R}_{2}{ }^{0} R_{2}^{T} \\
& =\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \dot{\theta}
\end{aligned}
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
\begin{aligned}
{ }_{0} \tilde{\omega}_{2} & ={ }^{0} \dot{R}_{2}{ }^{0} R_{2}^{T} \\
& =\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \dot{\theta}
\end{aligned}
$$

Recall that for skew symmetric matrix:

$$
\tilde{\omega}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
{ }_{0} \boldsymbol{\omega}_{2}=
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
{ }_{0} \boldsymbol{\omega}_{2}=\left[\begin{array}{l}
0 \\
0 \\
\dot{\theta}
\end{array}\right]
$$

Direct differentiation

The rotational Jacobian is calculated find the angular velocity vector from the forward kinematics:

$$
{ }_{0} \boldsymbol{\omega}_{2}=\left[\begin{array}{l}
0 \\
0 \\
\dot{\theta}
\end{array}\right]
$$

Or we can write as:

$$
\omega_{3}=J_{R} \dot{\theta}
$$

with $J_{R}=1$

Direct differentiation

Let's put everthing together:

$$
\begin{aligned}
\dot{\boldsymbol{X}} & =J(\boldsymbol{q}) \dot{\boldsymbol{q}} \\
{\left[\begin{array}{c}
\dot{X} \\
\dot{Y} \\
\omega_{3}
\end{array}\right] } & =\left[\begin{array}{c}
J_{D} \\
J_{R}
\end{array}\right]\left[\begin{array}{c}
\dot{r} \\
\dot{\theta}
\end{array}\right] \\
& =
\end{aligned}
$$

Direct differentiation

Let's put everthing together:

$$
\begin{aligned}
\dot{\boldsymbol{X}} & =J(\boldsymbol{q}) \dot{\boldsymbol{q}} \\
{\left[\begin{array}{c}
\dot{X} \\
\dot{Y} \\
\omega_{3}
\end{array}\right] } & =\left[\begin{array}{c}
J_{D} \\
J_{R}
\end{array}\right]\left[\begin{array}{c}
\dot{r} \\
\dot{\theta}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\dot{r} \\
\dot{\theta}
\end{array}\right]
\end{aligned}
$$

Forward velocity kinematics

Now, if we want to understand the end effector velocity for a given trajectory, we only need the starting joint variables \boldsymbol{q}_{0} and the velocities $\dot{\boldsymbol{q}}$:

$$
\boldsymbol{q}(t)=\int_{0}^{T} \dot{\boldsymbol{q}}(t) d t+\boldsymbol{q}_{0}
$$

Then plug into:

$$
\begin{aligned}
\dot{\boldsymbol{X}} & =J(\boldsymbol{q}) \dot{\boldsymbol{q}} \\
\boldsymbol{X}(t) & =\int_{0}^{T} \dot{\boldsymbol{X}}(t) d t+\boldsymbol{X}_{0}
\end{aligned}
$$

