Last time: Angular Velocity

- angular velocity is always skew symmetric because of the orthogonality condition. Easy to see when considering pure rotation:

$$
{ }^{G} \dot{\boldsymbol{r}}_{p}(t)={ }^{G} \dot{R}_{B}(t){ }^{B} \boldsymbol{r}_{p}
$$

$$
\underbrace{{ }^{G} R_{B}^{T}(t){ }^{G} \dot{\boldsymbol{r}}_{p}(t)}_{B \dot{\boldsymbol{r}}_{p}}=\underbrace{G_{B}^{T}(t){ }^{G} \dot{R}_{B}(t)}_{B_{G}^{B} \tilde{\omega}_{B}}{ }^{B} \boldsymbol{r}_{p}
$$

$$
{ }^{G} \dot{\boldsymbol{r}}_{p}(t)=\underbrace{G_{B} \dot{R}_{B}(t){ }^{G} R_{B}^{T}(t)}_{G_{G}^{G} \tilde{\omega}_{B}={ }_{G} \tilde{\omega}_{B}}{ }^{G} \boldsymbol{r}_{p}
$$

Last time: Angular Velocity

- angular velocity is always skew symmetric because of the orthogonality condition. Easy to see when considering pure rotation:

$$
{ }^{G} \dot{\boldsymbol{r}}_{p}(t)={ }^{G} \dot{R}_{B}(t){ }^{B} \boldsymbol{r}_{p}
$$

$$
\underbrace{{ }^{G} R_{B}^{T}(t){ }^{G} \dot{\boldsymbol{r}}_{p}(t)}_{{ }^{B} \dot{\boldsymbol{r}}_{p}}=\underbrace{{ }^{G} R_{B}^{T}(t)^{G} \dot{R}_{B}(t)}_{B_{G}^{B} \tilde{\omega}_{B}}{ }^{B} \boldsymbol{r}_{p}
$$

$$
{ }^{G} \dot{\boldsymbol{r}}_{p}(t)=\underbrace{{ }^{\dot{R}_{B}(t)}{ }^{G} R_{B}^{T}(t)}_{{ }_{G}^{G} \tilde{\omega}_{B}={ }_{G}{ }_{G}{ }_{B}}{ }^{G} \boldsymbol{r}_{p}
$$

- General rigid body motion with angular and linear velocity can be described:

$$
{ }^{G} \boldsymbol{v}_{p}(t)={ }^{G} \dot{\boldsymbol{r}}_{p}(t)={ }_{G} \tilde{\omega}_{B}\left({ }^{G} \boldsymbol{r}_{p}-{ }^{G} \boldsymbol{d}_{B}\right)+{ }^{G} \dot{\boldsymbol{d}}_{B}
$$

Last time: Angular Velocity

- angular velocity is always skew symmetric because of the orthogonality condition. Easy to see when considering pure rotation:

$$
{ }^{G} \dot{\boldsymbol{r}}_{p}(t)={ }^{G} \dot{R}_{B}(t){ }^{B} \boldsymbol{r}_{p}
$$

$$
\underbrace{{ }^{G} R_{B}^{T}(t){ }^{G} \dot{\boldsymbol{r}}_{p}(t)}_{B \dot{\boldsymbol{r}}_{p}}=\underbrace{{ }^{G} R_{B}^{T}(t)^{G} \dot{R}_{B}(t)}_{G_{B}^{B} \tilde{\omega}_{B}}{ }^{B} \boldsymbol{r}_{p}
$$

$$
{ }^{G} \dot{\boldsymbol{r}}_{p}(t)=\underbrace{{ }^{G} \dot{R}_{B}(t){ }^{G} R_{B}^{T}(t)}_{{ }_{G}^{G} \tilde{\omega}_{B}={ }_{G} \tilde{\omega}_{B}}{ }^{G} \boldsymbol{r}_{p}
$$

- General rigid body motion with angular and linear velocity can be described:

$$
{ }^{G} \boldsymbol{v}_{p}(t)={ }^{G} \dot{\boldsymbol{r}}_{p}(t)={ }_{G} \tilde{\omega}_{B}\left({ }^{G} \boldsymbol{r}_{p}-{ }^{G} \boldsymbol{d}_{B}\right)+{ }^{G} \dot{\boldsymbol{d}}_{B}
$$

- More conveniently we can use velocity transformation matrix:

$$
{ }^{G} \boldsymbol{v}_{p}(t)={ }^{G} V_{B}{ }^{G} \boldsymbol{r}_{p}, \quad{ }^{G} V_{B}=\left[\begin{array}{cc}
G_{\tilde{\omega}_{B}} & { }^{G} \boldsymbol{v}_{B} \\
0 & 0
\end{array}\right]={ }^{G} \tilde{\nu}_{B}, \quad{ }^{G} \boldsymbol{\nu}_{B}=\left[\begin{array}{c}
{ }^{G} \boldsymbol{\omega}_{B} \\
{ }^{G} \boldsymbol{v}_{B}
\end{array}\right] \quad \text { (twist). }
$$

Last time: Angular Velocity

- angular velocity is always skew symmetric because of the orthogonality condition. Easy to see when considering pure rotation:

$$
{ }^{G} \dot{\boldsymbol{r}}_{p}(t)={ }^{G} \dot{R}_{B}(t){ }^{B} \boldsymbol{r}_{p}
$$

$$
\underbrace{{ }^{G} R_{B}^{T}(t)}_{B_{\boldsymbol{r}_{p}}}{ }^{G} \dot{\boldsymbol{r}}_{p}(t) \quad=\underbrace{{ }^{G} R_{B}^{T}(t)}_{B_{G}^{B} \tilde{\omega}_{B}}{ }^{G} \dot{R}_{B}(t){ }^{B} \boldsymbol{r}_{p} \quad{ }^{G} \dot{\boldsymbol{r}}_{p}(t)=\underbrace{G_{\dot{R}_{B}(t)}{ }^{G} R_{T}^{T}(t)}_{G_{G}^{G} \tilde{\omega}_{B}={ }_{G} \tilde{\omega}_{B}}{ }^{G} \boldsymbol{r}_{p}
$$

- General rigid body motion with angular and linear velocity can be described:

$$
{ }^{G} \boldsymbol{v}_{p}(t)={ }^{G} \dot{\boldsymbol{r}}_{p}(t)={ }_{G} \tilde{\omega}_{B}\left({ }^{G} \boldsymbol{r}_{p}-{ }^{G} \boldsymbol{d}_{B}\right)+{ }^{G} \dot{\boldsymbol{d}}_{B}
$$

- More conveniently we can use velocity transformation matrix:

$$
{ }^{G} \boldsymbol{v}_{p}(t)={ }^{G} V_{B}{ }^{G} \boldsymbol{r}_{p}, \quad{ }^{G} V_{B}=\left[\begin{array}{cc}
{ }^{G} \tilde{\omega}_{B} & { }^{G} \boldsymbol{v}_{B} \\
0 & 0
\end{array}\right]={ }^{G} \tilde{\nu}_{B}, \quad{ }^{G} \boldsymbol{\nu}_{B}=\left[\begin{array}{c}
{ }^{G} \boldsymbol{\omega}_{B} \\
{ }^{G} \boldsymbol{v}_{B}
\end{array}\right] \quad \text { (twist). }
$$

- The velocity transformation matrix is related to the derivative of the homogeneous transformation matrix

$$
{ }^{G} \dot{T}_{B}={ }^{G} V_{B}{ }^{G} T_{B}
$$

Interpretation of angular velocity matrix

$$
G^{\tilde{\omega}_{B}}={ }^{G} \dot{R}_{B}{ }^{G} R_{B}^{T}
$$

The matrix ${ }_{G} \tilde{\omega}_{B}$ is associated with the angular velocity vector ${ }_{G} \boldsymbol{\omega}_{B}=\hat{u} \dot{\phi}$, which is equal to an angular rate $\dot{\phi}$ about the instantaneous axis of rotation \hat{u}. In general, derivatives of rotation matrix parameterization (Euler angles or roll, pitch, yaw) are not equivalent to the angular velocity vector:

$$
\frac{d}{d t}\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right] \neq \boldsymbol{\omega}
$$

Midterm Review

- Basics
- Degrees-of-Freedom
- Joints/Links
- Configuration/Task space
- Rotation Matrices and Orientation
- Homogeneous Transformation Matrices
- Forward Kinematics
- Denavit-Hartenberg parameters
- Product of Exponentials
- Inverse Kinematics
- Angular Velocity

Rotation Matrices

Three basic rotation matrices:

$$
R_{z}(\phi)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right], \quad R_{y}(\phi)=\cdots, \quad R_{x}(\phi)=\cdots
$$

Can you derive a rotation matrix from first principles?

Rotation Matrices

Properties:

1. Orthogonality (Orthonormal)

- Unit norm

$$
\begin{aligned}
R & =\left[\begin{array}{lll}
\boldsymbol{r}_{1} & \boldsymbol{r}_{2} & \boldsymbol{r}_{3}
\end{array}\right] \\
\left\|\boldsymbol{r}_{1}\right\| & =\left\|\boldsymbol{r}_{2}\right\|=\left\|\boldsymbol{r}_{3}\right\|=1
\end{aligned}
$$

- Orthogonal

$$
\boldsymbol{r}_{1} \cdot \boldsymbol{r}_{2}=0, \quad \boldsymbol{r}_{1} \cdot \boldsymbol{r}_{3}=0, \quad \boldsymbol{r}_{2} \cdot \boldsymbol{r}_{3}=0
$$

The is means:

$$
R R^{T}=R^{T} R=I
$$

2. Determinant $=+1$ (Rotations preserve volume and orientation)

$$
\operatorname{det}(R)=+1
$$

Rotation Matrices

Properties:

1. Orthogonality (Orthonormal)

- Unit norm

$$
\begin{aligned}
R & =\left[\begin{array}{lll}
\boldsymbol{r}_{1} & \boldsymbol{r}_{2} & \boldsymbol{r}_{3}
\end{array}\right] \\
\left\|\boldsymbol{r}_{1}\right\| & =\left\|\boldsymbol{r}_{2}\right\|=\left\|\boldsymbol{r}_{3}\right\|=1
\end{aligned}
$$

- Orthogonal

$$
\boldsymbol{r}_{1} \cdot \boldsymbol{r}_{2}=0, \quad \boldsymbol{r}_{1} \cdot \boldsymbol{r}_{3}=0, \quad \boldsymbol{r}_{2} \cdot \boldsymbol{r}_{3}=0
$$

The is means:

$$
R R^{T}=R^{T} R=I
$$

2. Determinant $=+1$ (Rotations preserve volume and orientation)

$$
\operatorname{det}(R)=+1
$$

Rotation Matrices

Three main uses:

- Represent orientation
- Change the reference frame which a vector (rigid body) is represented in
- rotate a vector (rigid body)

Rotation Matrices

Compositions:

- Moving frame \rightarrow post-multiply
- Fixed frame \rightarrow pre-multiply

Rotation Matrices

Main Parameterizations:

- Euler Angles (moving frame)
- Roll, Pitch, Yaw (fixed frame)
- Axis/Angel (\hat{u} / ϕ)
- Quaternion
- Matrix exponential $\left(e^{\tilde{u} \phi}\right)$

With each method, you can go back and forth between a rotation matrix and the underlying parameters (e.g., $R \leftrightarrow \alpha, \beta, \gamma$ or $R \leftrightarrow \hat{u}, \phi$).

Rotation Matrices: Examples

The following rotation matrix is applied to a reference frame that is initial coincident with a fixed global frame:

$$
R=\left[\begin{array}{ccc}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

1. Draw the global frame and the final frame after the rotation.
2. Determine the $x-y$-z Euler angles that generates the rotation R.

Homogeneous Transformation Matrices

$$
\begin{aligned}
& { }^{G} T_{B}=\left[\begin{array}{cc}
{ }^{G} R_{B} & \boldsymbol{d} \\
0 & 1
\end{array}\right] \\
& { }^{B} T_{G}={ }^{G} T_{B}^{-1}=\left[\begin{array}{cc}
{ }^{G} R_{B}^{T} & -{ }^{G} R_{B}^{T} \boldsymbol{d} \\
0 & 1
\end{array}\right]
\end{aligned}
$$

All same composition rules apply to Homogeneous Transformations.

Forward Kinematics

Big Picture:

Forward Kinematics: DH-parameters

1. Assign all z-axes (every degree of freedom is along z_{i})
2. Assign frame origins
3. Find the Joint and Link parameters
4. Generate transformations

$$
{ }^{i-1} T_{i}=D_{z_{i-1}, d_{i}} R_{z-1, \theta_{i}} D_{x_{i-1}, a_{i}} R_{x_{i-1}, \alpha_{i}}
$$

DH-Example

a. Assign reference frames according to DH-method b. Find the DH-table

DH-Example - Frame assignment rules

- assign axis x_{i} in the direction of $z_{i-1} \times z_{i}$. If they are parallel assign along common normal between $z_{i-1} \& z_{i}$
- assign axis y_{i} to complete the frame following right hand rule
- tool frame (end effector frame)
- x_{n} orthogonal to z_{n-1}
- z_{n} pointing outwards

DH-Example

a. Assign reference frames according to DH-method (solution)

DH-Example

a. Assign reference frames according to DH-method (solution)

DH-Example

a. Assign reference frames according to DH-method (solution)

DH-Example

a. Assign reference frames according to DH-method (solution)

DH-Example

a. Assign reference frames according to DH-method (solution)

DH-Example

a. Assign reference frames according to DH-method (solution)

DH-Example - Parameter Rules

- d_{i} : distance from the origin of $\{\mathrm{i}-1\}$ to the intersection of z_{i-1} with x_{i} along z_{i-1}
- θ_{i} : rotation angle from x_{i-1} with x_{i} about z_{i-1}
- a_{i} : distance from the intersection of z_{i-1} with x_{i} along x_{i}
- α_{i} : angle from z_{i-1} with z_{i} about x_{i}

DH-Example - Parameter Rules

Joint Parameters

Link Parameters

- d_{i} : distance from the origin of $\{i-1\}$ to the intersection of z_{i-1} with x_{i} along z_{i-1}
- θ_{i} : rotation angle from x_{i-1} with x_{i} about z_{i-1}
- a_{i} : distance from the intersection of z_{i-1} with x_{i} along x_{i}
- α_{i} : angle from z_{i-1} with z_{i} about x_{i}

Jointi d_i theta_i a_i alpha_i 1

Joint i	d_i	theta_i	a_i	alpha_i
1	11	$90+\mathrm{q} 1$	0	90
2	0	q2	12	0
3	0	q3	13	0
4	0	q4	0	90
5	14	q5	0	0

Ex. 135 pg. 238

Ex. 135 pg. 238

Ex. 137 pg. 239

Ex. 137 pg. 239

| Frame No. | a_{i} | α_{i} | d_{i} | |
| :---: | :---: | :---: | :---: | :---: |θ_{i}.

Forward Kinematics: Product of Exponentials

1. Define global and end-effector frames.
2. Find M, the homogeneous transformations matrix from the global frame to the base frame.
3. Define all screw axis.
4. Apply product of exponential

$$
{ }^{0} T_{E}=e^{\tilde{\mathcal{S}}_{1} q_{1}} e^{\tilde{\mathcal{S}}_{2} q_{2}} \cdots e^{\tilde{\mathcal{S}}_{n} q_{n}} M
$$

Inverse Kinematics

- Multiplicity of solutions vs redundancy
- How to choose which solution?
- Basic ideas of numerical solutions
- root finding
- general optimization problem

Inverse Kinematics: Example (Jazar Ex. 182 pg.328)

Angular Velocity: Example

Consider a rotation matrix composted using Euler angles:

$$
{ }^{B} R_{G}=R_{z}(\psi) R_{x}(\theta) R_{z}(\rho)
$$

Find ${ }^{B} \tilde{\omega}_{G}$

