screw motion

h : translation
ϕ : rotation
\hat{u} : axis of motion
s: location vector
$p:$ pitch $=\frac{h}{\phi}$

screw motion as a homogeneous transformation

For general screw motion:

$$
\begin{aligned}
\breve{s}(h, \phi, \hat{u}, \mathbf{s}) & =\left[\begin{array}{cc}
R_{\hat{u}, \phi} & \mathbf{s}-R_{\hat{u}, \phi} \mathbf{s}+h \hat{u} \\
\mathbf{0} & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{\tilde{u} \phi} & \left(I-e^{\tilde{u} \phi}\right) \mathbf{s}+h \hat{u} \\
\mathbf{0} & 1
\end{array}\right]
\end{aligned}
$$

where \tilde{u} is the skew symmetric representation:

$$
\tilde{u}=\left[\begin{array}{ccc}
0 & u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right]
$$

It would be convenient to write entire transformation as a matrix exponential.

screw axis and matrix exponential form

Define screw axis using Plücker Coordi-
 nates:

$$
\begin{aligned}
\mathcal{S}=\left[\begin{array}{c}
\hat{u} \\
\boldsymbol{\rho}+p \hat{u}
\end{array}\right], & \boldsymbol{\rho}=-\hat{u} \times \mathbf{s} \\
p & =\frac{h}{\phi}
\end{aligned}
$$

in "skew symmetric form":

$$
\tilde{\mathcal{S}}=\left[\begin{array}{cc}
\tilde{u} & \boldsymbol{\rho}+p \hat{u} \\
0 & 0
\end{array}\right]
$$

Then, we can write the transformation $T=e^{\tilde{\mathcal{S}} \phi}$.
So the point P^{\prime} in the illustration results from the screw motion: $P^{\prime}=e^{\tilde{\mathcal{S}} \phi} P$.

screw axis infinite pitch: prismatic joint

$$
\mathcal{S}=\left[\begin{array}{c}
\hat{u} \\
\boldsymbol{\rho}+p \hat{u}
\end{array}\right], \quad \boldsymbol{\rho}=-\hat{u} \times \mathbf{s}, \quad p=\frac{h}{\phi}
$$

Multiply by displacement ϕ :

$$
\begin{aligned}
& \mathcal{S} \phi=\left[\begin{array}{c}
\phi \hat{u} \\
\phi \boldsymbol{\rho}+h \hat{u}
\end{array}\right]=\left[\begin{array}{c}
\frac{h}{p} \hat{u} \\
\frac{h}{p} \boldsymbol{\rho}+h \hat{u}
\end{array}\right] \\
& \text { then } p \rightarrow \infty \\
& =\left[\begin{array}{c}
0 \\
h \hat{u}
\end{array}\right] \Rightarrow \mathcal{S} q=\left[\begin{array}{l}
0 \\
\hat{u}
\end{array}\right] q
\end{aligned}
$$

Note we change variable from ϕ (which is related to h through p) to q to denote joint variable.

screw axis zero pitch: revolute joint

$$
\mathcal{S}=\left[\begin{array}{c}
\hat{u} \\
\boldsymbol{\rho}+p \hat{u}
\end{array}\right], \quad \boldsymbol{\rho}=-\hat{u} \times \mathbf{s}, \quad p=\frac{h}{\phi}
$$

In this case it's clear with $p=0$:

$$
\begin{aligned}
\mathcal{S} \phi & =\left[\begin{array}{l}
\hat{u} \\
\boldsymbol{\rho}
\end{array}\right] \phi \\
\Rightarrow \mathcal{S} q & =\left[\begin{array}{l}
\hat{u} \\
\boldsymbol{\rho}
\end{array}\right] q
\end{aligned}
$$

Again we change ϕ to q to denote that it is a joint variable.

summary of screw axis for robot joints

Prismatic Joint
\[\mathcal{S}=\left[\begin{array}{l} 0
\hat{u} \end{array}\right] \]

$$
\begin{gathered}
\text { Revolute Joint } \\
\mathcal{S}=\left[\begin{array}{l}
\hat{u} \\
\rho
\end{array}\right], \quad \rho=-\hat{u} \times \mathbf{s}
\end{gathered}
$$

In either case the transformation matrix from the screw motion can be computed:

$$
T=e^{\tilde{\mathcal{S}} q}
$$

summary of product of exponentials for forward kinematics

- Define global fixed base frame and end-effector frame
- Find M, the homogeneous transformation matrix of the end-effector in the global frame at the home position $\left(q_{i}=0\right)$ for all i.
- Define all joint screw axis, \mathcal{S}_{i} in terms of the global frame
- Apply the product of exponentials formula:

$$
{ }^{0} T_{E}=e^{\tilde{\mathcal{S}}_{1} q_{1}} e^{\tilde{\mathcal{S}}_{2} q_{2}} \ldots e^{\tilde{\mathcal{S}}_{n} q_{n}} M
$$

SCARA example

End-effector transformation:

$$
M=\left[\begin{array}{c}
I \\
0
\end{array}\left[\begin{array}{c}
0 \\
l_{1}+l_{2} \\
l_{0} \\
1
\end{array}\right]\right.
$$

Screw axis \mathcal{S}_{1}

$$
\begin{aligned}
& \mathcal{S}_{1}=\left[\begin{array}{c}
\hat{u}_{1} \\
-\hat{u}_{1} \times \mathbf{s}_{1}
\end{array}\right], \quad \hat{u}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \boldsymbol{s}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \mathcal{S}_{1}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]^{T}
\end{aligned}
$$

SCARA example

Screw axis \mathcal{S}_{2}

SCARA example

Screw axis \mathcal{S}_{3}

SCARA example

Screw axis \mathcal{S}_{4}

$$
\begin{aligned}
& \mathcal{S}_{4}=\left[\begin{array}{l}
0 \\
\hat{u}
\end{array}\right] \quad \hat{u}_{4}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \mathcal{S}_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Then the forward kinematics can be computed as:

$$
{ }^{0} T_{E}=e^{\tilde{\mathcal{S}}_{1} q_{1}} e^{\tilde{\mathcal{S}}_{2} q_{2}} e^{\tilde{\mathcal{S}}_{3} q_{3}} e^{\tilde{\mathcal{S}}_{4} q_{4}} M
$$

