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Abstract This article studies collaborative human- robot

output tracking when the desired output is only known

to the human but not to the robot controller. The main

contribution of this article is to propose and establish

convergence conditions for an iterative learning algo-

rithm that updates the robot input using (i) the effect

of the human action on the combined human-robot out-

put tracking (which includes the effect of the human-

response dynamics) and (ii) data-inferred human-robot

models. This allows the iterative learning control (ILC)

to be personalized for each individual human operator.

Additionally, experimental results are presented to il-

lustrate the iterative learning approach. Results show

that, with the proposed approach, the robot can learn

to collaboratively track the output with 10.0% error,

which is close to twice the robot noise of 4.6% of the
desired output. Furthermore, the data-inferred models

provided evidence of the effect of the human operator’s

dynamics on the co-tracking task.

1 Introduction

The idea of robots working alongside humans is at the

forefront of robotics research today. For example, robots
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are being developed to: (i) work with humans in indus-

trial assembly lines [1], (ii) assist in performing daily

tasks [2–6], (iii) aid in post-stroke rehabilitation [7], and

(iv) jointly solve problems for search and rescue opera-

tions, construction, and space exploration, e.g., [8].

Supervised learning techniques, such as reinforce-

ment learning (RL) for human-robot collaborative learn-

ing, imitate expert user demonstrations [9]. Such tech-

niques usually require extensive training sessions for

the human(s) to gain expertise in operating the robot,

which may not be feasible in all collaborative learn-

ing applications. When the human is not an expert but

aims to convey intent, the human action’s effect on the

combined human-robot output tracking includes the ef-

fect of the human-response dynamics [10]. Therefore,

effective collaboration between humans and robots in

these applications relies on correcting for the effects of

the human-response dynamics to infer the intent, i.e.,

the desired output. The main contribution of the cur-

rent work is to develop a novel iterative learning control

(ILC) algorithm for collaborative human-robot output

tracking when the human intent is not directly available

to the robot controller.

Iterative learning control (ILC) [11,12] is readily ap-

plicable to collaborative learning of demonstrated tra-

jectories, and has been well studied for programming

by demonstration (PbD), for example in automated

surgical tasks [13], in self-learning automobile cruise

control [14], and in model-based intent-estimation for

human-in-the-loop skill transfer [15,16]. Often in such

cases, the human is considered an expert and the tra-

jectory achieved by the human can be considered as

a trajectory to be followed by the robot, e.g., [17]. In

contrast, this article considers the use of ILC when the

desired output is not known to the robot controller but
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needs to be inferred iteratively based on the combined

human-robot output tracking, which is affected by the

human-response dynamics.

ILC methods originated in robotics applications, start-

ing with early works, e.g., [12], along with the use of an

inverse model of the robot dynamics in early works [18].

Such approaches converge to the desired output if the

modeling error is small. Improvements of the model

through parameter adaptation with data acquired dur-

ing the iteration was studied in [19] for robotics ap-

plication using a discrete time implementation. Such

estimation of the model data can enable faster conver-

gence for new trajectories as shown in [20]. In these

discrete-time approaches, the model is inverted and the

convergence depends on the system being minimum-

phase (i.e., no zeros on the right hand side of the com-

plex plane) to ensure that the inverse is stable, e.g., [21,

20]. More recent model-inversion-based iterative learn-

ing control use the noncausal inverse in the iteration law

for nonminimum-phase systems [22]. In the frequency

domain such noncausal inverses can be computed in the

Fourier domain [23] as

uk+1(ω) = uk(ω) + ρ(ω)G−1r (ω)ek(ω), (1)

where the robot input u is updated based on the output

tracking error e = qd − qr, ρ is the iteration gain, qd is

the desired output and qr is the achieved robot output.

For example, convergence to the desired output can be

guaranteed if the phase uncertainty in the model is less

than 90 degrees and the iteration gain is sufficiently

small [23]. Similar conditions on the phase were estab-

lished using the discrete-Fourier formulation in [24]. In

the frequency domain, accuracy of the robot models

Gr can be increased by using system input-output in-

formation from the previous iteration step k to form

data-based models,

Gr(ω) = yk(ω)/uk(ω) (2)

as shown in [25]. However, this input-output-based mod-

eling is not suitable for human-robot collaboration (e.g.,

as shown in Fig. 1) since both the human and the robot

models are needed, and when the desired output tra-

jectory qd that serves as an input to the human is not

available to the robot controller, which limits the ability

to estimate the human-response model GH in Fig. 1.

Nominal models of the human-robot system using

training data (where the desired output is known) could

be used, or learned from previous demonstrations [15,

16]. Since the models of the human-response models can

vary for each individual operator, the current work pro-

poses a new personalized approach, using the effect of

Robot
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Fig. 1 Schematic diagram of collaborative output tracking.

the human action on the achieved human-robot output

trajectory tracking, to infer and correct for the human-

robot dynamics during ILC for collaborative output

tracking. This allows the ILC to be personalized for

each individual human operator. Such correction of the

human-response dynamics is important when the hu-

man operator is not an expert and cannot achieve per-

fect tracking without assistance. Note that with an ex-

pert operator, the demonstrated trajectory q can be

close to the desired output qd, and the robot can then

aim to track the demonstrated trajectory q. In con-

trast, the proposed approach is applicable even when

achieved tracking of qd is poor, e.g., when the human

operator is a novice. The proposed approach aims to

model and iteratively correct for the human-response

dynamics. Moreover, the article develops conditions for

convergence of the proposed collaborative output track-

ing approach. Finally, the proposed approach allows

varying level of assistance from the robot during the

collaborative output tracking [26]. Such differing levels

of assistance can be important, e.g., in rehabilitation

robotics using active orthoses [27,28] and in robotic

prostheses [29–32].

The article is organized as follows. Section 2 for-

malizes the problem, presents the proposed iterative

model inversion algorithm and develops convergence

conditions for the proposed approach. The collabora-

tive human-robot system, used to evaluate the proposed

approach, is described in Section 3 along with imple-

mentation details. Experimental results are discussed

in Section 4 and conclusions are in Section 5.

2 Problem formulation and solution

2.1 Problem setup

The objective is to learn the robot controller input u

that achieves the robot output qr required to track the
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desired output qd, i.e.,

q(·) = qd(·), (3)

when the desired output qd is known to the human but

not known to the robot controller. Here, the total out-

put q is a combination of the human output qh and the

robot output qr (in the frequency domain)

q(ω) = qr(ω) + qh(ω) (4)

as illustrated in Fig. 1. The robot input-output rela-

tionship is modeled as

qr(ω) = GR(ω)u(ω), (5)

where GR is the robot transfer function, and u is the

input to the robot. Similarly, the difference between the

desired output qd and the achieved output q affects the

human response, which is modeled as

qh(ω) = GH(ω) (qd(ω)− q(ω)) , (6)

whereGH represents the human-response dynamics [10].

Note, that in (6), the input to the human operator

is the (output) tracking error, e defined as,

e(·) = qd(·)− q(·). (7)

In general, the human response dynamics may include

multiple input channels including the desired trajec-

tory, qd (feed-forward loop) and the output, q (internal

loop), but the response dynamics model based on the

tracking error, as in (6), has been shown to be a rea-

sonable assumption for low frequencies [33].

In terms of the tracking error, e(·), the objective

of the collaborative task is to choose a suitable robot
input u that in collaboration with the human input

qh achieves zero tracking error, e(·) = 0. However, the

research challenge is that the desired output qd and

therefore the tracking error e are only known to the

human but not to the robot controller. The controller

needs to infer the tracking error e (based on human

action) and then reduce it.

2.2 Proposed Model-inversion-based ILC

The iterative learning control (ILC) approach updates

the robot control input u (in the frequency domain for

every iteration step k ≥ 0) as,

uk+1(ω) = uk(ω) + ρk(ω)Ĝ−1k (ω)ec,k(ω), (8)

where ρk is the learning gain, Ĝk is the available model

of the system, and ec,k is the estimate of the correction

needed. If the desired trajectory qd were known to the

robot controller, then the correction needed ec,k could

be chosen as the robot (desired-output) tracking error

ed,k, as

ed,k(ω) = β(ω)qd(ω)− qr,k(ω) (9)

with β ∈ [0, 1] representing the level of assistance pro-

vided by the robot controller to track the desired out-

put qd, and is presumed to be pre-defined in this work.

However, since the desired output qd is not available

to the robot controller, the correction term, ec,k in (8)

is based on the difference between the total output qk
of the system and the contribution qr,k of the robot

towards this output, i.e., the error term er,k

er,k(ω) = β(ω)qk(ω)− qr,k(ω). (10)

Thus, with the error term er,k, defined in (10) as the

correction term ec,k, the collaborative update law (8)

is modified to,

uk+1(ω) = uk + ρk(ω)Ĝ−1k (ω) [β(ω)qk(ω)− qr,k(ω)] .

(11)

The research question is stated formally below.

Problem Statement: Find the inverse model Ĝ−1k (ω)

during collaborative human-robot output tracking that

ensures convergence of the ILC update law in (11), when

the desired output trajectory, qd is not available to the

robot controller.

2.3 Impact of human-response dynamics on tracking

The human ability to track a trajectory influences the

robot (desired-output tracking) error ed,k in (9) since

the robot learns about the desired output trajectory qd
through human action. As shown below, the impact of

the human-response dynamics GH on the output track-

ing error ed,k reduces if the human is good at track-

ing the desired output or if the assistance level β of

the robot is high (even if the human tracking ability is

poor).

If the ILC with the update law (11) converges and the

inverse system Ĝ−1k (ω) and iteration gain ρk(ω) are

nonzero at frequency ω, then the error term er,k con-

verges to zero, i.e.,

lim
k→∞

er,k(ω) = 0, (12)

with the robot providing the desired level of assistance

β for the final output q∗, i.e.,

q∗r (ω) = βq∗(ω) (13)
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where

q∗r (ω) = lim
k→∞

qr,k(ω), q∗(ω) = lim
k→∞

qk(ω). (14)

Note that a relationship between total output qk in

(4) and the error term er,k can be established through

the input-output relationship for the control scheme in

Fig. 1 as

qk(ω) =

(
1

1 +GH(ω)

)
qr,k(ω) +

(
GH(ω)

1 +GH(ω)

)
qd(ω).

(15)

Using (13) and (14), the converged solutions satisfy, by

taking limits k →∞ on both sides of (15),

q∗(ω) =

(
β(ω)

1 +GH(ω)

)
q∗(ω) +

(
GH(ω)

1 +GH(ω)

)
qd(ω).

(16)

or

q∗(ω) =

(
GH(ω)

1 +GH(ω)− β(ω)

)
qd(ω) (17)

resulting in the final output tracking error e∗ from (7)

e∗(ω) = qd(ω)− q∗(ω) =

(
1− β(ω)

1− β(ω) +GH(ω)

)
qd(ω).

(18)

The human-response dynamics GH impacts the output

tracking error e as seen in (18). If the open-loop gain

|GH(ω)| is high, then good tracking can be achieved

by the human alone. Therefore, the collaborative ap-

proach (where the robot does not know the desired

output but aims to track some fraction of the achieved

total human-robot output qk) results in a small out-

put tracking error e when the human tracking ability

is good. Interestingly, even when the human tracking

ability is not good, i.e., |GH(ω)| is low, the final col-

laborative tracking can be good (i.e., a small output

tracking error e can be achieved), if the assistance level

is high, i.e., β(ω) → 1 since the numerator becomes

close to zero in the right-hand-side of (18).

Remark 1 (Expert operator). When the desired out-

put qd is not known to the robot controller, the final

tracking error e∗ depends on the ability of the human

to track the desired output, i.e., feedback response dy-

namics GH of the human operator. Consequently, good

final collaborative tracking (with different levels of as-

sistance β is achieved when the human operator is an

expert at tracking (|GH(ω)| is high).

Remark 2 (Novice operator). Even with a novice op-

erator who does not have the expertise to achieve good

tracking (|GH(ω)| is low), and without direct access to

the desired output qd, good final tracking can be achieved

with the proposed approach if the robotic assistance level

is high, i.e., β(ω)→ 1.

Remark 3 (Frequency dependent assistance). Good

tracking can often be achieved at low frequencies by hu-

man operators, but not at relatively high frequencies,

which can be accommodated in the current formulation

since it allows for a frequency-dependent, robotic assis-

tance level β(ω).

2.4 Iterative model-inversion algorithm

First, the ideal choice of the unknown model Ĝ−1k in

(11) is investigated. Multiplying (11) throughout by the

robot transfer function GR, using (5) and suppressing

frequency dependence on ω (for ease of notation), re-

sults in

qr,k+1 = qr,k + ρkGRĜ
−1
k er,k. (19)

Substituting for the output qk from (15) into (10), the

robot output qr,k at iteration step k can be expressed

as

qr,k =

(
βGH

1 +GH

)
qd −

(
1 +GH

1 +GH − β

)
er,k, (20)

which can be used to substitute for qr,k and qr,k+1 into

(19), resulting in

er,k+1 = er,k

[
1− Ĝ−1k ρkGR

(
1− β

1 +GH

)]
,

= er,k

[
1− Ĝ−1k G

]
,

(21)

where, the transfer function, G is defined as,

G(ω) = ρk(ω)GR(ω)

(
1− β

1 +GH(ω)

)
. (22)

Ideally, the error er,k+1 at the next iteration step k+ 1

can be made zero, i.e., er,k+1 = 0 in (21). However, this

requires the selection of the model Ĝk in (21) as the

transfer function G, i.e.

Ĝk(ω) = G(ω). (23)

However, no prior knowledge is available for this trans-

fer function G (to use an a priori fixed model as in [23]),

nor is input/output data available to compute G as in

[25]. Therefore, the current article proposes the use of
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the error relation in (21) from the previous iteration

step

er,k = er,k−1

[
1− Ĝ−1k−1G

]
, (24)

to estimate the transfer function G as

G(ω) = Ĝk−1(ω)

(
er,k−1(ω)− er,k(ω)

er,k−1(ω)

)
. (25)

In practice, noise may be present in the measured out-

put leading to noise nk in the measured error er,k,

ẽr,k(ω) = er,k(ω) + nk(ω). (26)

Therefore, the model Ĝk in (23) is found using the

modelG computed using the measured errors, ẽr,k, ẽr,k−1,

similar to (25), as

Ĝk(ω) = Ĝk−1(ω)

(
ẽr,k−1(ω)− ẽr,k(ω)

ẽr,k−1(ω)

)
. (27)

This estimate of the model Ĝk is used in the model-

inversion based ILC algorithm in (11).

Remark 4 (Update dependence on models). While the

estimated model Ĝk update in (27) is based on the error

term er,k−1 and er,k, it aims to match G as in (23).

Note that G depends on both the human-response dy-

namics GH and the robot dynamics GR as seen in (22).

2.5 Convergence of proposed ILC

The model update in (27) leads to convergence of the

collaborative ILC in (11) under the following assump-

tion that the noise term nk in (26) is bounded from

above for each frequency ω and for each iteration step

k as,

|nk(ω)| < N(ω) < ∞. (28)

Lemma (Convergence). The collaborative update law

in (11) with the model update in (27) results in conver-

gence of the robot tracking error er,k (without measure-

ment noise) at frequency ω, i.e.,

lim
k→∞

|er,k(ω)| = 0, (29)

if for some iteration step k∗ the following conditions

are met, the measured error is sufficiently larger than

the noise, i.e.,

|ẽr,k∗−1(ω)| > α1N(ω), (30)

the difference in the measured error is sufficiently larger

than the noise, i.e.,

|ẽr,k∗(ω)− ẽr,k∗−1(ω)| > α2N(ω), (31)

where α1, α2 are positive scalars that satisfy,

2α1 + α2

α2(α1 − 1)
< 1, (32)

and the model update is given by

Ĝ−1k (ω) =


Ĝ−1k−1(ω)

(
ẽr,k−1(ω)

ẽr,k−1(ω)−ẽr,k(ω)

)
,

when (30) and (31) are satisfied,

Ĝ−1k−1(ω), otherwise.

(33)

Proof. The error-dynamics (without measurement noise)

in (21), results in a contraction leading to the conver-

gence condition in (29) if the error gain term, γk =

1 − Ĝ−1k G, in (21) has magnitude less than one, i.e.,

there exists some iteration step k∗ beyond which, i.e.,

for k ≥ k∗,

|γk(ω)| =
∣∣∣1− Ĝ−1k (ω)G(ω)

∣∣∣ < 1. (34)

Using (25) and (27) in the LHS of the inequality in

(34), and suppressing the dependence on ω for ease in

notation,

|γk| =
∣∣∣1− ( ẽr,k−1

ẽr,k−1−ẽr,k

)(
er,k−1−er,k
er,k−1

)∣∣∣
and using (29),

=
∣∣∣1− ( er,k−1+nk−1

er,k−1

)(
ẽr,k−1−ẽr,k+nk−nk−1

ẽr,k−1−ẽr,k

)∣∣∣
=
∣∣∣ nk−1

er,k−1
+ nk−nk−1

ẽr,k−1−ẽr,k +
(
nk−1

er,k−1

)(
nk−nk−1

ẽr,k−1−ẽr,k

)∣∣∣
and applying the triangle inequality,

≤
∣∣∣ nk−1

er,k−1

∣∣∣+
∣∣∣ nk−nk−1

ẽr,k−1−ẽr,k

∣∣∣+
∣∣∣( nk−1

er,k−1

)(
nk−nk−1

ẽr,k−1−ẽr,k

)∣∣∣
(35)

Each term in the last expression can be bounded using

the measurement noise bound in (28) as,∣∣∣∣ nk−1er,k−1

∣∣∣∣ =

∣∣∣∣ nk−1
ẽr,k−1 − nk−1

∣∣∣∣ ≤ N

(α1 − 1)N
=

1

α1 − 1
,

(36)

and,∣∣∣∣ nk − nk−1ẽr,k−1 − ẽr,k

∣∣∣∣ ≤ 2N

α2N
=

2

α2
. (37)

Then, applying the bounds in (36) and (37) to the ex-

pression in (35) results in

|γk(ω)| ≤ 1

α1 − 1
+

2

α2
+

2

α2(α1 − 1)

=
2α1 + α2

α2(α1 − 1)
< 1,

(38)
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which is the required condition in (32) of the Lemma.

This completes the proof.

Remark 5. The required condition in (32) is satisfied

if the constants α1, α2 are chosen large enough, e.g.,

α1 > 2, α2 >
2α1

α1 − 2
(39)

where the second inequality follows from (32) if α1 > 2

and α2 > 0 since 2α1 + α2 < α2α1 − α2.

3 System description and implementation

The experiment was selected to represent applications

where the robot and the human operator are collabo-

ratively completing a task, e.g., (i) in applications such

as rehabilitation where the robot might be programmed

by kinesthetic teaching with the human operator physi-

cally (collaboratively) moving the endpoint of the robot,

and (ii) in manufacturing operations where the opera-

tor might be moving a tool with assistance from the

robot. The goal is to allow novice operators, who might

be good at the task but not good at operating the robot,

can work with the robot. Towards this, the human-in-

the-loop response dynamics is modeled and corrected

iteratively as illustrated with the experimental system

described below.

3.1 Overview of experimental setup

A MICO2 robot arm, manufactured by Kinova Robotics

was used in the human-robot experiments, where the

objective was to follow a specified output trajectory,

known to the human operator but not known to the

robot. Specifying the desired output qd to the human

operator allowed the evaluation of the convergence with

the proposed iterative approach and quantification of

the error in output tracking. The experimental setup is

shown in Fig. 2.

A flexible structure consisting of a coil spring was

attached rigidly to the end-effector of the MICO2 robot

arm. A laser attached to the end of the flexible structure

projected a red dot on to the screen — the position of

the red dot on the screen was the output vector,

q = [qx, qy]T . (40)

In what follows, vectors will be denoted in bold; non-

bold symbols, such as q, will denote scalars in either the

x or y axes, with the direction specifically clarified with

a subscript, e.g., qx, when necessary. An LCD projector

displayed the desired trajectory qd, represented by the

center of a green circle. A camera was used to measure

2
3

4

7

6

5

1

Fig. 2 Experimental setup for the human-robot output-
tracking experiment: (1) human operator; (2) Kinova Mico
4-dof robot arm; (3) flexible end-effector with laser pointer
embedded in the tip; (4) LCD projector used to display the
desired output qd (green circle) (6) and Logitech C920 web-
camera (positioned adjacent to the projector (not shown))
used to sense the output q (laser) (5) and the desired output
qd (green circle) (6); and (7) screen where projected image
is displayed.

the real-time positions of the laser dot q and the green

circle qd at a frame rate of 30Hz and the signals were

filtered with a zero-phase second-order Butterworth fil-

ter with cutoff frequency of 5 Hz [34]. Image processing

tools used, e.g., to find the center of the green circle

for the desired output qd, were from the OpenCV li-

brary [35]. The objective was to track the center of the

green circle qd, whose trajectory was specified but not

known a priori to the human operator (and was not

available to the robot controller), using the red laser

dot q.

3.2 Flexible human-robot interface

The proposed collaborative human-robot control scheme

was applied through a flexible-spring system shown in

Fig. 3. The flexibility of the spring human-robot-interface

allowed both the human and robot to simultaneously

control the total output, q, namely the position of the

red dot on the screen This facilitated demonstration of

the task (such as tracking the desired output) by the

human operator even when the robot was operating in-

dependently, e.g., during the initial trial k = 0 when the

robot had no information about the desired output.

The robot end-effector was attached to one end of

the flexible structure, i.e., end (A) in Fig. 3, while the

human operator deflected the structure relative to end

(A) by applying a displacement, δh at the other end,

i.e., end (B) in Fig. 3. Thus, relative to the end (A),

the flexible structure can be considered as a cantiliver

beam with a concentrated load, P acting at end (B)

due to the human operator. Then, the displacement of

end (B) relative to end (A), i.e., δh can be related to the

slope, θ as, (using the Timoshenko beam theory [36])
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l

L

qh

δh
θ

(A) (B)

qr

q

Fig. 3 Collaborative control of the flexible structure. (a)
Robot end-effector controlled position, qr = (xr, yr) of end
(A), (b) Human operator’s deflection with respect to end (A),
δh = (δx,h, δy,h), (c) Total position, q = qr + qh, where
qh = f(δh), as in (42).

θ ≈ 3δh
2l , where, l is the length of the flexible structure,

and δh = (δh,x, δh,y) are deflections of end (B) along

each coordinate axis (x, y). The position q of the red

dot on the screen can then be obtained (in either the x

or y axes) as,

q = qr + qh, where qh = f(δh). (41)

When the distance L to the screen is large compared

to the length l of the flexible structure, i.e., L� l, the

relationship between the deflection, δh and the screen

position, qh can be simplified to,

qh = f(δh) ≈ L tan θ = L tan

(
3δh
2l

)
≈ L

(
3δh
2l

)
,

(42)

where the angle θ is as illustrated in Fig. 3.

3.3 Screen To Robot Transformation

The screen where the position of the robot is measured

was not fully parallel to the x, y axes of the robot end

effector motion. Hence a transformation was used to

map the observed positions on the screen qS to the

robot x, y coordinates qR:

qR = AqS + b (43)

where the elements of the 2×2 matrix A and 2×1 vector

b were found using a least squares fit with experimen-

tally measured qR and qS. Note that this map is invert-

ible, i.e., A is invertible. In the following, most data are

presented in the robot coordinate frame. Therefore, the

superscript R in (43) for the robot frame is not added

for notational ease. However, the superscript S for the

screen frame is explicitly denoted.
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Fig. 4 Desired output qd = [qd,x, qd,y]T in Section 3.5
in robot frame qR

d = [qRd,x, q
R
d,y]T and screen frame. qS

d =

[qSd,x, q
S
d,y]T .

3.4 Robot position control

The velocity of the robot arm’s end-effector can be di-

rectly controlled in Cartesian space with an Application

Programming Interface (API), written in C++. In this

mode of operation, the linear speed of the robot was

limited to 0.2 (m/s), which aids a human operator to

safely interact with the robot. An outer proportional

feedback loop was designed around the inner Kinova

velocity controller. Thus, the controller was designed to

track the robot command u = [ux, uy]T , which resulted

in the robot position qr = [qr,x, qr,y]T .

3.5 The desired output trajectory

The desired output trajectory qd is shown in Fig. 4.

To design the desired output, first, unfiltered nominal
output components xn, yn were specified as

xn(t) =

{
sin[2ω0(t− t1)] if t ∈ [t1, t2]

0 if t ∈ [0, t1] ∪ [t2, Tp]
(44)

yn(t) =

{
sin(ω0(t− t1)) if t ∈ [t1, t2]

0 if t ∈ [0, t1] ∪ [t2, Tp]
(45)

where the frequency f0 = ω0/2π was selected as f0 =

0.125 (Hz), the movement occurred over one time pe-

riod of the slower sinusoid, i.e., t2 − t1 = T0 = 1/f0 =

8 (s), and zero-displacement padding of 10 (s) was added

at the beginning and end, i.e., t1 = 10 (s) and the to-

tal time was Tp = 28 (s). To ensure that the desired

output qSd = [qSd,x, q
S
d,y]T (in the screen frame) is suffi-

ciently smooth, the nominal output components xn, yn
were filtered and scaled as,

qSd,x(ω) = s1Gf (ω)xd(ω)

qSd,y(ω) = s2Gf (ω)yd(ω),
(46)
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Fig. 5 Estimated frequency-dependent upper bounds Nx(ω)
and Ny(ω) on noise defined in (50).

with a zero phase filter Gf ,

Gf (ω) =

(
ωc

ωc − jω

)(
ωc

ωc + jω

)
(47)

where j =
√
−1, the cutoff frequency fc = ωc/2π =

0.15 (Hz), and s1 > 0, s2 > 0 in (46) were real-valued

scaling factors used to obtain a peak-to-peak amplitude

of 10 (cm) in each component of the desired output

trajectory qSd as in Fig. 4. A measure of the size of the

desired output qd is

qd,max = max
t∈[0,Tp]

√
qSd,x(t)2 + qSd,y(t)2 = 6.5 (cm), (48)

which is used in the following to normalize the measured

tracking error.

3.6 Algorithm implementation

To implement the proposed algorthm, described in one

dimension in Algorithm 1, at each iteration step k, in-

put uk was applied to the robot, and the resulting out-

put qSk was measured and mapped into the robot’s coor-

dinate frame using (43). Also, the inverse model Ĝ−1k (ω)

was computed (in both (x,y) coordinates) using (33),

and the robot command input uk+1 was computed us-

ing (11) and applied to the robot on the following itera-

tion step k+1. The model update was performed when

the estimated error was sufficiently large compared to

the measurement noise nk. Towards this, the constants

α1, α2 in (32) were selected to be α1 = 15, α2 = α1/5

and an estimate on the upper bound N(ω) of the noise

in (30) was experimentally selected, based on the robot

noise, as follows. The robot input u was repeatedly com-

manded (M times) to track a fixed trajectory and the

deviations in the achieved trajectory was used to esti-

mate the controller-related system noise. Although the

robot controller does not have access to the desired out-

put during human-robot collaboration experiments, the

desired output [qd,x, qd,y]T (already described earlier)

Algorithm 1 Data-driven ILC

Require: β, α1, α2, N(ω), ρ(ω), Ĝ−1
0 (ω), u0(ω)

Initialize:
Apply control u0(ω), measure outputs q0(ω), qr,0(ω).
Compute: ẽr,0 = βq0(ω)− qr,0(ω) (10).

Update: u1(ω) = u0(ω) + ρ(ω)Ĝ−1
0 (ω)ẽr,0(ω) (11).

k = 1.
while iteration step k < k∗ with k∗ = 20 in current
experiments do

Apply control uk(ω), measure outputs qk(ω), qr,k(ω).
Compute: ẽr,k = βqk(ω)− qr,k(ω) (10).
for each frequency ω do

Update model:
if |ẽr,k(ω)| > α1N(ω) (30)
and |ẽr,k(ω)− ẽr,k−1(ω)| > α2N(ω) (31) then

Ĝ−1
k (ω) = Ĝ−1

k−1(ω)
(

ẽr,k−1(ω)

ẽr,k−1(ω)−ẽr,k(ω)

)
(33),

else
Ĝ−1

k (ω) = Ĝ−1
k−1(ω) (33).

end if
end for
Update:
uk+1(ω) = uk(ω) + ρ(ω)Ĝ−1

k (ω)ẽr,k(ω) (11).
k = k + 1.

end while

was selected as the nominal trajectory for the noise es-

timation. This allows the comparative evaluation of the

results of the experiments in terms of noise at the de-

sired trajectory. In practice, when the desired trajectory

is unknown, other trajectories could be used to estimate

the noise. The noise at the mth trial was characterized

as the deviation from the mean value of the data, i.e.,

nr,m(t) = qr,m(t)− q̄r(t) (49)

where q̄r(t) denotes the mean value at time t over the

M trials. Then the upper bound on the noise, shown in

Fig. 5, in the x and y axes were estimated as

Nx(ω) = µM (|nr,x(ω)|) + σM (|nr,x(ω)|)
Ny(ω) = µM (|nr,y(ω)|) + σM (|nr,y(ω)|)

(50)

with the pointwise (in frequency ω) mean µM and stan-

dard deviation σM defined as

µM (f) =
1

M

M∑
m=1

fm(·), (51)

σM (f) =
1

M

M∑
m=1

(fm(·)− µM (f))
2
, (52)

where f is a dummy variable. The learning gain ρk(ω)

in (11) (for both axes) was limited to the learning band-

width, i.e.,

ρk(ω) =

{
ρ if ω ≤ ωmax
0 otherwise,

(53)
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Fig. 6 (Robot-only case) Tracking results in (x, y) coordi-
nates for iteration steps: (a) k = 1, and (b) k = 20 during
the verification experiment with ρ = 1. Desired output qd,k,
defined in (46), for all iteration steps k are plotted, and the
thickness of the plot represents the camera noise.

where ρ is a non-negative scalar. The nominal value

of the iteration gain was selected as ρ = 1 and the

maximum learning frequency was selected as fmax =

ωmax/2π = 0.5 (Hz), which is near the bandwidth limit

of human smooth visual tracking [16]. The inverse model

in (33) was initialized to unity for each frequency, e.g.,

Ĝ−10 (ω) = 1. Note that, when available, nominal mod-

els averaged over different human operators, or models

acquired from previous trials for the individual human

operator could be used as the initial inverse model Ĝ−10 .

4 Results and discussion

Experimental results are presented to evaluate the track-

ing performance of the proposed ILC algorithm. Results

are discussed for two cases: (i) skill transfer case when

the robot is fully tracking the desired output (β = 1)

and (ii) co-tracking case when the human and the robot

are collaborating (β = 0.5) on the output tracking task.

The section begins by presenting results for verification

of the proposed approach with only the robot, without

the human.

4.1 Verification with robot-only case

The proposed algorithm was implemented to track the

desired output qd (see Fig. 4) without the human opera-

tor to verify if precision output tracking can be achieved,

and whether the model estimated using the proposed

error-based algorithm matched the expected robot dy-

namics. Note that without the human in the verifica-

tion trials, the total output qk at iteration step k was

just the robot output, i.e., qk = qr,k (see (4)), and the
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Fig. 7 (Robot-only case) Learned control input during ver-
ification experiment with learning gain ρ = 1: (a) ux,k and
(b) uy,k.
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Fig. 8 (Robot-only case) Tracking results in time during the
verification experiment with learning gain ρ = 1: (a) qx,k, and
(b) qy,k.
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Fig. 9 (Robot-only case) Tracking error ēk, defined in (54),
for each iteration step during the verification experiment.
Robot noise n̄r, defined in (55), denoted as the solid hori-
zontal line.

desired output qd,k, at iteration step k, was directly

supplied to the ILC algorithm, as in (8) and (9).

4.1.1 Achieved output tracking

The proposed algorithm without the human operator

achieved precision output tracking, reducing the track-

ing error close to the robot noise level. The tracking
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Fig. 10 (Robot-only case) Tracking error ek, defined in (7),
in time during verification experiment for iteration steps k =
0 and k = 20: (a) ex,k and (b) ey,k.

error at each iteration step k was characterized as,

ēk(%) = max
t∈[0,Tp]

√
ex,k(t)2 + ey,k(t)2

qd,max
× 100 (54)

where ex,k and ey,k were the components of the error

defined in (7). The control input u1 at iteration step

k = 1, seen in Fig. 7, led to a large phase error in the

output q1 (Fig. 8). However, by the second k = 2 itera-

tion step, this phase error had been corrected substan-

tially, and by the last iteration step, shown in the (x, y)-

space in Fig. 6(b) and as function of time in Fig. 8, the

robot tracking error reduced to ē20 = 3.7%. The track-

ing error quantified as ēk and shown in Fig. 9 decreased

with iteration step k and eventually converged close to

the robot noise n̄r, characterized with M repeated com-

mands as in Section 3.6, and computed as

n̄r(%) = max
m∈M
t∈[0,Tp]

√
nr,x,m(t)2 + nr,y,m(t)2

qd,max
× 100 (55)

where nr,m defined in (49), and the maximum is taken

over both time and M trials. The robot noise n̄r pro-

vided an estimate of the lower bound on robot per-

formance and found to be 4.6% of the desired output.

Fig. 10 shows each component of the error ek, defined

in (7), in the time domain for iteration steps k = 0

and k = 20. The results of the verification experiment

are recorded in row 1, and the noise value in row 4 of

Table 1.

The proposed model update law in (33) captured

the robot dynamics during the verification (robot-only)

experiment. Figure 11 shows the last iteratively learned

model Ĝx,20(ω) (e.g., the inverse of (33)) and compares

it with the robot dynamics GR,x(ω) computed as

GR,x(ω) =
qx,20(ω)

ux,20(ω)
(56)
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Fig. 11 Iteratively learned model Ĝx,20, defined in (33),
compared with calculated robot dynamics GR,x, defined in
(56): (a) magnitude reported in decibels, (b) phase in degrees,
and (c) spectrum of the desired output qd,x, defined in (46),
for all k iteration steps.

at the k = 20 iteration step. From the spectrum of the

desired output shown in Fig. 11(c), it can been seen

that the learned model Ĝx,20(ω) matched the robot dy-

namics GR,x(ω) at frequencies where the desired output

spectrum had significant content, up to ∼ 0.35 Hz.

4.2 Skill transfer case, β = 1

The proposed method, applied to the human-robot col-

laboration experiment with level of assistance β = 1,

where the robot aims to track the output, resulted in

tracking well below the human noise n̄h, and tracking

error ē20 = 10.0%. The human noise n̄h, used as an esti-

mate of expected human performance without the robot

collaborator, was quantified as the maximum error dur-

ing the initial human demonstration, e.g., at iteration

step k = 0:

n̄h(%) = max
t∈[0,Tp]

√
ex,0(t)2 + ey,0(t)2

qd,max
× 100. (57)

The achieved output tracking is shown in Fig. 12 for

a few iteration steps. During the initial k = 0 iteration

step (Fig. 12(a)), the initial human demonstration can

be seen as the output qk(t) (e.g., qr(t) = 0, see (4)).

By iteration step k = 3, shown in Fig. 12(c), the robot

had learned most of the desired trajectory, evidenced by

the large reduction in human output qh(t). The robot

tracking error was quantified as

ēd,k(%) = max
t∈[0,Tp]

√
ed,x,k(t)2 + ed,y,k(t)2

qd,max
× 100 (58)
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Fig. 12 Tracking results in (x, y) coordinates during human-
robot collaboration experiment with level of assistance β = 1
and learning gain ρ = 1, for iteration steps: (a) k = 0, (b)
k = 1, (c) k = 3, and (d) k = 20. Desired output qd,k(t),
defined in (46), for all iteration steps k are plotted, and the
thickness of the plot represents the camera noise.
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Fig. 13 Tracking error ek, defined in (7), in time during
the human-robot collaboration experiment with level of as-
sistance β = 1 and learning gain ρ = 1 for iteration steps
k = 0 and k = 20: (a) ex,k and (b) ey,k.

with ed,x,k and ed,y,k were the components of the error

defined in (9). At the k = 20 iteration step (Fig. 12(d)),

the robot tracked the desired output qd with a robot

tracking error ēd,20 = 12.7%, and the human output qh
nearly vanished. Reduction in tracking error is observed

in Figure 13, which shows each component of the error

ek, defined in (7), and in Fig. 14, which shows each com-

ponent of the robot tracking error ed,k, defined in (9), in

the time domain, for iteration steps k = 0 and k = 20.
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Fig. 14 Robot tracking error ed,k, defined in (9), in time
during the human-robot collaboration experiment with level
of assistance β = 1 and learning gain ρ = 1 for iteration steps
k = 0 and k = 20: (a) ed,x,k and (b) ed,y,k.
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Fig. 15 Tracking error ēk, defined in (54), and robot track-
ing error ēd,k, defined in (58), for each iteration step during
the human-robot collaboration experiment with level of as-
sistance β = 1 and learning gain ρ = 1. The robot noise n̄r,
defined in (55), and human noise n̄h, defined in (57), can be
seen as the solid and dashed horizontal lines, respectively.

The tracking error ēk, defined in (54), reduced to just

greater than twice the size of the robot noise during the

human-robot collaboration as seen in Fig. 15.

4.3 Co-tracking case, β = 0.5

Choosing the level of assistance β = 0.5 resulted in the

robot providing approximately half of the desired out-

put, and the human provided the remaining half. Fig-

ure 16 shows tracking results for sample iteration steps.

The initial human demonstration is shown in Fig. 16(a);

note that the scaled version of the desired output βqd,k
can be seen as the solid black traces. During the k = 1

iteration step (Fig. 16(b)), the robot provided some of

the scaled desired output. By the final iteration step

(k = 20), shown in Fig. 16(d), the robot output qr
tracked about half of the desired output and the hu-

man output qh was reduced to half. Figure 17 shows

each component of the error ek, defined in (7), and

Fig. 18 shows each component of the robot tracking er-

ror ed,k, defined in (9), in the time domain for iteration
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Fig. 16 Tracking results in (x, y) coordinates during human-
robot collaboration experiment with level of assistance β =
0.5 and learning gain ρ = 1, for iteration steps: (a) k = 0,
(b) k = 1, (c) k = 3, and (d) k = 20. Desired output qd,k(t),
defined in (46), for all iteration steps k are plotted, and the
thickness of the plot represents the camera noise.
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Fig. 17 Tracking error ek, defined in (7), in time, during
the human-robot collaboration experiment with level of as-
sistance β = 0.5 and learning gain ρ = 1 for iteration steps
k = 0 and k = 20: (a) ex,k and (b) ey,k.

steps k = 0 and k = 20. The reduction of the error (ēk,

defined in (54), and robot tracking error ēd,k, defined

in (58)) with iteration step k are shown in Fig. 19. Dur-

ing the final k = 20 iteration step, the tracking error

ē20 and the robot tracking error ēd,20 were 16.6% and

4.6%, respectively, as summarized in Table 1.

The final output tracking error with the collabora-

tive tracking β = 0.5 was larger than the error for the

skill-transfer case with a larger level of assistance β = 1,
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Fig. 18 Robot tracking error ed,k, defined in (9), in time
during the human-robot collaboration experiment with level
of assistance β = 0.5 and learning gain ρ = 1 for iteration
steps k = 0 and k = 20: (a) ed,x,k and (b) ed,y,k.
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Fig. 19 Tracking error ēk, defined in (54), and robot track-
ing error ēd,k, defined in (58), for each iteration step during
the human-robot collaboration experiment with level of as-
sistance β = 0.5 and learning gain ρ = 1. The robot noise n̄r,
defined in (55), and human noise n̄h, defined in (57), can be
seen as the solid and dashed horizontal lines, respectively.

0 10 20
0

50

100

(a)

β = 1

M
a
x
E
ff
o
rt

(%
)

iteration
0 10 20

0

50

100

(b)
iteration

M
a
x
E
ff
o
rt

(%
)

β = 0.5

Fr, k Fh , k

Fig. 20 Robot effort Fr,k and human effort Fh,k, defined
in (59), for each iteration step k, during: (a) skill-transfer
case, and (b) co-tracking case.

see Fig. 12 for comparison. This is expected since ac-

cording to (18), the final tracking error depends on the

human performance when the level of assistance β is

less than one, i.e., β 6= 1 since the human must gener-

ate some of the desired output qd. On the other hand,

with the level of assistance set at β = 1, the human’s
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Table 1 Summary of experimental results. Tracking error ēk
is defined in (54), robot tracking error ēd,k is defined in (58),
robot noise n̄r, reported in row 4, is defined in (55), and
human noise n̄h, in row 5, is defined in (57).

ē20(%) ēd,20(%)
1 Robot Only 3.7 x
3 β = 1 10.0 12.7
3 β = 0.5 16.6 4.1

4 robot noise, n̄r 4.6 x
5 human noise, n̄h 18.3 x

output qh eventually becomes small as the number of

iterations increase. Therefore, with a lower level of as-

sistance β = 0.5, the tracking error ēk, defined in (54),

converged to a higher value. This effect is seen by com-

paring the tracking error for the lower level of assistance

β = 0.5, in Fig. 17 and Fig. 19, and for the higher level

of assistance β = 1, in Fig. 13 and Fig. 15. In the later,

the tracking error ēk converged closer to the robot noise

n̄r, defined in (55).

Figure 20 compares the amount of effort contributed

by the robot and human for both the co-tracking (β =

0.5) and skill-transfer (β = 1) cases. Effort, at each

iteration step k, was quantified as

Fi,k(%) = max
t∈[0,Tp]

√
qi,x,k(t)2 + qi,y,k(t)2

qd,max
× 100, (59)

where i is either r (for robot) or h (for human), qi,x,k
and qi,y,k are the output components (e.g., either the

robot or the human), and the size of the desired output

qd,max is defined in (48). It can be seen in Fig. 20(a)

that, as expected, during the skill-transfer (e.g, β =

1) the robot effort Fr,k is initially zero and increases

to 100%, while the human effort begins at 100% and

decreases towards zero as the number of iteration steps

k increase. In earlier iteration steps (e.g., k = 2−3), the

robot provided over 100% of the desired output, since

it was still learning the desired output. On the other

hand, during the 50% co-tracking case with β = 0.5, as

seen in Fig. 20(b), the robot effort Fr,k begins at zero

and increase to about 50%, while the human effort Fh,k
initially provides 100% and decreases to 50%.

4.4 Ability to capture human-response dynamics

The proposed method captured the impact of human-

response dynamics during the human-robot collabora-

tion. In order to analyze the influence of the human-

response dynamics, the effect of the robot dynamics,

e.g., in the x axis, GR,x(ω) in (56) and shown in Fig. 11

was removed from the the learned models Ĝx,k (and

similarly in Ĝy,k) in (33) at each iteration step k by

using the expression for G in (22), as

G̃x,k(ω) =
Ĝx,k(ω)

ρ(ω)GR,x(ω)
≈
(

1− β

1 +GH,x(ω)

)
. (60)

These normalized models G̃x,k and G̃y,k are shown in

Fig. 21, for frequencies where the models had been up-

dated at least once (e.g., see Lemma in Sect. 2.5), for

both: (i) the skill-transfer case with level of assistance

β = 1, and (ii) the co-tracking case with level of as-

sistance β = 0.5. Note, that if the human-robot dy-

namics Ĝx,k did not depend on the human, then the

phase in the normalized Fig. 21(b), would remain near

zero degrees for all frequencies where the model was up-

dated at some iteration step k. The results show that, in

both cases, the phase in Fig. 21(b) for the x-axis, and

Fig. 21(d) for the y-axis, deviated from zero degrees.

Thus, these results indicate that the proposed method

captures the impact of potentially-varying human-response

dynamicsGH(ω) on the human-robot dynamics Ĝk dur-

ing the iterative process.

5 Conclusion

This paper developed a data-driven iterative model in-

version algorithm for human-robot collaborative output

tracking when the task is unknown to the robot. Suffi-

cient conditions for convergence of the algorithm were

developed in the article. The proposed approach was

verified using a robot-only experiment, which demon-

strated that the proposed algorithm reduced the max-

imum error to 3.7%, where the closed-loop tracking

noise was 4.6%. The algorithm also was tested during

a human-robot collaborative experiment. Experimental

results also showed that the level of assistance can be

effectively modulated.
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