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Preliminary Investigation of Symmetry Learning Control for Powered
Ankle-Foot Prostheses

Jonathan Realmuto, Glenn Klute, and Santosh Devasia

Abstract—This article proposes a human-in-the-loop opti-
mization method, targeting gait symmetry, for powered ankle-
foot prostheses (PAFPs). Individuals with unilateral below-
knee amputations have distinctly asymmetrical gaits, which
predisposes them to a host of secondary musculoskeletal im-
pairments, including osteoarthritis of the intact limb joints.
PAFPs can restore some ankle function, however current control
methodologies rely on able-bodied gait data for trajectory
synthesis, require expert tuning, and are limited in their ability
to adapt. Human-in-the-loop methods, where the control signal
is adjusted based on the achieved actions of the coupled human-
robot system, would allow for automatic personalization and
continuous adaptation. An adaptive gain iterative learning
control algorithm adjusts the PAFPs torque to match the
achieved intact ankle torque while maintaining boundedness
of the control signal. The method is experimentally assessed
during a pilot (N=1) study with a prototype PAFP. Results
indicate a 25% reduction in the difference of mean peak ankle
torques, and a reduction in ankle toque, ankle power and
support moment asymmetry. This work demonstrates the prac-
tical implementation of a symmetry-based learning controller,
which resulted in beneficial biomechanic adaptations, therefore
providing motivation for future investigations of symmetry-
based controllers for PAFPs.

I. INTRODUCTION

One of the most significant consequences of below-knee
amputations is asymmetrical loading of the lower limbs
during ambulation, which predisposes individuals to sec-
ondary conditions [1], including osteoarthritis (OA) in their
intact knee and hip joints, and osteopenia and osteoporosis
in the residual limb [2]. The inability to actively produce
ankle power results in a variety of neuromuscular adap-
tations [3], including spending less time in stance phase
on their prosthetic limb [4], loading their prosthetic limb
less that their intact limb [5], loading their intact limb
more relative to people without lower-limb amputations [6],
and increased hip extension and knee flexion in the intact
limb [7]. Prostheses with improved push-off characteristics
can reduce biomechanical risk factors linked to OA [8],
therefore power ankle-foot prostheses (PAFPs) may prevent
secondary musculoskeletal conditions.
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PAFPs can potentially replicate human ankle behavior,
however, adequately mimicking the natural functions of the
human ankle is challenging and control of PAFPs is an active
area of research, see e.g., [9]. A common approach is to
use state-based controllers, where each state alters the ankle
mechanics (i.e., impedance) of the prosthesis with parameters
derived from able-bodied human ankle mechanics [10]-[12].
Another approach is to encode the motor command signal,
derived from able-bodied data, as a time-based function that
initiates on heel-strike (HS) [13]. A reflex controller, based
on a neuromuscular model fitted to match the human ankle
torque-angle profile of weight and height-matched intact
subjects, can provide some adaptation to slope changes [14].
These approaches are limited by: (i) able-bodied trajectories
do not account for personalized altered body mechanics of
amputee gait, (ii) the need for (expert) qualitative tuning of
subject specific control parameters, and (iii) an inability to
automatically adapt to the user. Gait mechanics and muscle
activity vary widely across individuals [15], thus able-bodied
push-off work should not be the only consideration when
formulating control trajectories. Methods for the automatic
tuning of lower-limb powered prostheses impedance parame-
ters are beginning to emerge [16]. However, the optimization
features which benefit the user most is still unclear [15].

Human-in-the-loop methods, where the control signal is
automatically tuned, could overcome the limitations outlined
above. Such methods have proved successful at minimiz-
ing walking economy with ankle exoskeletons [17], [18].
Additionally, these methods have provided insights into the
need for personalization, evident from the large variations
in optimized assistance found across individuals [18]. How-
ever, in the case of human-in-the-loop methods for PAFPs,
identifying a measurable user-related metric, e.g., comfort or
satisfaction, is not straightforward. The relationship between
activity limitations and the metabolic cost in the amputee
population remains unclear [19], thus walking economy may
not be an ideal candidate for optimization. Additionally,
research suggests that PAFPs may not significantly effect
metabolic cost [15], [20]. Alternatively, in this work, ankle
torque symmetry is proposed as a candidate for optimization.
The challenge, as with any in human-in-the-loop approach,
is to avoid divergent responses cause by time-varying human
dynamics.

The main contribution of this work is a personalized sym-
metry learning controller that reduces ankle torque asymme-
try. The method utilizes the adaptive gain iterative learning
control (AG-ILC) algorithm [21], and can avoid divergent
responses caused by unmodeled human dynamics. The al-



Tp

o]
O—

—

human

Fig. 1: Conceptual model illustrating the research problem. The goal is
to find the control signal u such that the active torque 7,, summed with
the (loading) passive torque 7;, results in a total prosthetic torque 7, that
matches the biological (intact) torque 7.

gorithm learns a command signal by iteratively reducing
torque asymmetries of the prosthetic and intact limbs in the
frequency domain. Divergence is avoided by monitoring the
difference between the prosthetic and intact ankle torques
and adjusting the frequency dependent learning gain accord-
ingly. The proposed method is experimentally assessed with
a prototype PAFP. To eliminate the need for real-time torque
estimates, standard inverse dynamics provide ankle torques
to the AG-ILC algorithm, which is updated off-line between
walking trials. We hypothesize that the symmetry control
method will result in (1) a decrease in ankle kinematic and
kinetic asymmetries, and (2) a decrease in support moment
asymmetry, which has been shown to have a more consistent
pattern than any one individual joint [22].

II. SYMMETRY CONTROL

A. Problem Formulation

1) Model Abstraction: The conceptual model in Fig. 1
illustrates the research problem: choose the control signal
u such that the prosthetic torque 7, matches the biological
(intact) ankle torque 7y, i.€.,

7p(t) = (1), (D

where ¢ in (1) represents the time-normalized gait cycle.
The PAFP (robot) takes as an input the control signal u
and outputs an active torque 7, about the prosthetic ankle
joint. In addition, the prosthesis provides a loading torque 7;
(i.e., from the passive dynamics), which sum with the active
torque 7, to produce the total prosthetic torque 7,

Tp(t) = i (t) + 74 (2). )

The active torque 7, effects both the loading torque 7; and the
biological torque 73, through the human-response dynamics,
which can vary depending on the individual.

2) Iterative Learning Control: The iterative learning con-
trol (ILC) approach is to update the motor current command
u at each iteration k£ (in the frequency domain):

Uk g1 (w) = ug (W) + pr (W) Gy, (w)er (W), 3)

where py, is the learning gain, ey, is the error signal, and G,
is a model of the robot dynamics

4)

The error signal ey in (3) is taken as the difference between
the time-normalized mean biological torque and the mean
prosthetic torque,

ex(w) = Tp k(W) — Tp r(w), )

and represents a measure of ankle torque asymmetry. Mean
torque signals at each iteration k£ are computed over a
walking trial, taking the mean value at each discrete percent
gait cycle over all steps.

3) ILC Convergence: ldeally, repetitive application of the
update law in (3) will result in convergence of the error signal
in (5), e.g.,

lim |ex(w)| = 0. (6)

k—o0
Convergence of (3) can be achieved at each frequency w
provided: (i) the phase error in the model G,, and the
choice of learning gain pj are sufficiently small, and (ii)
the reference signal (i.e., 7 in this case) is fixed [23].
Since the control signal u affects the biological torque 7
the reference signal can vary according to the personalized
human-response dynamics, and thus it may not be possible
to guarantee convergence.

4) Avoiding Divergence: The problem investigated is the
selection of the frequency-dependent learning gain p;, such
that the control signal u remains bounded. Boundedness of
the control signal w is critical for safety. Simply applying the
update law in (3) with a fixed learning gain p(w) = p(w)
could result in an unbounded control signal uy. Another
scenario is that the magnitude of the error signal in (5)
could decrease at each iteration k, but the magnitudes of
each torque component, prosthetic torque 7, 5 and biological
torque Ty, could increase at each iteration k. Such a
scenario would lead to unbounded growth of the control
signal u, and poses a safety issue for the user.

B. Adaptive Gain ILC

To address the problems outline above, this work proposes
an adaptive gain technique, which monitors the error and the
reference signals growth and adapts the frequency dependent
learning gain pj. There are three components to the AG-ILC
algorithm: (i) conditional statements that determine how the
algorithm updates, (ii) a cache that stores the algorithm’s
internal states, and (iii) the update law that results in a new
control signal ug11. Each component is described below.

1) Update Conditions: Three update conditions, stored as
boolean variables, determine how the update law evolves.
The first condition C; j determines if the error signal e;, is
smaller in magnitude than the previously smallest observed
error signal e} _,

() = {1 if

@l <lea@l g

0 else



Another condition, Cy j, determines if the error signal is
larger in magnitude than the previously smallest observed
error signal e; _, plus padding e,

Can(@) = {1 if

0 else

er@)] > lef 1 @) +ew) o

where the frequency dependent padding e(w) is an estimate
of the expected variation in the error signal ey, (i.e., a noise
estimate). The final condition Cs ;, determines if the reference
signal 73, ; has grown larger in magnitude than a scaled
version of the initial error eg. The change in reference signal
is computed as

ATy (1) = Tk (-) = To,0(+)s 9

and the final condition is

Con() = {1 if

Anx@)] > aleol@)] o
0 else

where the constant « represents the allowable growth of the
change in reference signal A, relative to the initial error
€p.

2) Cache: The cache updates and stores the state of
the algorithm, based on the conditions outlined above, as
follows:

pe(w) = {ipkl(w) if Co(w)+Cax(w) >0

11
pkfl(w) (an

else

w _ Jer(w) if C1(w)=1andCsp(w)=0
() = {ez_l(w) else
(12)
« - uk(w) if Clﬁk(w) =1 and Cg’k(w) =0
uilew) = {uz_l(w) else
(13)

where v > 1 determines the decay rate of the learning
gain pj if a sufficient increase in the error signal ey is
observed (condition Cyj defined in (8)) or a sufficient
increase in the reference signal 7, j is observed (condition
Cs 1, defined (10)). The frequency dependent padding € in (8)
allows the error signal to fluctuate within the expected noise
region without penalty to the learning gain pj. Additionally,
ey, in (12) and wy, in (13) are updated if and only if the
magnitude of the error ey is strictly decreasing (condition
C1 i, defined (7)) and the magnitude of the reference signal
Tp,) Temains bounded by the initial error ey (condition Cs 4,
defined (10)).

3) AG-ILC Update Law: The update law utilizes the
cached values, outlined in (11)-(13), to determine the new
control signal 41, as:

1 (@) = Ui (@) + pe@) G (W) ). (14)

During initial contact and swing phase the control signal
in (14) is set to zero,

T () = {0

Qg1 (t)

if (t <ty)or (t>ts)

, 15
otherwise (15
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Fig. 2: Illustrative rendering of the prototype PAFP with major components
labeled (note some components are transparent for ease in visualization).

where t; and to define the time region for non-zero control
signal. Finally, the new control signal uj is found as

upy1(w) = (g1 (w)) (16)

where ( represents a zero-phase low-pass filter with cutoff
frequency w, that smooths the signal.

III. PROTOTYPE ANKLE-FOOT PROSTHESIS

The prototype PAFP, shown in Fig. 2, is a nonlinear
parallel elastic actuator. A cam-based spring [24] acts across
the ankle joint, providing nonlinear elasticity parallel with
the powered drive train. An energy store and return passive
foot (Ossur LP Vari-Flex), attached to the ankle link, protects
the drive train from shocks and provides additional energy
storing and releasing capability.

A. Drive Train Model

The powered drive train, a motorized link acting across the
shank and ankle links (see Fig. 2), provides the active torque
T4, defined in (2). The drive train consists of the following: a
brushless DC motor (Maxon EC-22, 100 W, 24 V), attached
to a pin joint on the shank link (pin joint (A4)), in series with
a planetary gearhead with a transmission ratio of R, = 19
(Maxon GP 22 HP), followed by ¢ = 4 mm pitch linear ball
screw (Thompson NEFF Rolled Ball Screw) attached to a pin
joint on the ankle link (pin joint (B)) that acts with a moment
arm r, = 6 mm from the ankle joint (ankle pin joint (O)). A
compliant bumper (polyester/rubber blend with a durometer
hardness rating of 40D), located between the ball screw
nut and ball screw housing, protects the transmission from
shocks, i.e., it engages near maximum plantarflexion. The
robot model GG,,, in (14) is taken as the effective transmission
gain from the motor current ¢, to the active torque 7,, found
by combining each stage of the transmission:

Gm = nsngTaRgQ%kﬂ (17
where k. is the torque constant of the motor, 7, is the ball
screw efficiency, and 7), the gearhead efficiency.
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Fig. 3: Block diagram of controller architecture. Solid lines represent real-
time signals and dashed lines represent off-line signals.

B. Controller Architecture

The controller architecture is illustrated as a block diagram
in Fig. 3. The embedded system, which operates in real-
time, utilizes an insole force sensor signal Ej to identify
the time-stamp n; of the most recent HS, and estimates
the mean step period P. Next, a pattern generator (i.e.,
lookup table) is used to modulating the active motor current
i, based on the most recent heel-strike time-stamp nj; and
mean step period P. The bias current 7, in Fig. 3 adjusts
the equilibrium position of the PAFP and can be chosen
by the user. Additionally, a low-level proportional-integral
(PI) controller is used to track the desired motor current
14. Offline, after each walking trial (e.g., learning iteration
k), inverse dynamics are computed on the motion capture
(MoCap) data, resulting in the mean prosthetic torque 7, j
and mean biological torque T ;. Finally, the mean torque
signals are used to compute the error signal ey, defined in (5),
and subsequently, using the AG-ILC algorithm outlined in
Sect. II-B, a new control signal uj; defined in (16), is then
encoded in the pattern generator.

IV. EXPERIMENTAL METHODS

The purpose of the pilot (N=1) study was to provide a
preliminary investigation of whether the proposed method
is a viable control paradigm for PAFPs, with the goal of
quantifying the effect of symmetry control compared with
passive mode. The experimental setup consisted of a split-
belt force-sensing treadmill (Bertec), a 12-camera MoCap
system (Vicon), and a human subject donning the PAFP
with custom embedded system and tethered power supply.
A plug-in gait model, consisting of 36 reflective markers,
was used to compute inverse dynamics. The prototype PAFP
was fitted to left leg of the subject, using their as-prescribed
socket and suspension system, and aligned by a certified
prosthetist. The subject provided written informed consent
to participate in the experimental protocol, approved by the
VA Institutional Review Board. The subject was a healthy,
active 85 kg unilateral below-knee amputee. Table I provides
details of the subject’s characteristics.

A. Protocol

Before ambulating, the subject was asked to choose a
neutral position of the PAFP that was most comfortable dur-
ing standing. The process, similar to alignment procedures

used for conventional prosthetic feet and supervised by the
prosthetist, was accomplished by modulating the bias current
iy, shown in Fig. 3. Next, the subject acclimated to the PAFP
by walking on the treadmill for approximately 5 minutes
at their self-selected treadmill walking speed (1 m/s). After
acclimation, the experimental trials commenced, where each
learning iteration k consisted of 30 seconds of steady state
walking. After each learning iteration k, the subject was
allowed to sit down while data was processed, the AG-ILC
algorithm was executed and a new control law uploaded to
the embedded system (approximately 4—5 minutes). Prior to
collecting the next trial, the subject first began ambulating in
passive mode. Next, the control signal was introduced to the
user over the course of 40—80 strides (i.e., by linearly scaling
the signal). After the subject acclimated to the new control
signal (~30 seconds), data was collected. This process was
repeated until the measured error signal e could no longer
be reduced.

B. Quantifying Asymmetry
Asymmetry was quantified as the root-mean-square differ-
ence between the mean time-normalized waveforms, (e.g.,

mean at each percent gait over all steps) of each limb
variable.

(18)

where p is the number of points used for time-normalization,
x represents the mean right limb gait variable (i.e., right
ankle torque) and y represents mean the left limb gait
variable (i.e., left ankle torque). Asymmetry increases with
increasing value of (18), with a value of zero corresponding
to perfectly symmetrical.

V. RESULTS AND DISCUSSION

The experiment consisted of 10 walking trials (iterations):
one passive trial (¢ = 0) and nine trials (k = 1—9) where
the PAFP was active. In the following, the ¥ = 0 passive
trial (‘“Passive” condition) is compared to the final £k = 9
trial (“Symmerty” condition).

A. Algorithm Performance

Despite human adaptations, the AG-ILC algorithm re-
sulted in bounded control signals uy, for all iterations k. This
can be seen in Fig. 4, which shows time-domain signal traces
at each iteration k for the active torque, estimated as

Ta(t) = Ry - kr - ug(t), (19)

TABLE I: Subject characteristics.

Gender male
Age (yrs) 50
Height (cm) 180

Intact leg length (mm) 900

Mass prescribed (kg) 82

Mass prototype (kg) 85

Etiology traumatic
Prescribed prosthesis Ossur Pro-Flex XC
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(top-left plot), the error ej (defined in (5)) (middle-left
plot), and the change in reference signal A7 j (defined in
(9)) (bottom-left plot). Additionally, the corresponding right
column plots show each signals respective peak value, e.g,
max | - |, for each iteration k. The evolution of the active
torque 7, was consistent with the error ej: if the error
e increased in magnitude relative to the previous iteration,
the active torque decreased on the following iteration, as
expected. The lowest achieved peak error ey, a reduction
of 52%, occur at iteration k = 5. However, the peak error ey,
increased in subsequent iterations, and a reduction of 25%
was observed during the final iteration (k = 9).

B. Ankle Asymmetry

1) Angle: The proposed method increased ankle angle
asymmetry, calculated using (18), from 7.63° during the
passive condition (k = 0) to 7.71° during the symmetry (k =

Support
Moment (Nm/kg)

Extension —
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% Gait Cycle
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Fig. 6: Support moment for passive condition (left column) and symmetry
condition (right column). Vertical lines in plots denote TO. Thickness of
each traces represents £ 1 standard deviation.

9) condition, corresponding to a 1% increase in asymmetry
(Table II). The mean ankle angle (and +1 standard deviation)
for each condition top row of Fig. 5.

2) Moment: The proposed method decreased the ankle
moment asymmetry, computed as in (18), from a 0.30
(Nm/kg) during the passive condition to a mean of 0.26
(Nm/kg) during the symmetry condition, corresponding to
a 14% reduction in ankle moment asymmetry (see Table II).
The middle row of Fig. 5 shows the mean ankle moment
for each condition, including the active torque 7, j (defined
in (19)) contribution. The active torque supplied during the
symmetry condition altered the mean stance period of gait
on both the prosthetic and intact sides: the prosthetic side
mean stance period increase from 58% to 60% of the gait
cycle, while the intact side decreased from 65% to 64% of
the gait cycle. This can be seen in Fig. 5 as the dash vertical
lines corresponding to TO.

3) Power: Ankle power asymmetry, computed as in (18),
decreased during the symmetry condition from 0.71 W/kg to
0.67 W/kg, corresponding to a 6% reduction in asymmetry.
The ankle power asymmetry outcomes are recorded in Ta-
ble II. The bottom row of Fig. 5 shows the mean ankle power
for each condition, including the active power contribution.
The active power was calculated as:

P, =Fk: im - wn (20)

where k, was the torque constant, ¢,, the motor current,
and w,, the motor angular velocity. The most apparent
modification was an increase in intact peak power, from 3.12
W/kg during the passive condition to 3.41 W/kg during the
symmetry condition (9% increase).

C. Support Moment Asymmetry

Support moment asymmetry (Tsys = Tankle + Thnee +
Thip) Teduced during the symmetry condition, from 0.52
(Nm/kg) to 0.35 (Nm/kg), a 32% decrease (see Table II).
Figure 6 shows mean support moment for each condition.
The symmetry control largely influenced the knee and hip
mechanics on both the prosthetic and intact sides, decreases

TABLE II: Asymmetry outcome measures,defined in (18).

Passive ~ Symmetry

(k=0) (k=9) % Change
Angle (deg) 7.63 7.71 1.09%
Moment (Nm/kg) 0.30 0.26 13.86%
Power (W/kg) 0.71 0.67 5.80%
Support Moment (Nm/kg) 0.52 0.35 31.89%




the peak support moment on the intact side, which can be
seen in Fig. 6 at around 50% of the gait cycle. It’s well
known that many compensatory behaviors occur at the knee
and hip of the intact side [7]. This result suggests that a
modest decrease in ankle torque asymmetry can produce
considerable beneficial adaptations in the other joints.

D. Limitations and Future Directions

A limitation of the proposed approach is the use of (off-
line) inverse dynamics for estimating ankle torque symmetry.
Consequently, users are restricted to training in a laboratory
setting, where the learning algorithm can be executed. Esti-
mating lower-limb biomechanics in real-time, using model-
based approaches or machine learning techniques, is critical
for future embodiments. Additionally, the use of a rigid body
MoCap model to calculate ankle-foot position, torque, and
power is limiting, and our future work will include more
precise models [25]. The current experimental protocol is
the relatively short acclimation period and rapid changes in
the ambulatory condition, which may not be conducive to
acquiring a novel gait pattern. In prior studies, participants
acclimate during a period of several weeks [8]. A long term
learning approach, where the learning iterations occur over
the course of a day (or more), would allow more time for the
user to converge to each new condition (learning iteration).
Improvements are possible to the current prototype PAFP,
as it is heavy (~3 kg), tethered to a power supply and has
limited memory storage for encoding control signals.

VI. CONCLUSION

This work proposed a human-in-the-loop controller, for
powered ankle-foot prostheses, targeting gait asymmetry. The
method corrected the active ankle torque of the prosthetic
limb to match the achieved ankle toque of the intact limb by
utilizing an adaptive gain iterative learning control algorithm.
We hypothesized that the method would result in (1) a reduc-
tion in sagittal plane ankle kinetic and kinematic asymmetry,
and (2) a reduction in the support moment asymmetry. A
preliminary experimental pilot study was conducted. The
results show a 25% reduction in peak torque difference
(Fig. 4), a significant reduction in ankle moment (14%) and
power asymmetries (6%), and an increase in ankle angle
asymmetry (1%) (Fig. 5), and a significant reduction in
support moment asymmetry (32%) (Fig. 6). These results
provide a proof-of-concept demonstration that targeting sym-
metry for human-in-the-loop optimization of powered ankle-
foot prostheses can improve gait symmetry, and motivates
future investigation of symmetry-based controllers.
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