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ABSTRACT OF THE DISSERTATION

Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

by
Andrey Rodionov

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2015
Dr. Alexander N. Korotkov, Chairperson

An important challenge in quantum information science and quantum computing is the
experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum pro-
cess tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first
present the results of the estimation of the process matrix for superconducting multi-qubit quantum
gates using the full data set employing various methods: linear inversion, maximum likelihood, and
least-squares. To alleviate the problem of exponential resource scaling needed to characterize a
multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit
and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken
with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices
with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of
initial states and measurement configurations. We show that the CS method still works when the
amount of data is so small that the standard QPT would have an underdetermined system of equa-
tions. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated

noise, and similarly show that the method works well for a substantially reduced set of data. For the

vii



CS calculations we use two different bases in which the process matrix is approximately sparse (the
Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates
of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit
gates, we characterize the quantum process by its process matrix and average state fidelity, as well
as by the corresponding standard deviation defined via the variation of the state fidelity for differ-
ent initial states. We calculate the standard deviation of the average state fidelity both analytically
and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant

reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.

viii



Contents

List of Figures
List of Tables
1 Introduction

2 Overview of quantum information processing and superconducting qubits
2.1 Overview of quantum information processing . . . . . . . .. .. ... ... ...
2.1.1 Qubit ...
2.1.2  Density matriX . . . . . . . ..o e e e e
2.1.3 Bloch sphere and Pauli operators . . . . . . ... ... .. ... ......
2.1.4 Definition of a quantum channel . . . . . . ... .. ... ... ... ...
2.1.5 Distance between quantum states . . . . . . .. ... ...
2.1.6  Quantum gates . . . . . ... ..o e e e
2.2 Review of superconducting qubits . . . . . . ... ... L.
2.2.1  General introduction to Josephson junction dynamics . . . . . . .. .. ..
222 Chargequbit . . . . . . . . . .. e
223 Fluxqubit. . . . . .. e
224 Transmonand Xmon . . . . . . . .. ..ol
2.2.5 Flux-biased phasequbit . . . .. ... ... ... ... ... . ...,

3 Quantum State Tomography for superconducting qubits
3.1 The idea of the quantum state tomography . . . . . . . .. ... .. ... .....
3.2 Mathematical details of QST for one and twoqubits . . . . . ... ... ......
3.3 Linear inversion method of QST for two phase qubits . . . . .. . ... ... ...
3.4 Maximum likelihood estimation of the density matrix . . . .. ... ... .....

4 Standard Quantum Process Tomography of multi-qubit gates
4.1 Basics of “standard” quantum process tomography . . . . .. ... .. ...
4.2 Experimental details of QPT of multi-qubit superconducting gates . . . . . . . ..
4.3 Linear inversion method of quantum process tomography . . . . . . ... ... ..
4.3.1 The method of linear inversion forQPT . . . . . .. ... ... ......

iX

xi

Xvii

O O \©

12
14
17
18
19
21
22
25
28
29
34

38
38
40
43
47



4.3.2 Computer memory and time requirements for the linear inversion method

of QPT . . . . . e 64

4.4 Maximum likelihood and least-squares methods for QPT . . . . . . .. ... ... 68

5 Compressed Sensing Quantum Process Tomography of two and three qubit gates 73

5.1 Introduction to Compressed Sensing Quantum Process Tomography . . . . . . .. 73

5.2 Fundamentals of Compressed Sensing Quantum Process Tomography . . . . . .. 76

5.3 CS QPT for two-qubit controlled-Z gate . . . . . . .. ... ... ... ...... 80

5.4 Full data set, varying noise parameter € . . . . . . . . . . ... ... .. 84

5.5 Reduced data set, near-optimal noise parametere . . . . . . . . .. ... ... .. 86

5.6 Reduced data set, nonoptimal noise parameterec . . . . . . . ... ... ... ... 93

5.7 Comparison between Pauli-error and SVD bases . . . . . . ... ... ... .... 97

5.8 Comparison with least-squares minimization . . . . . . . . .. .. ... ... ... 101

5.9 Three-qubit CS QPT for Toffoligate . . . . . . ... ... ... ... ....... 104

6 Standard deviation of state fidelity 110

6.1 Standard deviation of state fidelity . . . .. . ... ... ... ... .. ... ... 111

6.2 Details of the formula for average square of state fidelity . . . ... ... ..... 113

6.3 Monte Carlo numerical calculations . . . . . ... ... .. ... ... ..... 122

7 Conclusion 130

Appendices 134
A Appendix A. List of publications and presentations

by Andrey Rodionov . . . . . . . ..o 134

B Appendix B. Pauli-errorbasis. . . . . . ... ... Lo 137

C  Appendix C. Singular value decomposition (SVD) basis . . . . . .. ... ... 139

Bibliography 141



List of Figures

2.1

22

23

24

2.5

2.6

Effective circuit diagram of the Cooper-pair box. The small superconducting is-
land is connected to a large superconducting reservoir by a Josephson junction with
capacitance C'y and Josephson energy E;. The island can be biased by a voltage
source (gate voltage) V in series with a gate capacitance Cy. . . . . . . ... ...
Effective circuit diagram of the split Cooper-pair box. The small superconducting
island is connected to a large superconducting reservoir by two Josephson junctions
with capacitances C'y and Josephson energies £y (not necessarily equal). The island
can be biased by a voltage source (gate voltage) V in series with a gate capacitance
Cy and by an external magnetix flux ®exe. . . . . . .. ..o
Effective curcuit diagram of the transmon qubit. The two Josephson junctions (with
capacitance and Josephson energy C; and Fj) are shunted by an additional large
capacitance C'g, matched by a comparably large gate capacitance Cy. L, and C,
model the coupling to the transmission line. V/, is the gate voltage. . . . . . . . . .
Transmission Spectrum of the cavity, which presents a peak of width x at w, —
g%/A or w, + g*/A depending on the state of the qubit, red curve for the excited
state, blue curve for the ground state. x denotes the cavity decay rate. To perform
a measurement of the qubit, a pulse of microwave photons, at a probe frequency
Wy = Wy OT Wy 92 /A, is sent through the cavity. (Adapted from Ref. [92].) . . .
(a) Schematics of the Xmon qubit, formed by the Al superconducting film and the
exposed sapphire substrate. The qubit is capacitively coupled to a readout resonator
on the top, a quantum bus resonator (right), and an XY control line (left), and in-
ductively coupled to a Z control line (bottom). (b) The inset shows the shadow
evaporated Al junction layer (blue regions). (c) The electrical circuit of the qubit.
(Adapted from Ref. [98].) . . . . . . e
The circuit schematic of a flux-biased phase qubit (a), and the schematics of the plot
of the potential energy U as a function of the phase difference d across the Josephson
junction with the measurement scheme (b). In Fig. (a): ® is the external flux applied
through the inductor loop, L is the inductance of the loop, C' is the capacitance of
the loop. In Fig. (b): When measuring the state of the phase qubit, the height of the
potential barrier is lowered, the state |1) tunnels through the potential barrier, and
relaxes into the deeper well. The superconducting phase difference ¢ changes its
value. . ... e

X1

30

32



3.1

3.2

4.1

4.2

4.3

5.1

52

Results for the reconstruction of the density matrix by the linear inversion method

of QST. Experimental data for the CZ gate based on the phase qubits have been used.

Results for the reconstruction of the density matrix by the maximum likelihood
method of QST. Experimental data for the CZ gate based on the phase qubits have
beenused. . . . .. L

The process matrix x [Re() on the top panel, Im() on the lower panel] calculated
by the linear inversion method of QPT. The experimental data for the two-qubit CZ
gate realized with the phase qubits have been used. The process fidelity with the
ideal x-matrix is F' = Tr(xXideal) = 0.63. The modified Pauli basis { £, } has been
used. Note that the scales on the vertical axes for Re() and Im(x) are different.

The process matrix Y calculated by the least squares method of QPT. The exper-
imental data for the two-qubit CZ gate realized with the phase qubits have been
used. The process fidelity with the ideal y-matrix is F' = Tr(Xx Xideal) = 0.51. The
modified Pauli basis { £, } hasbeenused. . . . .. ... ... .. ... ......
The process matrix y calculated by the least squares method of QPT. The exper-
imental data for the two-qubit CZ gate realized with the Xmon qubits have been
used. The process fidelity with the ideal y-matrix is F' = Tr(x Xideal) = 0.91. The
modified Pauli basis { £, } hasbeenused. . . . .. ... ... .. ... ......

The CS QPT procedure, applied to the full data set for the superconducting Xmon
qubit, with varying noise parameter €. The red (upper) line shows the fidelity
F(xcs, Xfun) between the process matrix y cs obtained using the compressed-sensing
method and the matrix xg, obtained using the least-squares method. The blue
(lower) line shows the process fidelity F'(xcs, Xideal), i-€., compared with the ma-
trixX Xideal Of the ideal unitary process. The vertical dashed brown line corresponds
to the noise level e, = ||}3f?ﬁ1p — ®¥atl e,/ VM = 0.0199 obtained in the LS pro-
cedure. The inset shows epum = || Poal — ®Xcs||e,/v/M as a function of & (green
line); for comparison, the dashed line shows the expected straight line, €,,,,, = €.
The process fidelity F'(Xfuil, Xideal) = 0.91. The numerical calculations have been
carried out in the Pauli-error basis using CVX-SeDuMi package. . . . . ... ...
Similar to Fig. 5.1, but for the CZ gate, realized with superconducting phase qubits.
The process fidelity F'(Xfun, Xidear) = 0.51 is much lower than that for the Xmon
qubit gate. The CS QPT procedure, applied to the full data set for the super-
conducting phase qubit, with varying noise parameter . The red (upper) line
shows the fidelity F'(xcs, xrun) between the process matrix ycg obtained using the
compressed-sensing method and the matrix xg,; obtained using the least-squares
method. The blue (lower) line shows the process fidelity F'(xcs, Xideal)s 1-€., cOm-
pared with the matrix xigeal Of the ideal unitary process. The vertical dashed brown
line corresponds to the noise level g4, = ||ﬁfeu)if’ — ®Xtan|le,/ VM = 0.0197 ob-
tained in the LS procedure. The inset shows epum = ||Peit — ®Xcs|le,/vVM as
a function of ¢ (green line); for comparison, the dashed line shows the expected
straight line, enym = €. The numerical calculations have been carried out in the
Pauli-error basis using CVX-SeDuMi package. . . . . ... ... ... ......

Xii

47

65



53

54

55

5.6

5.7

Similar to Fig. 5.1, but for the CZ gate, realized with superconducting phase qubits.
The process fidelity F'(Xfun, Xideat) = 0.62 is much lower than that for the Xmon
qubit gate. The CS QPT procedure, applied to the full data set for the super-
conducting phase qubit, with varying noise parameter . The red (upper) line
shows the fidelity F'(xcs, xru) between the process matrix ycs obtained using the
compressed-sensing method and the matrix g, obtained using the least-squares
method. The blue (lower) line shows the process fidelity F'(xcs, Xideal)s i-€-, COM-
pared with the matrix yiqeal Of the ideal unitary process. The vertical dashed brown
line corresponds to the noise level eopy = ||Pra? — ®Xtunl|r,/ VM = 0.0146 ob-
tained in the LS procedure. The inset shows enum = || Peif — ®Xcs| e,/ VM as
a function of ¢ (green line); for comparison, the dashed line shows the expected
straight line, e,ym = €. The numerical calculations have been carried out in the
Pauli-error basis using CVX-SeDuMi package. . . . ... ... ... .......
The CS method results using a reduced data set with randomly chosen 1mconr con-
figurations. The red (upper) line shows the fidelity F'(xcs, xfun) between the CS-
estimated process matrix ycs and the matrix g, obtained from the full data set.
The blue (lower) line shows the estimated process fidelity ), = F(Xxcs, Xideal)-
The procedure of randomly choosing mqns out of 144 configurations is repeated 50
times; the error bars show the calculated standard deviations. The noise parameter
e = 0.02015 is chosen slightly above e4p¢. The calculations are carried out in the
Pauli-error basis using CVX-SeDuMi. The experimental data are for the CZ gate
realized with Xmon qubits; the process fidelity is F'(Xfull, Xideal) = 0.907. . . . . .
(a) The process matrix Y, based on the full data set (144 configurations) and (b,c)
the CS-estimated matrices ycs using a reduced data set: 72 configurations (b) and
36 configurations (c). The process matrices are shown in the Pauli-error basis. The
main element ;7,77 (process fidelity) is off the scale and therefore is cut; its height
is 0.907, 0.918, and 0.899 for the panels (a), (b), and (c), respectively. All other
peaks characterize imperfections. The fidelity F'(xcs, xfu) for the matrices in pan-
els (b) and (c) is equal to 0.981 and 0.968, respectively. The middle and lower
panels use the data set, corresponding to underdetermined systems of equations.
Experimental data for CZ gate realized with Xmon qubits have been used. . . . . .
Similar to Fig. 5.4, but for the CZ gate realized with superconducting phase qubits.
The process fidelity F'(Xfun, Xideas) = 0.51 is much lower than that for the Xmon
qubit gate. As we see, CS QPT works significantly better for this lower-fidelity gate
than for the better gate presented in Fig. 5.4. . . . . . . .. ... ... ... ... .
Similar to Fig. 5.4, but for the CZ gate realized with superconducting phase qubits.
The process fidelity F'(Xfuil, Xideat) = 0.62 is much lower than that for the Xmon
qubit gate. As we see, CS QPT works significantly better for this lower-fidelity gate
than for the better gate presented in Fig. 5.4. . . . . .. .. ... ... ... ... .

Xiii

90

91

92



5.8 (a) Fidelity F(xcs, xfu1) of the process matrix estimation and (b) the estimated

process fidelity F'(xcs, Xideal) as functions of the data set size for several values

of the noise parameter ¢ used in the CS optimization: 5/50pt = 1.01, 1.2, 1.4,

1.6, and 1.8. Error bars show the standard deviations calculated using 50 random

selections of reduced data sets. The red lines are the same as the lines in Fig. 5.4.

The experimental data are for the CZ gate realized with Xmon qubits; the process

fidelity is F(Xfulla Xideal) =0.907. . .. . e 94
5.9 (a) Fidelity F'(xcs, xru) of the process matrix estimation and (b) the estimated pro-

cess fidelity F'(xcs, Xideal) as functions of the data set size for several values of the

noise parameter ¢ used in the CS optimization: ¢/ eopt = 1.01, 2.0, 3.0, and 4.0.

Error bars show the standard deviations calculated using 50 random selections of

reduced data sets. The red lines are the same as the lines in Fig. 5.7. The experi-

mental data are for the CZ gate realized with the phase qubits; the process fidelity

is F(Xfu]], Xideal) =0.62. . . . e 95
5.10 (a) Fidelity F'(xcs, xfu1) Of the process matrix estimation and (b) the estimated pro-

cess fidelity F'(xcs, Xideal) as functions of the data set size for several values of the

noise parameter € used in the CS optimization: s/sopt = 1.01, 2.0, 3.0, and 5.0.

Error bars show the standard deviations calculated using 50 random selections of

reduced data sets. The red lines are the same as the lines in Fig. 5.6. The experi-

mental data are for the CZ gate realized with the phase qubits; the process fidelity

is F(Xfull, Xideal) =0.51. . . . e 96
5.11 Comparison between the CS results obtained in the SVD and Pauli-error bases for

the CZ gate realized with Xmon qubits. The green line shows the relative fidelity

F(xcs-svD, Xcs) as a function of the number mgops of randomly selected configura-

tions. We also show the fidelities F'(xcs-svD, Xfun) (brown line), F'(xcs, Xfun) (red

dashed line), and process fidelities F'(xcs-svD, Xideal) (magenta line) and F'(xcs, Xideal)

(blue dashed line). The dashed lines have been shown in Fig. 5.4. The results using

the SVD basis are somewhat more accurate than those for the Pauli-error basis when

Meont < 40. « « . L L e 98
5.12 Comparison between the CS results obtained in the SVD and Pauli-error bases for

the low-fidelity CZ gate realized with phase qubits. The green line shows the rel-

ative fidelity F'(xcs-svD, xcs) as a function of the number mcons of randomly se-

lected configurations. We also show the fidelities F'(xcs.svp, Xful) (brown line),

F(xcs, xfun) (red dashed line), and process fidelities F'(xcs.svD, Xideal) (Magenta

line) and F'(xcs, Xideal) (blue dashed line). The dashed lines have been shown in

Fig. 5.6. The results using the SVD basis and the Pauli-error basis are very close to

each other for most values of mcops. The experimental data are for the low-fidelity

CZ gate realized with the phase qubits; the process fidelity is F'(Xfull, Xideal) =

0.51. o 99

X1V



5.13

5.14

5.15

5.16

5.17

5.18

5.19

Real (left figure) and imaginary (right figure) parts of the process matrix xcs—svp
for the CZ gate, calculated in the SVD basis and converted into the Pauli-error basis.
We used 36 randomly chosen measurement configurations out of the full set of 144.
The fidelity F'(xcs—svp, xfan) = 0.88, the fidelity F'(xcs, xcs—svp) = 0.94.
The main element Re(x;7,77) (process fidelity) is off the scale and therefore is cut;
its height is 0.52. The experimental data are for the CZ gate realized with the phase
qubits; the process fidelity calculated from full data is F'(Xfun, Xidea) = 0.51. . . .
Real (left figure) and imaginary (right figure) parts of the process matrix y g for the
CZ gate calculated directly in the Pauli-error basis. We used 36 randomly chosen
measurement configurations out of the full set of 144. The fidelity F'(xcs, Xfu) =
0.91, the fidelity F'(xcs, xcs—svp) = 0.94. The main element Re(x7r,77) (pro-
cess fidelity) is off the scale and therefore is cut; its height is 0.50. The experimental
data are for the CZ gate realized with the phase qubits; the process fidelity calculated
from full data is F(Xfull; Xideal) =051, ... .
Real (left figure) and imaginary (right figure) parts of the process matrix xrg for
the CZ gate calculated from the full data. The main element Re(x77,77) (process
fidelity) is off the scale and therefore is cut; its height is 0.51. The experimen-
tal data are for the CZ gate realized with the phase qubits; the process fidelity is
F(Xfu]], Xideal) =0.51. . . . e
Comparison between the results obtained by the LS and CS methods. The solid
lines are for the LS method, the dashed lines (same as in Fig. 5.4) are for the CS
method. The CS method is more accurate for a substantially reduced data set. The
experimental data are for the CZ gate realized with Xmon qubits. . . . . . . . . ..
CS QPT for a simulated Toffoli gate. Red line: fidelity F'(xcs, Xxfu1) of the process
matrix estimation, blue line: the estimated process fidelity F'(xcs, Xideal), both as
functions of the data set size, expressed as the number mops of randomly selected
configurations. The full QPT corresponds to 1728 configurations. The system of
equations becomes underdetermined when mconr < 576. The error bars show the
standard deviations calculated by repeating the procedure of random selections 7
HMES. . . o o e e e e e e e
Comparison between the calculations using CS and LS methods for the simulated
Toffoli gate. Solid lines are for the LS method, dashed lines (the same as in Fig.
5.17) are for the CS method. In the underdetermined regime the CS-method results
are much better than the LS-method results. . . . . . . ... ... ... ......
Comparison between the CS results obtained in the SVD and Pauli-error bases for
the simulated Toffoli gate. The green line shows the relative fidelity F'(xcs.svp, Xcs)
as a function of the number Mg Of randomly selected configurations. We also
show the fidelities F'(xcs.svp, Xfun) (brown line), F'(xcs, xfun) (red dashed line),
and process fidelities F'(xcs-svD, Xideal) (magenta line) and F'(xcs, Xideal) (blue
dashed line). The dashed lines have been shown in Fig. 5.17. The results using
the SVD basis and the Pauli-error basis are very close to each other for most values
of mcops. The error bars show the standard deviations calculated using 7 random
selections of reduced datasets. . . . . . . .. . ... ... .

XV

100

100

101

102

105

106



5.20 (a) Fidelity F'(xcs, xfun) of the process matrix estimation for the simulated Toffoli

6.1

6.2

6.3

6.4

gate and (b) the estimated process fidelity F'(xcs, Xideal) @s functions of the data
set size for several values of the noise parameter € used in the CS optimization:
e/ gopt = 1.0, 1.1, 1.2, 1.4 and 1.6. The error bars show the standard deviations
calculated using 7 random selections of reduced data sets. The red lines are the
same as the lines in Fig. 5.17. The process fidelity is F'(xful, Xideal) = 0.96. . . . .

Blue (upper) line: average state infidelity 1 — Fy for the CS-estimated process ma-
trix xcs as a function of the selected data set size for the experimental CZ gate,
realized with Xmon qubits (this line is linearly related to the blue line in Fig. 5.4).
Brown (lower) line: the standard deviation of the state fidelity AFy, defined via
variation of the initial state, Eq. (6.2), using the same xcs. The error bars are com-
puted by repeating the procedure 50 times with different random selections of used
configurations. . . . . . . .. L. e e e e e e e
The same as in Fig. 6.1, but for the simulated Toffoli gate. The random selection
of configurations is repeated 7 times for each point. The results for the standard
deviation A F are multiplied by the factor of 5 for clarity. . . . . ... ... ...
Verification of the formula for the average state fidelity by the Monte-Carlo method.
The blue curve shows the function o () defined in Eq. (6.21), for the various num-
ber 7 of the random states used in the Monte-Carlo procedure. For comparison, the
green dashed line shows the 1/+/r dependence. Experimental data for the two-qubit
CZ gate realized with the phase qubits have beenused. . . . . . . ... ... ...
Verification of the formula for the average square of the state fidelity by Monte-
Carlo method. The blue curve shows the function o 2(r) defined in Eq. (6.22), for
the various number r of the random states used in the Monte-Carlo procedure. For
comparison, the green dashed line shows the 1/4/r dependence. . . . .. ... ..

XV1

109



List of Tables

4.1

4.2

The amount of computer RAM memory, required to store the arrays R and R for
various number of qubits in the system, N. Two types of memory allocation are
compared. . . . ... e e e e
Time required to measure the full set of probabilities in QPT, for different numbers
of basis rotations per qubit, nrp = 3 and nr = 6, and for various numbers of qubits
in the system, N. The number of initial states for each qubitisny, =4. . . . . ..

X Vil



Chapter 1

Introduction

“In theory, theory and practice are the same. In practice, they are not.”

— Albert Einstein

Quantum information science is a relatively young interdisciplinary research field that
combines ideas and methods of physics, mathematics, information theory and computer science [2].
Quantum information science is based on the control and use of quantum systems like photons,
atoms, trapped ions or superconducting qubits to process and transmit information. It has been
shown that certain quantum algorithms offer tremendous advantages over classical algorithms in a
number of special computational tasks. For example, the efficient quantum algorithm of factoriza-
tion of a large integer number n was invented by Peter Shor in 1994 [3, 4, 5, 6]. Shor’s algorithm is
performed in polynomial time in logn and is exponentially more efficient than any known classical
algorithm. Specifically, it takes time O((logn)?), which is much faster than the best known clas-
sical factoring algorithm for which the time scales as O(el'g(log n)'/3(log log ")2/3). Shor’s algorithm

could be used to break public-key cryptography schemes such as the widely used RSA scheme [7]



which is based on the assumption that factoring large numbers is computationally infeasible on a
classical computer. Another famous quantum algorithm, proposed by Lov Grover [8] in 1996, ad-
dresses the problem of database searching. The computational time of Grover’s algorithm equals
the square root of time of the fastest classical algorithm. Another well-known quantum protocol,
formulated by Artur Ekert [9] in 1991, allows secure quantum key distribution. It uses entangled
pairs of photons and allows detection of eavesdropping by testing Bell’s inequality violation.

In classical information theory, information is encoded in strings of bits, which can either
be in the state 0 or 1. The physical realization of a classical bit can be an arbitrary physical system
with two states, for example, the p — n junction diode: switched-off (0) and switched-on (1). Analo-
gously, in quantum computing, a unit of quantum information is called a “qubit” or “quantum bit”,
which is a two-level quantum mechanical system. Unlike its classical counterpart, the quantum bit
can be in any superpositions of its basis states |0) and |1) (for example, the ground and excited states
of an atom), which is the manifestation of the phenomenon of quantum superposition. Examples of
physical realization of qubits can be the spin of the electron, or electron in a quantum dot, or po-
larized photon, etc. A quantum computer uses qubits to store and process information. A quantum
logic gate is a device (a basic quantum circuit) that performs a fixed unitary operation on selected
qubits [10].

The object of the research of this dissertation are quantum gates implemented with the
superconducting qubits, which are currently considered one of the most promising platforms for
quantum computing (see, e.g., [11]). Superconducting qubits are electrical resonators with a non-
linearity that is strong enough so that microwaves excite transitions only between the two lower

states, and this is why they are often called “artificail atoms”. Superconducting qubits include such



elements as Josephson junctions, capacitors and inductors. Nonlinearity in such nonlinear LC-
resonators is due to the presence of Josephson junctions. We give a review of basic notions and
concepts from the quantum information science and discuss in details various types of supercon-
ducting qubits in Chapter 2.

Experimental realizations of quantum gates usually differ from their ideal theoretical
models due to small imperfections and experimental errors in the laboratory. Quantum tomogra-
phy describes methods to identify non-ideal quantum states and quantum gates (or, equivalently,
quantum channels, quantum processes, or quantum operations) in the laboratory. Quantum State
Tomography [2] (QST) is a method by which a quantum state is measured, and Quantum Process
Tomography (QPT) is a procedure by which an unknown quantum operation can be fully char-
acterized experimentally [2, 12, 13]. The main idea of QST is the following: for a quantum state
produced by a preparation device, a set of different measurements has to be performed on the ensem-
ble of identical quantum states on the output of that device, in order to estimate all the parameters
of the produced quantum state. These parameters form the density operator (equivalent name is
“density matrix”) of the state, which fully describes the state of a physical system. We describe the
procedure of QST and present our results of QST for the phase qubits in Chapter 3.

The methods of quantum process tomography provide us with the opportunity to predict
the evolution of a quantum state propagating through an imperfect quantum gate. In real experi-
ments, when the interaction between the qubit system and the environment cannot be neglected, it
is not possible to describe the evolution of a quantum state by a unitary operator. The experimenter
attempts to apply an ideal quantum gate U, but what really occurs is a noisy quantum operation &,

which can be characterized by the methods of quantum process tomography. The main idea be-



hind QPT is the following: for a quantum channel (process), that takes an input state and outputs
some transformed state, a combination of preparation of various linearly independent input states
and measurements of the multiple copies of the corresponding output states is used to determine
the quantum channel (process) parameters. The parameters that characterize the quantum channel
form the process matrix x, which contains all accessible information about the quantum process.
Note that while the dimension of the unitary operator U, describing the ideal evolution of a /N-qubit
quantum system, is 2" x 2"V, the dimension of a process matrix x, which describes the non-unitary
evolution in the presence of interaction with the environment, is 4" x 4" The role of QPT in exper-
imental characterization of quantum gates is twofold. First, it allows us to quantify the quality of the
gate; that is, it tells us how close the actual and desired quantum operations are. Second, QPT may
aid in diagnosing and correcting errors in the experimental operation [14, 15, 16, 17, 18]. The impor-
tance of QPT has led to extensive theoretical research on this subject (e.g., [19, 20, 21, 22, 23, 24]).
Therefore the quantum process tomography is an essential tool in reliable quantum information
processing.

Various methods exist for the estimation of the process matrix y from experimental data.
One of the methods of y-matrix estimation from the set of measurement results is the so-called linear
inversion procedure, in which the process matrix is expressed as a matrix multiplication of several
other matrices. This method is described for the systems of one and two qubits in [2, 13, 25], and
it is formulated slightly differently in [17]. Using the expressions for the process matrix from [17],
we wrote a Matlab code that calculates the process y-matrix for the evolution of quantum systems
consisting of several qubits. We established that the maximum number of qubits in the system that

allows the exact computation of the y-matrix on an average personal computer equals six. The



details of the method of linear inversion for the reconstruction of the process matrix are given in
Chapter 4.

As statistical and systematic errors are usually unavoidable in experiments, the density
or process matrix obtained directly from measurement results (using the so-called “linear inver-
sion” method) can often result in parameters that do not have a physical meaning, for example, they
would correspond to negative probabilities, or probabilities greater than one, or violate the positive
semidefinite or trace-preservation property, in other words the obtained estimator of either the den-
sity or the process matrix cannot be used for statistical predictions. One of the possible methods
to avoid the problem of non-physical results is to use the maximum likelihood estimator [26, 27],
which is a convex optimization problem [27, 28, 29]. Convex optimization problems are optimiza-
tion problems, where the objective function and the constraints are convex. In convex optimization,
any local minimum must be a global minimum, which makes it much easier to deal with a convex
optimization problem in comparison to a non convex problem, as it may have multiple local optimal
points. Convex optimization has a variety of applications in science, engineering, and finance. In
the maximum likelihood approach to QST or QPT tasks, the likelihood of reproducing the exper-
imental results is maximized, where the likelihood function is a function of the parameters of the
measurement model of the quantum system, and such method guarantees the density or process
matrix to be theoretically valid while giving a close fit to the measured experimental data. The
specific mathematical form of the likelihood function can be chosen as a log-likelihood function, or
as the least squares function, or some other function. In this dissertation, we provide results for the
log-likelihood QST estimation of a two-qubit state of the system of two superconducting qubits in
Chapter 3, and also provide results for the least squares QPT estimation of the process matrix for

the systems of both two and three qubits in Chapter 5.



Although conceptually simple, QPT suffers from a fundamental drawback: the number
of required experimental configurations scales exponentially with the number of qubits (e.g., [30]).
Even for few-qubit systems, QPT involves collecting large amounts of tomographic data and heavy
classical postprocessing. Specifically, an N-qubit quantum operation can be represented by a
4N % 4N process matrix x containing 16" independent real parameters (or 16" — 4% parame-
ters for a trace-preserving operation) which can be determined experimentally by QPT. To alleviate
the problem of exponential scaling of QPT resources, alternative methods have been developed,
e.g., randomized benchmarking [31, 32, 33] and Monte Carlo process certification [34, 35]. These
protocols, however, find only the fidelity of an operation instead of its full process matrix. Both
randomized benchmarking and Monte Carlo process certification have been demonstrated experi-
mentally for superconducting qubit gates (see [36, 37, 38] and references therein). Although these
protocols are efficient tools for the verification of quantum gates, their limitation lies in the fact that
they do not provide any description of particular errors affecting a given process and therefore they
cannot be used to improve the performance of the gates.

Recently, a new approach to QPT which incorporates ideas from signal processing theory
has been proposed by Kosut, Shabani and coworkers [39, 40]. The basic idea is to combine stan-
dard QPT with compressed sensing (CS) theory [41, 42, 43, 44], which asserts that sparse signals
may be efficiently recovered even when significantly undersampled. Compressed sensing quantum
process tomography (CS QPT) enables one to recover the process matrix x from far fewer experi-
mental configurations than standard QPT. The method proposed in [39, 40] is hoped to provide an
exponential speed-up over standard QPT. In particular, for a d-dimensional system the method is

supposed to require only O(slogd) experimental probabilities to produce a good estimate of the



process matrix Y, if x can be approximated by an s-sparse matrix in some known basis (for compar-
ison, standard QPT requires at least d* probabilities, where d = 2V for N qubits). Note that there
are bases in which the process matrix describing the target process (the desired unitary operation)
is maximally sparse, i.e. containing only one non-zero element; for example, this is the case for the
so-called singular-value-decomposition (SVD) basis [39] and the Pauli-error basis [18]. Therefore,
if the actual process is close to the ideal (target) process, then it is plausible to expect that its process
matrix is approximately sparse when written in such a basis [40].

The main results of this dissertation, published in Ref. [1] and presented in Chapter 5,
are the characterization of quantum gates based on superconducting Xmon and phase qubits, by the
method of compressed sensing quantum process tomography. Our research [1] was inspired by the
previous work by A. Shabani ef al., presented in Ref. [40], where the CS QPT method was experi-
mentally validated for a photonic two-qubit controlled-Z (CZ) gate. In that experiment, sufficiently
accurate estimates for the process matrix were obtained via CS QPT using much fewer experimen-
tal configurations than the standard QPT: from just 18 and 32 configurations, the authors of [40]
reported fidelities of 94% and 97% with process matrices calculated from an overcomplete full set
of all 576 available configurations. In this dissertation in Chapter 5 we apply the method of Ref.
[40] to several two-qubit CZ gates realized with superconducting qubits. Using the experimental
results, we find [1] that CS QPT works reasonably well when the number of used experimental
configurations is up to ~7 times less than for standard QPT with the full number of experimental
configurations of 144. Specifically, we first present our numerical results for the CS QPT of the
superconducting two-qubit CZ gates, based on superconducting Xmon and phase qubits. We also

compare numerical results obtained by applying the CS QPT method in two different operator bases,



the Pauli-error basis and the SVD basis. We also compare the performance of the CS QPT method
with the least squares optimization, using partial data. We also study the CS QPT of a simulated
three-qubit Toffoli gate with numerically added noise, and we find [1] that the reduction factor in
the three-qubit case is ~40, compared with standard QPT using the full number of experimental
configurations of 1728. In our analysis in Chapter 5 we have primarily used two characteristics.
The first characteristic is the comparison between the CS-obtained process matrix xcs and the ma-
trix sy obtained from the full data set; this comparison is quantitatively represented by the fidelity
F(xcs, Xfun)- The second characteristic is how well the CS method estimates the process fidelity
F\, i.e., how close F'(Xcs, Xideal) is to the full-data value F'(xful, Xideal). Besides calculating the
fidelities, we also calculate in Chapter 6 the standard deviation of the fidelity, defined via the varia-
tion of the state fidelity for different initial states. We show that this characteristic is also estimated
reasonably well by using CS QPT. Chapter 7 is a conclusion. In Appendices we give the list of
publications of the author of this dissertation (Appendix A), discuss the Pauli-error basis (Appendix

B) and SVD basis (Appendix C).



Chapter 2

Overview of quantum information

processing and superconducting qubits

2.1 Overview of quantum information processing

2.1.1 Qubit

According to quantum mechanics, the state of a physical system is represented by a state
vector in a Hilbert space, which is a complex vector space with an inner product. In Dirac notation
vectors in Hilbert space are denoted by |v), called a “ket-vector”. The smallest nontrivial Hilbert
space is two-dimensional.

The most basic unit of quantum information is qubit, which is a two-dimensional quantum
system described by a state vector in a two-dimensional Hilbert space. Pure states for a qubit are

superpositions of the basis states |0) and |1), which means that every state vector can be written as



a linear combination of these two basis states:
|¥) = al0) + b|1), 2.1)

where a and b are complex numbers, characterized by a relative phase and subject to the normal-
ization condition |a|? + |b]?> = 1. In contrast to the classical bit, which can be only in the states
0 or 1, a qubit can be in an arbitrary coherent superposition of the states |0) and |1), these states
are traditionally called computational basis. If we measure a qubit in the computational basis, then
according to the postulates of quantum mechanics the state of the qubit after measurement will be
|0) with probability |a|?, and |1) with probability |b|2. This means if one prepares many copies of
the same quantum system in the state |¥), a measurement of the state of the qubit will produce the
outcome 0 with rate |a|?, and the outcome 1 with rate |b|. In general, the dimension d of the Hilbert
space for a system of N qubits is d = 2.

Numerous physical realizations of qubits have been proposed and demonstrated, in which
the qubits are encoded in the polarization state of a photon [45, 46, 47, 48, 49, 50, 51], in the spin
state of a trapped ion [52, 53, 54], in the the magnetic moment of a hydrogen atom in nuclear
magnetic resonance [55, 56, 57], in the ground and first excited center-of-mass vibrational states of
trapped neutral atoms [58, 59, 60], in the spin state of NV centers in diamond [61, 62, 63, 64], in the
states which represent the presence or absence of excess Cooper pairs in the superconducting island
(the charge qubit) [65], in the direction of current in a superconducting loop (the flux qubit) [66], or
in the lowest two energy levels in the local minimum of the potential energy of the superconducting
phase qubit [67, 68]. The superconducting qubits will be discussed in more details in Sections 2.2.2

— 2.2.5 of this dissertation.
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In general, a quantum state is mixed. The above example Eq. (2.1) where the quantum
state | ) is represented by a state vector (wave function) in a Hilbert space over complex numbers
is an example of a very special case of a pure state. A mixed quantum state corresponds to a
probabilistic mixture (statistical ensemble) of pure states, and in order to describe it, the formalism
of “density operator” needs to be used, which is discussed in the next Section 2.1.2.

When the quantum state, described by Eq. (2.1), interacts with some kind of environment,
the state of a qubit may change in an uncontrollable way due to the following two main mechanisms
of decoherence. First, if the energy of the state |1) is higher than the energy of the state |0), due
to the dissipation and energy loss while interacting with the environment, the qubit’s state |1) can
decay to the |0) state at a rate typically described by an inverse decay time 1/77. 71 is usually called
“longitudinal coherence time” or the “amplitude damping”. The second mechanism of decoherence
is dephasing, it can be thought of as noise in the relative phase between the two qubit states, when

the relative phase between the two basis states |0) and |1) may change uncontrollably as
) = al0) + b[1) — a0) + e®b[1), (2.2)

where 6 is the relative phase shift that changes the expectation values of measured quantities. This
mechanism of decoherence is called “pure dephasing” and is characterized by the time 77, (some-
times denoted in the literature as 73). Actually, the mechanism of “amplitude damping” also con-
tributes to dephasing since it leads to the change and fluctuation of the eigenenergies of the quan-
tum system and, consequently, to a random relative phase change between the two qubit states.
Therefore, dephasing can occur via two different mechanisms, “amplitude damping” and “pure de-
phasing”. In the presence of both types of decoherence mechanisms, relaxation time 7% (which

1 1 1
characterizes the total dephasing rate), 771 and Tj are related as — = — + —, and 11 > T5.
T, 217 Ty
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Decoherence is the main agent destroying the quantum information and one of the key
obstacles in implementing quantum computers devices. A key problem is the fact that quantum
noise, and in particular, decoherence, are non-unitary operations that cause a pure state to become a

mixed state.

2.1.2 Density matrix

In most of the situations, a quantum system appears to be in a mixed state, and therefore
the state of a quantum system must be described by a density matrix (or equivalently density opera-
tor). For example, it is not possible to describe a quantum mechanical system that undergoes general
quantum operations such as measurement, using exclusively states represented by wave functions
(ket vectors). A density matrix p contains all the physically significant information about a quantum
system. If a density matrix is given, we can calculate the ensemble average (O) of any arbitrary
operator O on the Hilbert space of the system.

The density matrix is a linear, Hermitian operator on the Hilbert space of wave functions.
If a quantum system can be in one of the states |W;) with probability p;, then the density operator /
for such system is

p=> pi| W) (W]. 2.3)
i
The density operator has the following properties:

e Hermicity: The density matrix is a hermitian, or self-adjoint, operator: p = /;*;

e Positive semi-definiteness: All of the eigenvalues of the density operator are nonnega-
tive, or, equivalently, (¢|5|¢) > 0 for any state [¢);

e Trace condition: its trace must equal 1, Tr(p) = > pi; = 1;
i
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e Measurement: For a system in state p, the expectation value of a measurement described
by Hermitian operator O is Tr(p0).

The elements of the N-qubit density operator form a 2V x 2V matrix (or, equivalently,
d % d matrix, where d is the dimension of Hilbert space). For example, in case of a single qubit

(N = 1), a system is in a pure state described by a state vector (wavefunction) |¥) as in Eq. (2.1),

and there is only one term in the sum Eq. (2.3) with p; = 1. Therefore, the density matrix can be

written as
R Poo  Po1
p= = p00|0){0]+p01[0)(1|-+p10[ 1) (0|+p12 [1)(1], (2.4)
P10 P11
or explicitly as
2 2 !“‘2 ab”
p= [0) (] = |af*0)(0] +at[0)(1| + ab{1)(0] + [bf*[1)(1] = |- es
a*b ‘b‘

The elements pgp and p1; on the main diagonal are real numbers (usually referred to as “popu-
lations” of the two energy levels, as they determine the probabilities to find the system in one of
the two energy states), and the off-diagonal elements pg; and pig are complex numbers (usually
referred to as “coherences”). Therefore we need three real parameters to write the density operator

of a one-qubit system, which can be chosen as p;1, Re(pi10) and Im(p19):

poo  Pol 1 —p11 Re(p1o) — @ Im(p1o)
- . 2.6)

P10 P11 Re(p1o) + 7 Im(p1o) P11

>
I
|

In general, the density operator for the system of N qubits is a 2V x 2V matrix that
contains (4" — 1) independent real parameters.
As we will be discussing in details the Quantum State Tomography algorithms for the

two-qubit systems in Chapter 3, specifically in Section 3.3, we want to introduce here the following
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parametrization for a two-qubit density matrix:

i1 Tri2 Tz T4

T2l T22 T23 T24
2.7

>
I

31 T32 T33 T34

T4l T42 T43  T44
which is a 4 x 4 matrix containing 16 real parameters, 15 of which are independent. There are 4 real
parameters 7;; on the main diagonal, subject to the normalization condition 711 +722+733+744 = 1
(this leaves only three independent parameters out of four), and 12 off-diagonal elements which are

complex numbers, subject to the hermicity condition r;; = 7

Ji» which leaves us with 12 independent

real parameters for the off-diagonal elements.

2.1.3 Bloch sphere and Pauli operators

There exists a nice way of graphical representation of a single qubit state as a point on
a surface of the so-called Bloch Sphere (named after a physicist Felix Bloch, one of Heisenberg’s
students). Pure states are represented by points on the surface of the Bloch sphere of unit radius,
while mixed states are inside of the sphere. Such representation can be derived as follows. The most

general state of a qubit, described by Eq. (2.1), can be represented as
i 4 ip o 0
1) :ew(cos§‘0> +e 51115‘1)), (2.8)

because a and b are complex numbers in Eq. (2.1). The overall phase factor v in Eq. (2.8) has no
observable effect and can be set to zero. The variables 6 € [0, 7] and ¢ € [0, 27] are numbers that

together define a point on the surface of a unit sphere, which is known as the Bloch sphere. This
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fact becomes obvious if we introduce the parametrization

x = sin f cos ¢, 2.9)
y = sin @ sin ¢, (2.10)
z = cosf. (2.11)

Note that the north and the south poles of the Bloch sphere correspond to the states |0) and |1)
respectively. Points that are antipodal on the Bloch sphere represent orthogonal pure states of the
qubit, and overlaps between states can be calculated from the relative angle between the two corre-
sponding points on the Bloch sphere.

It is convenient to visualize rotations of a qubit on the Bloch sphere. Rotations on the
Bloch sphere about x—, y— and z—axes are described mathematically by the exponentiated Pauli

matrices (Pauli operators) o, 0, and o, where

o9 = , Oy = , Oy = , O, = . (2.12)
01 10 i 0 0 —1

The Pauli operators play a very important role in quantum information processing. The set
{00, 02,0y, 0.} forms a traceless (except for o), unitary, Hermitian and orthogonal basis (orthonor-
mality can be achieved by scaling each element by 1/2).

The rotation operators on the Bloch sphere about the axes z, y and z by angle 0 are

described by the following operators R., R;) and RY:

o _ —ibo,/2 _ AV B cos 5 —isin5 ‘
R =e —cos(Q)I zsm(2>a$_ 4 0 ; (2.13)

—7sin — cos —
2
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o_ —ifo,)2 _ Q L Q _ COSE —sin§ .
Ry =e 005(2)1 zsm(2)ay ‘ 4 ; (2.14)
sin — cos —
2 2
‘ o 10/2 0
Rze = 6_2602/2 = COS(Q)I — isin(g)az = . (2.15)
2 2 0 i9/2

A single-qubit density matrix (not necessarily of a pure state) can be expressed in terms

of Pauli matrices, which are defined by Eq. (2.12):

P00 Po1 1
p= = 5 [TOUO + Tr20y + Tyoy + TZO'Z], ro =1, (2.16)
P10 P11
or
P00 Po1 1 L4r, rp—iry
p e fry 5 5 (2.17)
P10 P11 re+iry 1—r1,

where the 3-vector 7 = [r,, 7y, 7] lies in the unit Bloch’s sphere. This vector is called the Bloch
vector (or Bloch representation) of p. For single qubit states, every point in the unit sphere is
associated to a unique quantum state and the pure states lie on the boundary of the unit sphere.

Note that the Bloch sphere is closely analogous to the Poincaré sphere, which was de-
veloped by Henri Poincaré in the 19th century. Invented in 1891 by Henri Poincaré, the Poincaré
sphere represents classical polarizations in an analogous way (up to the 90° rotation) that the Bloch
sphere represents qubits.

The generalization of the Bloch vector to multi-qubit systems is not straightforward, be-
cause the pictorial representation of states associated to every point on the sphere becomes ex-
tremely complicated due to exotic geometry of multi-qubit state spaces, and not every state on the

surface would be physical. On the other hand, the Pauli basis can be easily generalized for a sys-
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tem of N qubits as the Kronecker (tensor) products of IV single-qubit Pauli operators from the set

{007 Ox,0y; Uz}-

2.1.4 Definition of a quantum channel

Generally speaking, a quantum channel £ describes the evolution of a state of a physical
system characterized by the density matrix 5™ to a new state 5 under some process &£: pin =
E(p™). The most prominent example is the unitary time evolution of a closed system, 5" =
U pAinU t with U = e~##*/" and Hamiltonian H: The unitary evolution £(p) of a density operator p,
described by a unitary operator U, is

E(p)=UpU". (2.18)

In general, the notion of quantum channels is much broader, for example, the transfor-
mation £ does not have to be unitary. The formal definition of a quantum channel can be formu-
lated in the following way. Let H 4 and H g be the state spaces (finite-dimensional Hilbert spaces
H, p € C") of dimensions d; and d» of the sending and receiving ends, respectively, of a quantum
channel. Let £(H 4) denote the set of bounded linear operators on H 4, in other words it is a matrix
algebra of bounded operators on a Hilbert space H 4, and analogously for £(Hg). By definition, a

quantum process (quantum channel) is a linear, completely positive, trace-preserving map &:
E:L(Hy) — L(Hp). (2.19)

A map is called positive, if it maps positive operators to positive operators. It is called completely
positive, if this is the case even when the map is only applied to a subsystem. That is, £ is completely
positive if

ER1,: LIHy) ® L(C") — L(Hp) ® L(C") (2.20)
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is positive for all n € N, where I,, denotes the identity map on £(C™). In other words, if an
ancilla of an arbitrary finite dimension 7 is coupled to the system, then the induced map £ ® I,,
is also positive. Complete positivity allows one to use channels to describe operations local to a

subsystem. A map is called trace-preserving if
Tr[E(p)] = Tr(p) forall p € L(Hz). (2.21)

Sometimes in the literature the property of trace preservation is weakened so that £ is only required
to be trace-nonincreasing. A map is called linear if applying the map to a linear combination of
input density matrices yields the same result as applying it to the input density matrices separately
and taking the linear combination of the resulting states:

E(Z pipl) = szg(ﬁ;n) forall pi" € L(H ). (2.22)
- :

)

Sometimes in the literature a condition for £ to be unital is added to the definition of a
quantum channel. A map € : L(H4) — L(Hp) is called unital if it maps the unity of £(H 4) to
the unity of L(Hp),

E(ly) =1p. (2.23)
Unitary channels are unital and describe the dynamics of a quantum system that is isolated
from environmental interactions.
2.1.5 Distance between quantum states

In order to compare the two density matrices p and & we use the standard measures of the

distance between two quantum states from the quantum information theory: “fidelity” and “trace
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distance”. The general definition of the fidelity [69, 70, 71, 72]:
. n 1 1\)2
F(p,6) = {Tr( prap? )} . (2.24)

The fidelity takes values between 0 and 1, i.e. 0 < F' < 1. If the states p and & are equal,
then F'(p,o) = 1, and if the states have orthogonal support (which means that they are completely
different) then F'(p, o) = 0. Also, this fidelity is symmetric in p and 6. Note that some authors
call V/F fidelity [2].

Another distance measure between quantum states is the trace distance [2], which is de-

fined as

D(p,0) = 5Tx(lo—ol) = 51 [\/(0 )i (0~ )] (2.25)

2.1.6 Quantum gates

A quantum gate (or a quantum logic gate) is a basic quantum circuit that operates on a
small number of qubits. Quantum logic gates can be represented by unitary matrices. The most
common quantum gates operate on spaces of one, two or three qubits.

Important examples of one-qubit gates are the following:

e X-gate (equivalent names are NOT'-gate or bit-flip), which maps ‘0) to {1} and ‘1>
to ‘0> and has the meaning of rotation of the Bloch sphere around the X-axis by 7 radians, it is
represented by the Pauli o, matrix, defined in Eq. (2.12),

e /-gate (also called as phase-flip gate), which leaves the basis state ‘0) unchanged and
maps ‘1) to —‘1> and has the meaning of a rotation around the Z-axis of the Bloch Sphere by
m radians (azimuthal rotation of the Bloch vector by 7 about Z-axis), it is represented by the Pauli

o, matrix, defined in Eq. (2.12),
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e There are other gates, such as Hadamard gate, Y -gate, the phase shift gates and the swap
gate. Obviously, there are infinitely many 2 X 2 unitary matrices, therefore infinitely many possible
single qubit gates.

Controlled gates act on two or more qubits, where one or more qubits act as a control for
some operation, and one of the qubits, called target qubit, changes its state depending on the state
of the control qubit(s). Important examples of the two-qubit quantum gates are the following:

e CNOT gate. It operates on two qubits as follows: leaves the second qubit unchanged

when the first qubit is in state ‘0>, and it flips the second qubit if the first qubit is in state {1) The

vectors [00), |01), |10), and |11) form an orthonormal basis for the set of pure states for a two-qubit

system. Therefore, in this basis the CNOT gate has the following representation:

100) —[00) 1000
01) —|01) 0100
: (2.26)
110) —11) 0001
11) —|10) 0010

e Controlled-Z (CZ) gate is a controlled two-qubit gate which implements the flip the sign

of | 11) state and keeps the other three basis states unchanged, its matrix representation is

|00) — |00) 100 0
j01) — |01) 010 0
(2.27)
[10) —  [10) 001 0
[11) — —|11) 000 —1

The Toffoli gate. The Toffoli gate, which is essentially a CCNOT-gate, is a three-qubit

controlled gate, which applies the X -gate on the third target qubit if both of the first two control

20



qubits are in the states ‘1) and it does nothing for the other three possible states of the two control

qubits.

(2.28)

2.2 Review of superconducting qubits

As discussed in Section 2.1.1, qubit or quantum bit is a fundamental unit of quantum
information, which can store information not only in the states |0) or |1), but also as a combination
of both basis states simultaneously, which is the manifestation of the phenomenon of quantum
superposition. There are various physical realizations of qubits. As discussed in Section 2.1.1,
numerous implementations have been reported in optics where the two photon polarizations form
the effective two-level system, in trapped ions, in semiconductors, in liquid NMR systems, in NV
centers in diamond and in other physical systems, but the object of research of this dissertation is the
analysis of the quantum states and quantum processes involving superconducting qubits, based on
Josephson effect. Superconducting qubits are electrical resonators with a non-linearity that is strong
enough so that microwaves excite transitions only between the the two lower levels of the system.

Superconducting qubits include such elements as Josephson junctions, capacitors and inductors,
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and can be considered as nonlinear LC-circuits. Josephson junctions introduce the nonlinearity
into the circuits, which leads to unequal distances between energy levels of the system and the
possibility to distinguish the lower two levels of the system from the rest of the levels. We discuss
superconducting qubits in more details in the next Sections 2.2.2, 2.2.3, 2.2.4 and 2.2.5.
Comparing superconducting qubits to other possible physical realizations of qubits, su-
perconducting qubits have the largest physical size: their typical size is tens of micrometers (from
~ lpum to ~ 100pm). This circumstance makes these types of qubits relatively easy to fabricate us-
ing standard microfabrication techniques and integrate them into the electric circuits, consisting of
capacitors, inductors, transmission lines and other linear electronic components. This makes it eas-
ier, compared with other qubit types, to couple superconducting qubits with the readout and control
circuits and to each other. Strong qubit - qubit coupling between superconducting qubits also means
faster gates compared with the other types of qubits. As a disadvantage of superconducting qubits,
strong coupling to the environment and the larger size of the qubits mean shorter coherence times,
which are currently 10 — 100 microseconds. Another difficulty is that superconducting qubits are
not true two-level systems, there are always more than two energy levels ‘0> and ! 1> in the potential
well. The upper level ‘2> can become accidentally populated, which is possible for the qubits with
small anharmonicity when the ‘0> — { 1> transition frequency differs very insignificantly (several
percent) from the ‘ 1> — ‘2> transition frequency. For example, for this reason a small nonlinearity

places restrictions on the speed of quantum gates in transmon qubits.

2.2.1 General introduction to Josephson junction dynamics

The Josephson effect is the phenomenon of supercurrent (a current that flows indefinitely

long without any applied voltage) across a device known as a Josephson junction. In superconduc-
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tors at low temperatures electrons bind into Cooper pairs (bound states of two electrons with oppo-
site momenta and spins) that condense into a state with zero-resistance and a well-defined phase.
The idea of forming the Cooper pairs is the following: an electron moving through a lattice of ions
creates vibrations (phonons), which can be absorbed by another electron. The interaction that arises
as a result can be attractive provided the electron-phonon coupling is strong enough. Cooper pairs
are bosons (the net spin of a pair of electrons is zero), therefore they may form a Bose-Einstein
condensate that possesses the property of superconductivity. All the Cooper pairs at a given point
in a superconductor can be described by a single wavefunction with a phase ¢.

A Josephson junction is a quantum mechanical device which consists of two supercon-
ducting electrodes separated by a thin! layer of a nonsuperconducting material, such as insulating
tunnel barrier, thin normal metal, etc. The devices are named after Brian Josephson, who predicted
in 1962 [73] that pairs of superconducting electrons can quantum-mechanically tunnel through the
nonsuperconducting barrier from one superconductor to another, and also predicted the mathemat-
ical relationships for the current and voltage across the the junction. Anderson and Rowell [74]
observed the effect in 1964. The supercurrent /; that flows through the junction as the result of the
tunneling of Cooper pairs, and the voltage V' across the barrier, are described by the following two

classical equations:

I, = Iysing, (2.29)
Dy db

= —— 2.30

o dt’ (2.30)

where ¢y = % = 2.07 x 10" Wb is the superconducting flux quantum, I, is the critical-current
e

parameter of the junction, § = ¢ — ¢r and V are the superconducting phase difference and voltage

!Note that in a Josephson junction, the nonsuperconducting barrier separating the two superconductors must be very
thin. If the barrier is an insulator, it has to be on the order of 30 angstroms thick or less. If the barrier is another metal
(nonsuperconducting), it can be as much as several microns thick.
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across the junction. It can be shown from these two equations that the Josephson junction can be
dd
considered as a nonlinear inductance: differentiating Eq. (2.29) and replacing pr with V' using
. . aly . . .
Eq. (2.30), one arrives at the equation V' = L I with the nonlinear inductance

%)

L= ———
4 271y cosd

(2.31)

(nonlinearity arises from the term $). Therefore, as we see, a Josephson superconducting qubit
can be understood as a nonlinear resonator formed from the Josephson nonlinear inductance and its
geometric junction capacitance. The nonlinearity of the junction plays an extremely important role
because it leads to non-equidistant energy levels in such resonator, namely the frequency wj( that
drives transitions between the qubit states 0 <+ 1 is different from the frequency wo; for transitions
1+ 2.

Using Eq. (2.30), it is easy to derive another fundamental relation between the phase
difference § across the Josephson junction and the magnetic flux in the loop ®. In a Josepson
junction closed with a superconducting loop, the voltage across the Josephson junction can arise
only as a result of a change of the magnetic flux ® in the loop,

do

V=—.
dt

(2.32)

The magnetic flux @ is defined as & = f BndA, where B is the magnetic field, and A is the
area of the contour. Substituting into Eq. (2.32) the expression for the voltage across the junction
from Eq. (2.30), we arrive at the following fundamental relation

P
§=2m—. 2.33
o, (2.33)

As we see from Eq. (2.33), the phase difference 9 across the junction is linearly proportional to the
magnetic flux @ in the loop. This is an important relation, in particular we will use Eq. (2.33) while

discussing the phase qubits in Section 2.2.5. 24



There are three main types of superconducting qubits: the charge, the flux and the phase
qubits. Charge qubits (also called Cooper pair box) were the first superconducting qubits to be
demonstrated in 1998 [65, 75]. A year later the flux qubits were demonstrated [66]. The phase qubit
was first demonstrated in 2002 [76, 77, 78]. The main difference between the charge, flux, and
phase qubits is the shape of their nonlinear potentials, which are correspondingly cosine, quatric
and cubic. In subsequent years various design modifications to these original qubit types have
been done, and several other qubits were introduced, such as quantronium [79], transmon [80,
81], fluxonium [82], which have improved performance by reducing the sensitivity to decoherence
mechanisms that existed in earlier designs. We are giving a brief introduction into the main types of
superconducting qubits in the next sections of this dissertation, where we first describe the charge
and flux qubits in Section 2.2.2 and 2.2.3, then discuss the transmon qubit as a refined charge qubit
with charge noise insensitivity in Section 2.2.4, and finally we give an overview of the phase qubits

in Section 2.2.5.

2.2.2 Charge qubit

The “Cooper pair box™ or charge qubit [65], effective circuit diagram of which is pre-
sented in Fig. 2.1, is a small superconducting island (“box’’), which is basically a small supercon-
ducting electrode, connected via a Josephson junction with capacitance C'; and Josephson energy
FE; to a grounded reservoir. (There also exists a modified version, called “split Cooper pair box”,
presented at Fig. 2.2, with two Josephson junctions, connected together to form a superconduct-
ing loop, which can be biased by an external magnetic flux ®..) The superconducting island
can be biased by a voltage source V, in series with gate capacitance C;. Cooper pairs can tunnel

onto the island and off the island, one at a time, therefore the relevant degree of freedom is the
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Figure 2.1: Effective circuit diagram of the Cooper-pair box. The small superconducting island is
connected to a large superconducting reservoir by a Josephson junction with capacitance C'; and
Josephson energy £/;. The island can be biased by a voltage source (gate voltage) V, in series with
a gate capacitance C,.
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Figure 2.2: Effective circuit diagram of the split Cooper-pair box. The small superconducting island
is connected to a large superconducting reservoir by two Josephson junctions with capacitances C'y
and Josephson energies F; (not necessarily equal). The island can be biased by a voltage source
(gate voltage) V in series with a gate capacitance C'y and by an external magnetix flux ®ey;.

number of Cooper pairs on the island. Such a qubit is described by its Josephson coupling en-
ergy E; = Ip®o/(27) and by its Coulomb charging energy, corresponding to one Cooper pair on
the junction, Ec = (2¢)?/(2Cyx), where Cx, = C + C, is the total capacitance of the box (the
sum of the capacitance of the junction C'; and the capacitance of the gate Cy), and e is the electron
charge. Coherent oscillations in such Cooper-pair box have been observed in [83, 84].

To write the Hamiltonian of the charge qubit, we need to introduce the operator 7 of
the number of excess Cooper pairs on the island. The total number of excess Cooper pairs n is
related to the total charge g of the island as ¢ = —2en, n = 0 corresponding to an electrically

neutral island. Obviously, n can take both positive and integer values, corresponding to the excess
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or deficit number of Cooper pairs on the island, and as Cooper pairs can tunnel in and out of the
island by Josephson tunneling, this number n can fluctuate quantum-mechanically. Therefore the
convenient basis for the charge states of the island are the eigenvectors of 72: 72|n) = n|n). Itis also
convenient to introduce the operator 5, conjugated to n, with the commutation relation [5 ,n] = 1,
where 0 € [0, 27] defines the phase of the Cooper pair condensate on the island. Using the charge
basis, we can write the Hamiltonian in the charge representation as the sum of its electrostatic and

Josephson coupling parts:

(2¢)?
>

2C! 2e

5>
n

or, introducing the dimensionless gate charge n, =

(ﬁ - Cng>2|n)<n| - % (\n><n 1+ |n+ 1><n|>] . (234

C,V,
99 which represents the charge on the gate
e

capacitor in units of Cooper pairs and can be tuned by the voltage Vj, at the gate electrode,

=% [Ec(n - ng)2|n)<n| - %(\n)(n +1)+ |n+ 1><n|)]. (2.35)

1

It can be shown that cos § = 3 (|n) n+1]4+n+1) <n\), therefore the Hamiltonian can

be rewritten as

A 2
H=>" [EC (n - ng) ] — Ejcosd. (2.36)
n

For the “split Cooper pair box”, presented at Fig. 2.2, the effective Josephson coupling E 7
of the junctions in the charge qubit can be tuned with the external perpendicular magnetic flux ®ex

through the loop [85] as

®
Ej = Ejmax coS <7r qf;t), (2.37)

then the Hamiltonian Eq. (2.36) takes the form

. 2 )
H = E [EC (ﬁ — ng> ] — F jmax €OS <7r(;m> cos 0. (2.38)
n

0
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The energy spectrum of Hamiltonian Eq. (2.36) or Eq. (2.38) depends on n, and on the ratio
E;/Ec. The energy spectrum is discrete and periodic in n4 (the period equals one).

The eigenstates |n) and eigenenergies F), of the charge qubit are given by
2
Ec (n . ng) n) = Eu|n), neN, (2.39)

and the number of Cooper pairs on the island is represented by the number operator, 7.

2.2.3 Flux qubit

In this Section the flux qubit [66] will be discussed very briefly (such type of qubits is
never used in any calculations in this dDissertation, therefore we will discuss it briefly). The pro-
totype of a flux qubit is a circuit called “RF-SQUID”, which consists of a Josephson junction with
capacitance C';, the two sides of which are connected by a superconducting loop with inductance
L (usually L < L; where L is defined in Eq. (2.31)). An external flux ®¢y; is imposed through
the loop by an auxiliary coil. This external flux plays a role similar to the gate electrode in the
charge qubit, allowing us to tune the effective Josephson coupling. The flux qubit parameters are
such that -~ < E;, minimizing the charge noise that is present in charge qubits. The flux qubit
is operated with the external flux ®¢y in the vicinity of the point ®exy = ®o/2. The potential of
an RF-SQUID qubit has a form of a double well, this potential is symmetric for ®eyy = P/2, and
any change in ®gy, tilts the potential. The two wells of the potential represent different “fluxoid”
states of the RF-SQUID, corresponding to the counterclockwise and clockwise persistent currents
circulating in the loop formed by L. Such coherent superposition of the two magnetic-flux states in
different wells of the RF-SQUID was observed in [86]: one state corresponding to a few microam-

peres of current flowing clockwise, the other state corresponding to the same amount of current
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flowing counterclockwise. In [87] and [88] a coherent time evolution between two quantum states

of a superconducting flux qubit comprising three Josephson junctions in a loop was observed.

2.2.4 Transmon and Xmon

The drawback of the charge qubit, discussed in Section 2.2.2, is its sensitivity to the 1/ f
charge noise. A new type of superconducting charge qubit that has reduced sensitivity to the charge
noise was developed at Yale University [80, 81] in 2007. Such a qubit is called “transmon”, which
stands for “transmission-line shunted plasma oscillation qubit”. The transmon consists of two su-
perconducting islands coupled through two Josephson junctions and isolated from the rest of the
circuitry. The crucial distinction of the transmon from the “Cooper pair box” is a shunting connec-
tion of the two superconductors via a large capacitance C'p, accompanied by a similar increase in
the gate capacitance C'y. The Hamiltonian of the transmon takes the same form as the Hamiltonian
of the “Split Cooper pair box” Eq. (2.38), with the additional capacitance C'p in the expression for
the total capacitance Cy, = C; + Cp + C,, which enters into the formula for the Coulomb charging
energy Ec = (2¢)?/(2Cy). The presence of the additional capacitance term Cp allows us to make
the charging energy F- small compared to the Josephson energy E ;. The reduced sensitivity of
the transmon to charge noise is made possible by significantly increasing the ratio of the Josephson
energy to the charging energy F;/E¢, which effectively flattens the energy bands (dependence of
the eigenenergies F,, corresponding to Eq (2.39) on n, becomes more and more flat as the ratio
E;/E¢ increases), as explained in [80]. The typical values of the ratio F;/E¢ are about 20 —
100 for the transmon qubits (in other words FE; > E¢), while E;/E¢ ~ 1 for the charge qubits.

Several experiments in which transmons were used are reported, for example, in [89, 90, 91].
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Figure 2.3: Effective curcuit diagram of the transmon qubit. The two Josephson junctions (with
capacitance and Josephson energy C'y and E ;) are shunted by an additional large capacitance Cp,
matched by a comparably large gate capacitance C,. L, and ;. model the coupling to the transmis-
sion line. Vj is the gate voltage.

The main idea of the method of measurement of the transmon qubit consists in coupling
the transmon off resonance to a cavity, irradiating the cavity by microwave radiation, and then
probing the transmitted or reflected photons. A cavity is realized in transmon experiments as a
superconducting transmission line resonator, called coplanar stripline resonator. When a qubit is
coupled off resonance to a cavity, the resonator’s frequency depends on the qubit’s quantum state,
and photons populating the resonator acquire a qubit state dependent phase shift. The phase or
amplitude of the microwave field outgoing from the resonator is measured, and the measurement
contains information about the state of the qubit (more specifically, information about the qubit’s
projection along the z-axis of the Bloch sphere). The resonant frequency of the resonator can be
controlled by changing the length of its middle stripe, and when the resonator is irradiated at the
resonant frequency, a standing wave is formed inside of the resonator. The coupling of the qubit

with the resonator is achieved by putting the qubit into the center of the transmission line.

30



This spectroscopic measurement scheme was first considered in [92], and this technique
was first demonstrated for charge qubits [93, 94, 95] before the transmon was invented, but as shown
n [80], this technique called dispersive measurement may be directly transferred to the transmon.
In the dispersive limit, the detuning A = w, — w, between the qubit and the resonator frequencies is
large in comparison with the strength of the qubit-resonator coupling g, A > g (w, = wi —wyp is the
transition frequency of the qubit). Theoretical analysis shows that the resonator frequency is shifted
by the value x = +¢2/A, and the difference in resonator frequency for the two qubit states is 2, see
Fig. 2.4. To perform a measurement of the qubit, a pulse of microwave radiation with the frequency
of wyw = wy orw, £ g%/ A is sent through the cavity. The choice of the frequency of the probe
radiation w,,,, is determined by the ratio of the parameters A, g, and x of the system (x denotes the
cavity decay rate which determines the width of the resonant peak at Fig. 2.4). As explained in [92],
if /fi > 1, i.e. the frequency shift of the resonator ¢g%/A is greater than the line width «, then
under irradiation of the cavity at one of the “pulled” frequencies w, #+ g?/A, the transmission of the
cavity will be close to unity for one state of the qubit and close to zero for the other state. Therefore,
knowing the drive frequency and the intensity of the transmitted radiation, one can measure which

2
state the qubit is in. If the opposite situation g < 1 takes place, then it is preferable to irradiate

KA
the resonator at the bare cavity frequency w,,, = w;. In this case the state of the qubit is encoded
in the phase of the transmitted microwaves, and the homodyne detection technique can be used to
measure it and to infer the state of the qubit. Such dispersive measurement with a microwave pulse
has become a well-established technique of transmon readout, for example the measurement fidelity

of 98% was reported recently in [96]. The dispersive measurement technique was generalized for

the systems of two transmon qubits in [97], where a method to jointly and simultaneously read out
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Figure 2.4: Transmission Spectrum of the cavity, which presents a peak of width  at w, — ¢g>/A
or w, + g%/A depending on the state of the qubit, red curve for the excited state, blue curve for
the ground state. s denotes the cavity decay rate. To perform a measurement of the qubit, a pulse

of microwave photons, at a probe frequency w;,y = wy Or w; & g%/ A, is sent through the cavity.
(Adapted from Ref. [92].)

the quantum state of two transmon qubits dispersively coupled to a microwave resonator has been
presented.

In 2013 a new type of the transmon qubit, the Xmon, has been developed [98] in the
research group of prof. J. Martinis (UCSB). Such Xmon qubit shows long coherence time exceed-
ing 40ps (in the original paper [98] the reported measured energy relaxation time was 17 = 44us,
the much longer time 77 ~ 60us has been reported recently in [99]), allows for straightforward
coupling to multiple elements, and has a low parasitic coupling. Such qubits are frequency tunable,
which allows the high-fidelity implementation of fast two-qubit gates, such as CZ-gate. The device
is shown in Fig. 2.5, it has a planar geometry consisting of the cross-shaped qubit capacitor, which
connects at the bottom to the tunable Josephson junction, formed by the rectangular ring-shaped
superconducting quantum interference device, and the four arms of the cross-shaped capacitor are

connected to the following four elements: to the readout line on the top, to a quantum bus resonator

32



readout line readout
@' —D— resonator
— L

readout
resonator

. 200 um
1 ' 1l self cap. |
. xv I | Py
control
sQuiDX
quantum
bus z
(C) control

XY
control Xmon

- o

() J—LEQQB&BI'"" B II—

Figure 2.5: (a) Schematics of the Xmon qubit, formed by the Al superconducting film and the
exposed sapphire substrate. The qubit is capacitively coupled to a readout resonator on the top, a
quantum bus resonator (right), and an XY control line (left), and inductively coupled to a Z control
line (bottom). (b) The inset shows the shadow evaporated Al junction layer (blue regions). (c) The
electrical circuit of the qubit. (Adapted from Ref. [98].)

on the right, to an XY control line on the left for the qubit state excitations, and to a Z control line
on the bottom for tuning the qubit frequency. The first three couplings are capacitive, while the last
coupling to a Z control line is inductive. The typical sizes of the described qubit are the following:
the arm length L ~ 130 — 165um, and the width of the junction size .S, W on the order of 10um
(see Table 1 in [98] for the discussion of the specific values of these parameters). Such Xmon qubit
has the transition frequency between the ground and first excited states of about 6 GHz, and a ratio
of Josephson to charging energy F;/Ec ~ 95. The main experimental data used in this dissertation
in Chapters 5 and 6, where we present our results for the compressed sensing method of QPT, were

obtained using the two-qubit CZ gate realized with Xmon qubits [98].
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2.2.5 Flux-biased phase qubit

Besides using the experimental data obtained with Xmon qubits in our calculations, we
have also performed the analysis of the CS QPT of two CZ gates based on phase qubits in Chapters
5 and 6. Therefore we are giving a brief review of the type of superconducting qubits known as
the “flux-biased phase qubit” [67, 68, 100] in this Section. A flux-biased phase qubit is a super-
conducting loop, formed by a single Josephson junction in a nonlinear LC-circuit, exposed to an
external magnetic flux ®@cx;. Its schematics is presented in Fig. 2.6. When an external magnetic flux
is applied to the loop, a current starts to circulate in the loop, which, in turn, produces a magnetic
flux, which changes the total flux. One can derive the following expression for the potential energy

of such phase qubit (see, for example, [100]):

05 g,.)
_ Iy® ®32 51 o
U(é) —*?COS(S—FE QS*% —7EJCOS(S+ o7 s (240)
where ¢ is a superconducting phase difference across the Josephson junction, ®g = h/(2e) is

the magnetic flux quantum, ¢ = 270y /Py is the dimensionless external magnetic flux, F; =
Iy®o/(27) is the Josephson coupling energy, Iy is the critical current, e is the electron charge, L is
the inductance. Note that typically the ratio of the Josephson energy F; to the charging energy F¢
is much higher than that for the charge qubit or for the transmon: for phase qubits E;/E¢c ~ 10%
[76, 101].

The derivation of Eq. (2.40) is pretty straightforward. First, we write down the expressions
for the energy of the capacitance E¢, the Josephson junction E;;, and the inductance Er. As is
well known, the energy stored in the capacitor C' is a function of the charge () (or, equivalently,

of voltage V' across the capacitor), and the magnetic energy which is stored in the inductor L is a
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Figure 2.6: The circuit schematic of a flux-biased phase qubit (a), and the schematics of the plot of
the potential energy U as a function of the phase difference § across the Josephson junction with the
measurement scheme (b). In Fig. (a): @ is the external flux applied through the inductor loop, L is
the inductance of the loop, C' is the capacitance of the loop. In Fig. (b): When measuring the state
of the phase qubit, the height of the potential barrier is lowered, the state |1) tunnels through the
potential barrier, and relaxes into the deeper well. The superconducting phase difference § changes
its value.

function of the magnetic flux ®:

CV2 O R2N /déN2
Fo=—5=5(32) (%) 24D
EJJ = —EJ COS (5, (2.42)

_ L2 1 (Qos o )2
By =50 = 2L(27r5 @ext) . (2.43)

While writing these relations, we have used some basic equations for Josephson junctions from
Chapter 2.2.1. We have used Eq. (2.30) when writing here the equation Eq. (2.41), and we have also
used the previously derived relation Eq. (2.33) between the phase difference J across the junction
and the magnetic flux ® in the loop in Eq. (2.43) for Er. Eq. (2.33) from Chapter 2.2.1 is valid
without the external magnetic flux in the circuit, and when we turn on the external magnetic flux
Dext, we modify Eq. (2.33) to

O 4 Poyy = —6, (2.44)
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from which we get

32 — (%5 - @ext)Q, (2.45)

which we used in Eq. (2.43). The kinetic part of the total energy of the phase qubit is E¢, and
the potential part of the total energy of the phase qubit is £;; + E,, therefore we arrive at the
expression for the potential energy Eq. (2.40) by summing up Eq. (2.42) and Eq. (2.43).

The typical profile of the potential energy U (J) for a flux-biased phase qubit as a function
of the superconducting phase difference ¢ across the junction can be modeled by two wells with
different numbers of quantized states in each well, as in Fig. 2.6. The “left” potential well is shallow,
while the “right” potential well is much deeper. Typically, there are approximately 3 to 7 energy
levels in the “left” shallow potential well, and at least 300 energy levels in the “right” deep potential
well [78].

The most important feature of such potential is its anharmonicity, which means the energy
levels in each potential well are not equidistant. The “shallow” left well can be approximated as
a“‘cubic” potential (a quadratic parabola profile with a cubic anharmonicity), therefore the energy
eigenstates are not equidistant. The lowest two energy eigenstates in the left shallow potential well
form the effective two-level system and are used as the qubit basis states, the ground |0) and the
first excited |1). Typically, the energy difference between these two lower levels is E19/h ~ 6 GHz.
Microwaves can be applied at the qubit frequency wig = FE1o/h to cause transitions and coherent
oscillations between the qubit levels |0) and |1) without populating the upper levels. In addition,
the flux bias ¢, applied to the qubit can be adjusted to tilt the potential, which allows changing the
height of the barrier between the left and right potential wells. This possibility of controlling the
height of the potential barrier allows the measurement of populations of the energy levels of the

qubit.
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The measurement scheme of the population of the upper qubit level of phase qubit was
first implemented in 2004 [68, 101]. In this scheme, a low-frequency measurement pulse lowers
the barrier between the shallow “left” potential well used for qubit states and a much deeper “right”
well, which increases the probability of tunneling of a qubit from its upper energy level |1) from
the “left” potential well into the “right” well. During the measurement pulse a qubit in the upper
state |1) switches by tunneling to the right-hand well with probability close to one, while the state
of a qubit in the lower state |0) does not change. When the tunneling of the state |1) into the
deeper “right” well happens, it quickly relaxes into a state with a much lower energy, which is not
sufficient for the return tunneling back into the shallow “left” well. If tunneling of |1) state happens,
then the superconducting phase difference § changes by 7, which corresponds to the the magnetic
flux variation by one magnetic flux quantum @, and the resulting magnetic field can be measured
by the nearby SQUID (SQUID stands for “superconducting quantum interference device”, which is
a very sensitive magnetometer used to measure extremely weak magnetic fields, a voltage appears

between the ports of the SQUID) [102]. This completes the measurement.
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Chapter 3

Quantum State Tomography for

superconducting qubits

3.1 The idea of the quantum state tomography

Quantum State Tomography (QST) is the procedure that allows us to completely deter-
mine an unknown quantum state from a set of experimental measurements. The need to estimate
the quantum state appears when testing or claiming the preparation of specific quantum states. The
density matrix p completely describes our knowledge of the state of a system, therefore the goal of
Quantum State Tomography is measuring all the elements of the density matrix by several sets of
multiple measurements. In this Chapter, we give a general overview of the idea of QST applied to
the phase qubits in Section 3.1, provide mathematical details of the QST procedure in Section 3.2,
and discuss in details the linear inversion method of QST in Section 3.3 and the maximum likeli-
hood method of QST in Section 3.4. Matlab scripts implementing both these methods of QST in
application to the phase qubit measurements have been written by the author of this thesis.
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QST has been used to study a wide range of problems, such as determining the motional
state of a trapped atom [103, 104] in 1996, determining the state of nuclear spins in NMR sys-
tems with a solution of chloroform molecules [105, 106] in 1998, determining the internal angular
momentum state of an ensemble of cesium atoms [107] in 2001, also the technique of QST was de-
scribed and implemented for quadrupole nuclei with nuclear spin 3/2 [108, 109] in 2004. In optics,
the early ideas of quantum state tomography can be found in the work of G. S. Stokes [110] in 1852,
where a minimal set of measurements to describe the polarization of light was developed. The first
tomography of an entangled quantum state was performed on the polarization state of two photons
generated by spontaneous parametric down-conversion [51] in 2001. The first realization of QST
for a single phase qubit at UCSB was reported in 2006 [111], and for two phase qubits also in 2006
in [112].

For a general unknown quantum state the measurement of the density matrix cannot be
done in a single attempt, it requires non-commuting measurements to be repeatedly done in differ-
ent bases. Consider first a single phase qubit. The procedure for measuring a qubit by lowering
the height of the potential barrier and reading the magnetic field by a SQUID, described above in
Section 2.2.5 of Chapter 2, gives only a binary output of O or 1 for the occupation of the qubit upper
state |1). By identically preparing the state and repeating this measurement many (thousands) times,
an average occupation probability of the eigenstates |0) and |1) can be found. This gives informa-
tion only about the diagonal elements of the density matrix, and leaves the off-diagonal elements of
the density matrix unknown. In the language of the Bloch sphere, the population difference is called
“z-component” of the Bloch vector. As these measurements do not reveal any phase information,

we need additional sets of measurements along the x— and y— directions of the Bloch sphere, which
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are achieved by the rotating the state to be measured by +7 /2 around the y— or z—axis before the
measurement. This rotation is fulfilled experimentally by applying microwave pulses as explained
in Section 2.2.5 of Chapter 2. From the sets of measurements of the Bloch vector in the z—, z— and
y—directions, the Bloch vector (and therefore all the elements of the density matrix) can be fully
reconstructed. The procedure can be generalized for several qubits.

Before going into mathematical details of the procedure, let us make a couple of remarks.

As it was explained, we need basis rotations. There are two alternatives: either (1) mea-
sure identical qubits in different bases, or (2) keep the measurement basis fixed, but rotate the qubits.
These two approaches are equivalent because of the property of the quantum-mechanical trace op-

eration:

Tr[pU MU' = Te[UTpU M.

For experimental convenience, the qubit is always rotated by applying microwave pulses, while the
measurement basis is kept fixed (it is the computational basis |0) and |1)).
Also, let us emphasize that we rotate about the y— axis to obtain the z—coordinate on the

Bloch sphere and rotate about the z—axis to obtain the y—coordinate.

3.2 Mathematical details of QST for one and two qubits

In this Section, we first provide mathematical details of the measurement of all compo-
nents of a single-qubit density matrix and then discuss the two-qubit QST.
The relations Eq. (2.17) from Section 2.1.3 of Chapter 2 can easily be inverted, and the

coefficients of the Bloch vector # = [r,, 7y, 7] can be expressed in terms of the density matrix
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elements as

Tz = po1 + p1o = 2Re(p1o0),
ry = i(po1 — p10) = 2Im(p1o), G.1

Ty =poo —p11 =1 2p11.

As explained in Section 2.2.5 of Chapter 2, as the result of SQUID measurements, it is possible to
measure the “z-component” of the Bloch vector, which is the coefficient in front of the o,-matrix
in the decomposition Eq. (2.16) from Section 2.2.5 of Chapter 2. As this coefficient equals 7, the
diagonal elements p1; and pgp of the density matrix, introduced in Eq. (2.6) in Section 2.1.2 of
Chapter 2, can be measured.

In order to measure the real and imaginary coefficients of the off-diagonal elements of
the density matrix Eq. (2.6), p1o = Re(p10) + ¢ Im(p10), +=7/2 rotations about the z— and y—axes
need to be applied. Mathematically such rotations are described by the rotation operators introduced
in Egs. (2.13)-(2.15). For example, measurement in the same computational basis, after rotation by
the angle § = 7/2 about z—axis, yields the imaginary part of the element p1o of the density matrix
(note that Im(p19) = —Im(po1)), because after this rotation the r,-coefficient of the Bloch vector
appears to be in front of the o,-matrix in the Pauli decomposition of the density matrix:

cos(9/2)  —isin(0/2) | [ cos(6/2) i sin(6/2)
—i sin(0/2)  cos(0/2) i sin(6/2) cos(0/2) O0=7/2
= (1900 + 1205 — 120y +1y0:)/2,

because
RmTr/Q Oy (RITF/Q)T =o,, RIW/2 O_y (RITF/Q)T =0, R.Lﬂ—/2 o, (R;"/2)T — io-y.

Analogously, measurement in the same basis, after rotation by the angle § = —7/2 about

y—axis, yields the coefficient r, of the Bloch vector (now under this rotation the coefficient r,
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appears to be in front of the o,-matrix), and, therefore, Re(p19) element of the density matrix (2.6)
is measured:
cos(0/2) —sin(6/2) | cos(0/2)  sin(0/2)
sin(0/2)  cos(0/2) —sin(0/2) cos(0/2) |'0=—=/2
= (1900 — 1204 + Tyoy +720.)/2,

because

Ryfﬂ'/Q o (Ryfﬂ'/2)f =0, Ryfﬂ'/2 O_y (Ryfﬂ'/z)T — Uy7 Ryfﬂ'/2 o (Ry*ﬂ'/2)—i' = —0,.

For multiple qubits, the expansion of the density matrix in terms of Pauli matrices can
1 3.3 3
be generalized to p = oN Z Z Z Tij.k 03 @ 0j @ ... ® o, and the idea of the measure-

i=0 j=0 k=0
ment remains the same: me;surcje some coefficients r;;. 1, apply basis rotations, and measure other
coefficients 7;; .

As we see, for a single qubit it is tomographically sufficient to use n; = 3 basis rotations
in order to measure all independent elements of the density matrix Eq. (2.6). Such rotations are the
identity rotation I, and two rotations about x— and y—axes, Ry / 2, and Ry_w/ % This technique with
np = 3 basis rotations has been used in the first QST experiment with one and two phase qubits at
UCSB in Prof. J. Martinis’ research group in 2006 [111, 112]. In case of two or more qubits in the
system, multi-qubit rotations are built as nRN Kronecker products of single-qubit rotations (/V is the
number of qubits in the system), so for the case of two qubits we have in total nine rotations, while
for the three-qubit systems we have twenty seven rotations.

In case of the SQUID measurement scheme realized with two phase qubits, as described

in Section 2.2.5 of Chapter 2, we get four possible outcomes for each of the 9 measurements of the

state of a two-qubit system, corresponding to the following four joint probabilities:
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e probability Py that both qubits are in the ground states,

e probability Fy; that the first qubit is in the ground state, second qubit is in the excited state,

e probability P that the first qubit is in the excited state, second qubit is in the ground state,

e probability P;; that both qubits are in the excited states.

Therefore, if np = 3 basis rotations per qubit are used in the two-qubit tomography protocol, then
the actual experimental data consists of 36 distinct probabilities: we have 9 different measurements
with 4 outcomes each. In general, for an N-qubit system, 3" different measurement settings with
2NV distinct outcomes each are required for the density matrix measurement.

More recently, an improved measurement scheme has been used in two-qubit experi-
ments at UCSB with ng = 6 single-qubit rotations (see for example [113, 114]), e.g., Rueas =
{1, R;t ~/ 2, Rém/ 2, R7}. In this protocol, which researchers at UCSB have named “overconstrained
tomography” or “octomography”, we get n% = 36 different two-qubit measurements, each with
4 possible outcomes, therefore the actual experimental data consists of 144 distinct probabilities.
Such measurement scheme has advantages from the symmetry viewpoint and can reduce some ex-

perimental imperfections, like taking into account the population of the upper noncomputational

level ‘2>

3.3 Linear inversion method of QST for two phase qubits

In this Section we explain the linear inversion method for the “overconstrained tomogra-
phy” protocol of QST for two phase qubits (np = 6, N = 2) for the experimental data obtained
at UCSB. One of the first tasks of the author of this dissertation was to write a Matlab computer

code that performs QST for the experimental data from UCSB by the linear inversion method. As
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explained in Chapter 3.2, the experimental data consists of 144 measured probabilites, which we
denote as Rzpt. On the other hand, as was explained in Section 2.1.2 of Chapter 2, a two-qubit state
is described by a 4 x 4 density matrix p introduced in Eq. (2.7), with 16 unknown parameters 711,
712,...,T44. One can derive theoretical (symbolic) expressions F;; (r11,...,744) for all 144 measured
probabilities P]rOt in terms of 16 parameters 711, 712,...,744 USINg N RN = 36 two-qubit basis rotation
operators U; (j = 1, ..., 36). These 36 operators U; are calculated as the Kronecker products of the

/2 Riw/ 2 , RT} (operators R

single-qubit basis rotation operators from the set Ruyeas = {1, Rz
and Rz were introduced in Eqgs. (2.13)-(2.15)).

The unitary evolution of the density operator under basis rotations U; is described by
equation Eq. (2.18) from Section 2.1.4 of Chapter 2, therefore the probability of the measurement

outcome described by a measurement operator M, (index 7 = 1, ..., 4 corresponds to four possible

measurement outcomes Py, Py1, P1o, P11) can be calculated as
Pij(r11, .oy raa) = Tr(M; U;pUS). (3.2)

Hence we get 144 linear equations for Pj;(711, ..., 744), corresponding to j = 1,..,36 two-qubit
basis rotations and 7 = 1, ..., 4 measurement outcomes for each basis rotation, in terms of 16 un-
known parameters 711, 7'12,....44. We can set each of these symbolic equations for P;; (711, ..., 744)
equal to the experimental probabilities PrOt It is convenient to arrange 144 probabilities PrOt nd

16 density matrix elements 7, in columns, which allows us to write these 144 equations in matrix
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form as

P! Biy  Bi2 ... Biis

POI?I Bs1  Bas ... Baig

Pll(?l 711

P1]£®I 712
POI(?R;/Z 13
e e ria (3.3)
P{(?RQ/Q T21
G
POI(?R;W/Q T44

—_————

pEeRe Biaay Bias2 ... Buaae

(144x1) (144x16) (16x1)

where B is a 144 x 16 transformation matrix, whose entries are calculated theoretically considering
operators of basis rotations and projections to four possible measurement outcomes as explained
above, and explicit two-qubit basis rotations are written in the superscript indices of expressions for
probabilities P in the left column of Eq. (3.3). It is convenient to rewrite Eq. (3.3) in a compact
matrix notation

P =B, (3.4)

where P is a column-vector consisting of 144 measured probabilities, 7 is a column-vector con-
sisting of 16 density matrix elements 711, ..., 744, Which we need to determine, and B is a 144 x 16

transformation matrix which is calculated theoretically.
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In order for Eq. (3.4) to have the exact unique solution, the transformation matrix B
needs to have an inverse, which is possible only if the number of rows (number of measurements)
in B is the same as the number of columns (the number of density matrix elements, d?) in matrix
B. Usually in the case of full tomography the number of measurements significantly exceeds the
number of density matrix elements, therefore Eq. (3.4) is the overdetermined system of equations
for determining the unknown d? elements of the density matrix. For example, for the system of
two qubits we have 144 equations for determining the unknown 16 elements 711, ..., 744 of the
density matrix. In this situation, when the problem is overdetermined, the method of solution of
overdetermined problem from linear regression theory [115] can be employed. Multiplying both

sides of Eq. (3.4) by B, we arrive at
BIP = (B'B)7, (3.5)

where B P is a d2-dimensional column vector and BB is a square matrix of size d2 x d2. There-

fore, the equation Eq. (3.4) can be rewritten as
(B'B)"'BfP =7 (3.6)

Using the last equation Eq. (3.6), 7 can be found as the density matrix that minimizes
the sum of the variances between the measured experimental data and the analytical expectation
values for corresponding probabilities. Therefore the linear inversion method of QST consists of
finding the least-square estimator of the density matrix from the overdetermined system of equations
Eq. (3.4), which can be done, for example, using the “mldivide” operation in Matlab. The Matlab
script, implementing this algorithm of linear inversion, was written by the author of this dissertation
at the initial stage of his work. Example of the density matrix reconstruction for the experimental

data for the CZ gate realized with the phase qubits is presented in Fig. 3.1.
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Figure 3.1: Results for the reconstruction of the density matrix by the linear inversion method
of QST. Experimental data for the CZ gate based on the phase qubits have been used.

The linear inversion solution for the density matrix can produce results that do not satisfy
some of the basic properties of a valid density matrix, because in this technique no positivity con-
straint or trace-normalization constraint is imposed. For instance, such solution could give negative
probabilities or probabilities greater than one for some measurement outcomes. Mathematically
it is equivalent to the violation of the condition that all eigenvalues of the physical density matrix
must lie within the interval [0, 1]. To avoid this problem, the maximum likelihood estimation of the

density matrix can be employed.

3.4 Maximum likelihood estimation of the density matrix

As we have just mentioned in the previous Section 3.3, methods of reconstruction of the
density matrix based on the linear inversion may lead to certain physical artifacts such as the neg-

ative eigenvalues of the reconstructed density matrix. In order to avoid these physical artifacts, an
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estimation method, based on statistical maximum-likelihood principle, has been proposed in [116].
In this approach, called maximum likelihood estimation, the positive semidefiniteness and trace nor-
malization of the reconstructed density matrix are guaranteed, because these necessary conditions
are incorporated into the parametrization of the density matrix. The first application of this method
to the problem of density matrix reconstruction was done in optics by James et. al. in [51]. One
of the tasks of the author of this thesis, in the beginning of his work, was the development of the
computer Matlab scripts implementing the maximum-likelihood estimation of the density matrices
for the experimental data for CZ gates based on phase qubits, obtained at Prof. J. Martinis’ group at
UCSB.

Maximum likelihood estimation is a widely used statistical technique for estimating some
quantity based on a set of measurements. For any given value of the quantity, we calculate the
“likelihood” that this value would produce the observed measurement results, consistent with the
measured dataset, the error model, and a parametrized model of the system. Using a numerical
search, the estimated quantity is then taken to be that for which the likelihood of the observed
measurements is maximized. In case of the measurements on two phase qubits, using the “over-
constrained tomography” protocol as it was explained in the previous Section 3.3, we have 144
measurement results (144 probabilities), and the quantity that we estimate are 16 real elements of
the density matrix. We can get the theoretical expressions for each of 144 measured probabilities, as
in Eq. (3.2) in the previous Section 3.3, and find a set of 16 parameters in the density matrix, which
gives the best “likelihood” that we get these 144 measured probabilities.

As a reminder, for any density matrix to be physical, it must satisfy the three properties:

be normalized, be hermitian, and have non-negative eigenvalues (due to the normalization condition
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the eigenvalues cannot exceed one). The algorithm of construction of the density matrix satisfying
all three conditions for the case of a quantum gate realized with two phase qubits and measured
using “overconstrained tomography” protocol, is the following:

e Generate a formula for an explicitly “physical” density matrix, i.e., a matrix that has the
three important properties of normalization, Hermicity, and positivity. This matrix is a function of
16 real variables denoted t1, ta, ..., t16. We denote the density matrix as j(t1, ta, ..., tig).

o Introduce a “likelihood function” which quantifies how good the density matrix
p(t1,ta2,...,t16) is in relation to the experimental data. This likelihood function is a function of the
16 real parameters t,, and of the 144 experimentally measured probabilities P, (k = 1,...,144)
(these probabilities were denoted as P J-Ot in the previous Section 3.3). We will denote this function
as L(t1,t2, ..., t16; P1, Pa, ..., Plas).

e Using standard numerical optimization techniques, find the optimum set of variables
tg()pt)./ tg)pt), e t%pt) for which the function ﬁ(tl./ to, ..., t16; P1, Pa, ..., P144) has its maximum value.
The best estimate for the density matrix is then ﬁ(thp t), téoP t), ceey tg%p t)).

It is convenient to parametrize the density matrix as a function of 16 real parameters 1,

ta, ..., t16 in the following way:

R TH(t)T(t

o) = T G7)
Te{T*+(1)T(1)}

This parametrization guarantees that the density matrix j(t) satisfies all three mathematical proper-

ties of a “physical” density matrix. Firstly, any matrix that can be written in the form G=T"%Tis

non-negative definite. To see this, note that mathematically the property of non-negative definiteness

for any matrix G can be written as

W|Gly)y >0 v |y),

49



which is automatically true for a matrix G parametrized in the way G=T%T:
W|TTT|p) = (W'|¢') >0, where [¢) =T"|4).

Secondly, matrix G = 17T is automatically Hermitian: (T+7)* = T+ (T+)t = T+T. Finally,
to insure normalization, we divide by the trace.

It is useful and convenient to choose a lower-triangular (tridiagonal) form for T

t1 0 0 0
ts + ity to 0 0

T(t) = (3.8)
ti1 +1t1e t7 +itg t3 0

tis +it1g tiz +it1a to+itio ta
with the total of 16 entries for the 4 x 4 two-qubit case, and where there are four real parameters
on the main diagonal. This form of parametrization is based on the Cholesky decomposition of a
Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate
transpose in linear algebra. It has been shown by Andre-Louis Cholesky that every Hermitian pos-
itive definite matrix A can be decomposed into the product of a lower triangular matrix L with
strictly positive diagonal entries and the Hermitian conjugated matrix L*: A = LL*. The Cholesky
decomposition is unique: given a Hermitian, positive-definite matrix A, there is only one lower
triangular matrix L with strictly positive diagonal entries such that A = LL*. There is a standard

Matlab command “chol” which calculates the Cholesky decomposition of a positive-definite matrix.

In order to write an expression for the likelihood function ﬁ(tl, to, ..., tig; P1, Pa, ..., Praa),
which we use in the maximum likelihood estimation algorithm, we need to establish the probabil-

ity distribution that describes the measurement scheme. As explained in Chapter 3.2, there are
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36 different two-qubit basis rotations U; involved in the “overconstrained tomography” measure-
ment protocol for a quantum gate based on two phase qubits, and measurement of the state of the
qubit after each of those 36 rotations U; can yield four different probabilities P}5', P3¢, Piot and
Pfe*. Therefore the multinomial distribution with four outcomes (“tetranomial” distribution) needs
to be employed for the description of the measurement scheme.

The tetranomial distribution can be viewed as a generalization of the well-known bino-
mial distribution, which describes the measurements with two possible outcomes only. First, let us

rewrite the well-known binomial distribution as

TL‘ k1 ko
ISl o

P(k1,k2;n. p1,p2) =
where it is presumed that we have observed k; outcomes of type #1 with underlying probability p;
and ko different outcomes of type #2 with underlying probability ps. Obviously, p; + p2 = 1 and
k1 + ko = n, where n is the total number of trials. It is now easy to generalize this formula for the
case of measurement with four possible outcomes. The tetranomial distribution gives the analytical
expression for the probability that we have observed k1 outcomes of type #1 with underlying prob-

ability pi, ko outcomes of type #2 with underlying probability ps, k3 outcomes of type #3 with

underlying probability ps and k4 outcomes of type #4 with underlying probability py:

n!

P(ky, ko, k3, ka;n, p1,p2,p3, pa) = mplfl pSQ p§3 p’f- (3.10)

Obviously, p1 + p2 + ps +ps = 1 and ky + ko + k3 + k4 = n, where n is the number of repetitions
of measurements for each of 36 basis rotations (for example, n = 1500 for the specific tomography
experiments at UCSB which were used to obtain the experimental data with phase qubits, used for

calculations in this dissertation). Let us call this probability P(k1, k2, k3, ka;n, p1, D2, D3, P4) as the
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likelihood L that the result of type j with the underlying probability p; was observed k; times (j =
1,2,3,4). Note that the expression Eq. (3.10) as the product of four terms describes the probability
distribution after only one two-qubit basis rotation U; (operators U; are built as the Kronecker
products of the single-qubit basis rotation operators from the set Ryeas = {I, R}tﬁ/ 2, R;t ™/ 2, RT}
as explained in Section 3.3). As there are 36 distinct two-qubit basis rotations U; involved in the
tomography experiment, each yielding the four possible outcomes, the full likelihood is the product
of 144 terms.

For the convenience of numerical calculations, rather than finding the maximum value
of L, it is easier to find the minimum of its logarithm taken with negative sign. Taking logarithm
of L, we have

nl

Inl = ln(kllkglk3!k4!

)+k11np1+k21np2+k31np3+k4lnp4, (3.11)

where the first term is independent of p;, so it can be omitted. Dividing the other terms in Eq. (3.11)
by the number of repetitions of experiment n for each of 36 basis rotations (where for the specific
experiment n = k1 + ko + ks + k4 = 1500), we get the following functional (it is convenient from

computational point of view to take the natural logarithm of the resulting functional):

k k k k
flnL:f{—llnpl—i-ilnpg—}——Slnp3+—41np4}. (3.12)
n n n n

k .

The terms —~ in Eq. (3.12) have the meaning of experimentally measured probabilities, and pj in
n

Eq. (3.12) can be calculated theoretically from the elements of the density matrix parametrized

through parameters %1, to, ..., t15. Therefore we need to minimize the functional £

144

X h
L=—Inl=— Z{pg‘f P s npl™ (11, 1o, ...,tlﬁ)} (3.13)
j=1
over real parameters t1, t2,..., t16, where p('EXp ) are the 144 measured probabilities.

J
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The author of this dissertation wrote the Matlab computer program that finds the minimum
of the likelihood function Eq. (3.13) and calculates the density matrices by the maximum likelihood
method for the experimental data for the CZ gates based on phase qubits. In our codes, we used the
Matlab built-in function “fminunc” which requires an initial estimate for the values of ¢, to,..., t16.
For this, the tomographic estimate of the density matrix obtained by the linear inversion method,
described in the previous Section 3.3, has been used. We checked that all eigenvalues of the den-
sity matrix obtained by the linear inversion method were positive, and in case some of them were
negative, we assigned small positive values to those eigenvalues, then we used the Matlab built-in
function “chol” to find the Cholesky decomposition of the density matrix obtained by the linear
inversion method, which gave the initial guess for the real parameters t1, t9,..., t16. The resulting
density matrices, obtained by the maximum likelihood method, have been fully physical. Example
of a density matrix, calculated by the maximum likelihood method for the experimental data for the
CZ gate based on phase qubits, is presented in Fig. 3.2. Note that usually the difference between the
density matrices calculated by the linear inversion method and by the maximum likelihood method
is not very significant. For example, the state fidelity (defined in Eq. (2.24) of Chapter 2) between
the two density matrices, presented in Figs. 3.1 and 3.2, equals F' = 0.998, and the trace distance
(defined in Eq. (2.25) of Chapter 2) between these density matrices equals D = 0.008. This means
that the density matrices reconstructed by the two different methods are slightly different, but they
are not too far from each other.

It is shown in statistics that binomial and multinomial distributions can be approximated
by the Gaussian (normal) distribution for large n. Such transition is based on the Stirling formula

Inn! ~ nlnn—n+O(logn), which allows one to replace factorials in the multinomial distribution
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Figure 3.2: Results for the reconstruction of the density matrix by the maximum likelihood method
of QST. Experimental data for the CZ gate based on the phase qubits have been used.

by n! =~ /2mn (—) . The rule of thumb that is mentioned in statistics about the validity of Gaussian
e
approximation is that both products n * p and n * (1 — p) should be greater than 5, which is usually

the case in the tomography experiments at UC Santa Barbara, as n = 1500. Therefore the exact

multinomial likelihood functional can be replaced by the approximate Gaussian one,

2
a4 {pf ) —p§th)(t1,t2, ---7t16)}

L(ty,t2, ..., t16) = — Z (exp)
=1 2p;

(3.14)

This possibility of transition to Gaussian probability distribution is mentioned in a theoretical pa-
per [117], and Gaussian distribution is always used in optics. In particular, Gaussian distribution

Eq. (3.14) was used in the first optical implementation of the method [51].
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Chapter 4

Standard Quantum Process

Tomography of multi-qubit gates

4.1 Basics of “standard” quantum process tomography

Quantum Process Tomography is the procedure used to characterize a quantum gate, or
quantum process, which takes an arbitrary given input state p'" and transforms it into the output state
pfin = £(p™). Usually, such task arises when we want to understand how closely an experimentally
realized gate approximates the desired unitary operation. This Chapter is structured as follows. In
this Section 4.1 we are giving an overall introduction into quantum process tomography, we also
provide the details of the experimental setup of QPT for superconducting qubit gates in Section 4.2,
and explain in Section 4.3 the so-called linear inversion method of QPT, which was programmed in
Matlab by the author of this dissertation. We give the details of programming of the linear inversion

method, discuss computational resources, such as time and memory, and then discuss in Section 4.4
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alternative methods for the process matrix reconstruction, such as the maximum likelihood and the
least squares method.

The theoretical fundamentals of QPT were formulated in [12, 13] in 1997. Quantum pro-
cess tomography was first applied to an NMR system! in 2001 [118, 119, 120], then it was used to
study optical quantum gates in 2003 and 2004 [121, 122], after that the first process tomography
experiment in ion trap systems was done in 2006 [123, 124]. The first process tomography exper-
iment for superconducting phase qubits was performed for a memory operation between a single
phase qubit and a two-level state in 2008 [125], and the first demonstration of QPT in a system of
two superconducting phase qubits was carried out in 2010 [126]. The method of quantum process
tomography was also applied to superconducting qubits in [36, 114, 126, 127, 128].

The idea behind QPT is to reconstruct a quantum operation p® — pfi* = & (p™™) from
experimental data. The quantum operation is a completely positive linear map £ that transforms the
density operator p™ into the output density operator p®. Then for an N-qubit system prepared in
the state with density matrix p'", the quantum operation € can be expressed in terms of the so-called

Kraus operators as [2]
K
E(p™) =" Ajpm Al 4.1
j=1
where A; are called “Kraus operators” of the quantum operation £, and the number K of such
operators does not exceed d?, where d = 2% is the dimension of the system. The representation

Eq. (4.1) is also known as the “operator-sum representation”. Since the quantum operation £ must

be trace-preserving (or trace non-increasing), the Kraus operators A need to satisfy the condition

K
doAla; =1 (4.2)
j=1

'the fidelity of a CNOT logic gate in an NMR apparatus was measured in Ref, [118].
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To prove this trace-preservation condition Eq. (4.2), note that

1=Tr&(p) = TT(Z AjpinA}) - ZTr(AjpinA;r-> _ (Z Ala, pi“), 4.3)
j j j

which must be true for all input density matrices p™", therefore the condition Eq. (4.2) needs to be
satisfied. In case of a trace non-increasing quantum operation, the condition Eq. (4.2) becomes
K
A,
doAlA; <
j=1
The decomposition Eq. (4.1) of the quantum operation £ into the Kraus operators is not
unique as different sets of Kraus operators may describe the same quantum operation £. Therefore,
it is more convenient to introduce the following unique expansion of the quantum operation £ over
some fixed set of basis operators E,:
d2
EP™) = > XapBap™E}, (4.4)
a,f=1
where d = 2" is the dimension of the system, y € CP > g the process matrix and {E,, € C4*?}
is a chosen basis of operators. We assume that this basis is orthogonal, (E,|Eg) = Tr(EiEB) =
Q o3, where () = d for the Pauli basis and Pauli-error basis, and ( = 1 for the SVD basis
(see Appendices B and C). Note that for a trace-preserving operation Tr(y) = 1 if @ = d, while
Tr(y) = dif @ = 1. We implicitly assume in this and the next Chapters of this dissertation the usual
normalization () = d, unless mentioned otherwise. The process matrix Yy is positive semidefinite

(which implies being Hermitian), and we also assume it to be trace-preserving,

x > 0 (positive semidefinite), (4.5)
d2
Z XaﬁEg’Ea =1 (trace-preserving). (4.6)
a,f=1
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These conditions ensure that pfi® = £(p™) is a legitimate density matrix for an arbitrary (legitimate)
input state p™. The condition Eq. (4.6) reduces the number of real independent parameters in x
from d* to d* — d2. For example, for one qubit the 4 x 4 process matrix y contains 12 independent
elements, for two qubits the 16 x 16 process matrix contains 240 independent elements, and for three
qubits the number of independent elements in the 64 x 64 process matrix becomes 4032. Hence
the number of parameters needed to fully specify the quantum map & scales as O(16") with the
number of qubits /V. Note that the set of allowed process matrices y defined by Egs. (4.5) and (4.6)
is convex [29, 39]. The elements of the process matrix x can be related to Kraus operators A as
Xm,n = Z]K: 1 cj,mc;f n» Where ¢; ,, are the coefficients of decomposition of Kraus operators A over
) d2
the chosen basis of operators { F, }: A; = Z CjmEm.
m=1

The essential idea of standard QPT is to exploit the linearity of the map Eq. (4.4) by
preparing the qubits in different initial states, then applying the quantum gate £, and then measuring
a set of observables until the collected data allows us to obtain the process matrix x through matrix

inversion or other methods. More precisely, if the qubits are prepared in the state pik“, then the

probability of finding them in the (measured) state |¢;) after applying the gate is given by

Py = Te(ILE(P)) = > Tr(ILEapPEL) Xas. 4.7
a76

where II; = |¢;) (¢i|. By preparing the qubits in one of the linearly independent input states
{pin, ..., pi]{‘,in} and performing a series of projective measurements {IIy, ..., I, ..} on the output
states, using the methods of quantum state tomography described in Chapter 3, one obtains a set of

m = NinNmeas probabilities { P;; } which, using Eq. (4.7), may be written as
P(x) = oY, 4.8)

where P(y) € C™*! and ¥ € C%'*! are vectorized forms of {P;;} and xag. respectively. The
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m x d* transformation matrix ® has entries given by Pik.ap = Tr(HiEap}C“E;_j). Note the simili-
tude between the last equation Eq. (4.8) relating the elements of the unknown process matrix y with
the column-vector of the the measured probabilities in the QPT problem and the equation Eq. (3.4)
from Section 3.3 of Chapter 3, which related the elements of the unknown elements of the density

matrix with the column-vector of the measured probabilities in the QST problem.

4.2 Experimental details of QPT of multi-qubit superconducting gates

There are several different ways to perform standard QPT for an N-qubit quantum gate
realized with superconducting qubits [113, 126, 129, 128, 130, 131, 132, 114]. The differences are
the following. First, it can be performed using either ny,, = 4 initial states for each qubit [126, 129,
128, 1301, e.g., {|0), 1), (|0) + 1)) /v/2, (|0) +4 |1)) //2}, or using ny,, = 6 initial states per qubit
[131,132],e.g., {|0),[1), (|0)£|1))/v/2, (|0) %4 [1))/v/2}, so that the total number of initial states
is Vi, = an Multiqubit initial states are built as Kronecker product (also called tensor product or
direct product) of single-qubit input states. (It is tomographically sufficient to use n;, = 4, but the
set of 6 initial states is more symmetric, so it can reduce the effect of experimental imperfections.)
Second, the final measurement of the qubits can be realized in the computational basis after one out
of ng = 3 rotations per qubit [126, 128], e.g., Rmeas = {L, Ry_F/Z, 2/2}, or ng = 4 rotations
[36, 129, 132], e.g., Runeas = {L BT, Ry, RZ/*}, or ng = 6 rotations [113, 131, 114], e.g.,
Rmeas = {1, R, R;t w/ 2, wa/ 2}. This gives N = ng measurement “directions” in the Hilbert
space. Again, rotations in multiqubit systems are built as the Kronecker product of single-qubit

rotations. Third, it may be possible to measure the state of each qubit simultaneously [126, 113,
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128], so that the probabilities for all 2V outcomes are measured, or it may be technically possible
to measure the probability for only one state (say, |0...0)) or a weighed sum of the probabilities
[131, 129, 130]. Therefore, the number of measured probabilities for each configuration is either

N,

prob = 2N (with 2V — 1 independent probabilities, since their sum is equal 1) or N, = 1. Note

that if Ny = 2NV, then using ng = 6 rotations per qubit formally gives the same probabilities as
for ng = 3, and in an experiment this formal symmetry can be used to improve the accuracy of the
results. In contrast, in the case when N1, = 1, the use of ng = 4 or ng = 6 is natural for the
complete tomography.

Thus, the number of measurement configurations (including input state and rotations) in
standard QPT is M.onf = NinNg = nﬁng , while the total number of probabilities in the data set is
M = M ontNprob- This number of probabilities can be as large as M = 72V for nin = 6, ng = 6,
and Nprop = 2N (with 72V — 36V independent probabilities). Since only 16V — 4N independent
probabilities are necessary for the standard QPT, a natural choice for a shorter experiment is ny, = 4,
ng = 3, and Ny = 2N then the total number of probabilities is M = 24N, with 24N — 12N
independent probabilities. If Ny, = 1 due to the limitations of the measurement technique, then
the natural choices are n;, = 4 and ng = 4, giving M = 16" or niy, = 4 and ng = 6, giving
M = 24N,

In this and the following Chapters of this dissertation we focus on the case ni, = 4, ng =
3, and Npop = 2N Based on this, for a two-qubit quantum gate there are Mo, = 12V = 144

measurement configurations and M = 24" = 576 probabilities (432 of them independent).
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4.3 Linear inversion method of quantum process tomography

4.3.1 The method of linear inversion for QPT

in

In principle, for tomographically complete sets of input states {p}", .. ., piﬁm} and mea-

surement operators {I1y,..., Iy

meas

}, one could invert Eq. (4.8) and thus uniquely find the process
matrix y by using the experimental set of probabilities PP This method of linear inversion in
which the process matrix Y is represented in a block form as the product of several other auxiliary
matrices, is described for the systems of one and two qubits in [2, 13, 25], and is formulated slightly
differently in [17]. We wrote the Matlab computer code which implements the linear inversion
method of [17], and we discuss this algorithm in this Section.

The algorithm of linear inversion, formulated in [17], describes a two-step procedure of
calculation of the process matrix y. First, it is convenient to compute some auxiliary matrix .J
of dimension 4%V x 4V called Jamiolkowski operator, and then in the second step of the algorithm
convert .J into the process matrix . As explained in Section 4.1, in the quantum process tomography
procedure one needs to prepare ”fX linearly independent initial states p™™, which are traditionally
chosen as all possible Kronecker products of the single-qubit states, perform the evolution £, and
measure the resulting states p'™, using the quantum state tomography procedure. Note that different
number of basis rotations per qubit, ngp = 3 or ng = 4, or np = 6, can be used in the algorithm. In
order to calculate matrix .J, in the first step of the linear inversion method of QPT, it is convenient to
introduce 4% x 4"V matrices R and R constructed from the density matrices pi* and p™, reshaped
into the columns, so that the nth column of R is the nth density matrix pi" reshaped into a column,

and similar for Ry. Matrices R and R can be related through the 4"V x 4" matrix £: R = LRy.

61



Therefore the matrix £ can be calculated as
L=RR," (4.9)

Jamiolkowski matrix .J consists of the reordered elements of £. The reordering procedure
is the following [17]: (1) each row of £ is converted into a 2%V x 2V matrix by sequentially placing
the rows of 2V elements below each other and (2) these matrices are placed from left to right, with
a new row of matrices starting after each set of 2V steps. Therefore, the first step of the algorithm
of the y-matrix calculation by the method of linear inversion consists in calculation of the matrix
L and its reordering, which yields the 4" x 4% Jamiolkowski matrix .J. In the second step of the
algorithm, J needs to be transformed into the process matrix y. As stated in [17], J matrix coincides
with the process matrix x in a special unphysical by-element basis |i) (j|, the so-called elementary
basis. Therefore, to obtain the process matrix y for a physical operator basis F,,, one needs to make
the following transformation of .J. First, a matrix E of the dimension 4" x 4" must be constructed
from the elements of operator basis matrices F,,, which are reshaped into columns. Namely, the nth
column of matrix E contains all elements of the 2" x 2% matrix FE,,. After calculating the matrix
E, some matrix multiplication of .J, E and ET needs to be done for the calculation of y-matrix.
For the case of mutually orthogonal basis operators ), (such as the Pauli basis operators), the final

computational formula for the x-matrix has the following block structure:
x = ETJE/4N. (4.10)

We have written the Matlab code which implements the above two-step linear inversion
algorithm of the process matrix calculation. It is convenient to split the calculations into two sep-

arate scripts (files), because some matrices in the algorithm (namely, Ry and E) depend only on
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the choice of the basis of operators for QPT (matrices { E,, } in Eq. (4.4)) and the initial states pi“,
and therefore can be calculated just once in an auxiliary script and recorded into the data mat-files.
Other matrices R, and therefore £ and .J, which depend on the density matrices p'", are calcu-
lated in the main Matlab script. The main Matlab script calculates the process matrix Y, using the
nfr\f density matrices pfi", each of the dimension 2V x 2%, as the input data. These nfl\{ density
matrices correspond to the output density matrices p™ in Eq. (4.4) after the evolution of the known
input basis states. These density matrices p" can either be experimentally measured (using QST
methods) density matrices at the output of the quantum channel, or, as we do not have true exper-
imental data for the systems of more than two qubits, can be randomly generated for an arbitrary
number of qubits. According to the general QPT methodology, these density matrices correspond to
measuring nfl\f states pfi" at the quantum channel’s output, as the result of the evolution of the input
states p'", as in Eq. (4.4).

Before running the main Matlab script, an auxiliary script needs to be run first (just one
time) in order to calculate and save into mat-files the inverse of matrix Ry and the matrix F, dis-
cussed above. These calculations of the inverse of the matrix Ry and of the matrix E in a separate
auxiliary script increase the speed of the main program by approximately a factor of two. In order
to calculate the process matrix x, the main Matlab script performs reshaping of the density matri-
ces p'" into columns, as described above, and builds the R matrix. Then the program reads from
the mat-file the inverse matrix R !, which was calculated and recorded into the mar-file earlier by
the auxiliary script. Now, when the main program has both matrices I and R ! it calculates the

matrix £ according to Eq. (4.9). In the next step, this matrix £ is reshaped into the ./-matrix accord-

ing to the reshaping rule formulated above. After the calculation of J-matrix, the main program
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reads already calculated E matrix from the mat-file, created beforehand by the auxiliary Matlab
script, and calculates the process matrix x by matrix multiplication of ET, J and E according to
the Eq. (4.10).

The author of this dissertation wrote the Matlab computer program, which performs the
calculation of the process matrix x by the linear inversion method. Example of the process matrix Y,
calculated by the linear inversion method of QPT from the experimental data for the two-qubit CZ
gate, realized with the phase qubits, is presented in Fig. 4.1.

Below follows the discussion of the computer resources, such as memory RAM and com-

putational time, required for the linear inversion algorithm of QPT.

4.3.2 Computer memory and time requirements for the linear inversion method of

QPT

The biggest numerical matrices that one needs to store in memory RAM of the computer
are the complex matrices R and R, which enter into Eq. (4.9) for calculation of £, and matrices
L, J, and y that are calculated using R and Ry. All these matrices are complex matrices of the
dimension 4"V x 4", It is possible to use two types of memory allocation for the elements of these
arrays: the default “double-precision floating point numbers format” for each number in the arrays,
which requires 64 bits, or equivalently 8 bytes, for each value stored, or we can change the format
to “single-precision floating point numbers format”, which requires 32 bits, or equivalently 4 bytes,
for each value. The amount of computer memory, necessary to store the matrices R and Ry, is
shown in Table 4.1 for various numbers of qubits in the system, IN. As we see, the required memory

scales as 162V,
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Figure 4.1: The process matrix x [Re() on the top panel, Im() on the lower panel] calculated by
the linear inversion method of QPT. The experimental data for the two-qubit CZ gate realized with
the phase qubits have been used. The process fidelity with the ideal x-matrix is F' = Tr(XXideal) =

0.63. The modified Pauli basis { £, } has been used. Note that the scales on the vertical axes for
Re(x) and Im() are different.
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Strictly speaking, this consideration turns out to be not the upper memory limitation in
our Matlab program. The program is written in the way that in order to calculate Jamiolkowski J-
matrix, the cell array of dimension 4"V x 4% is introduced and calculated in the program, and later
this cell array is converted into a numerical J-matrix. It is known that cell arrays require more
memory than numerical arrays, because some information is recorded into headers, which require
additional memory, but it turns out that such additional memory does not play a significant role. For
a 64-bit Windows system, each cell array header consumes 112 bytes, and there are 4" elements of
the cell-array, therefore the additional memory is only (4" x 112) bytes, which corresponds to only

448 kB for a 6-qubit system (a very small addition to 256 MB).

Table 4.1: The amount of computer RAM memory, required to store the arrays R and R for various
number of qubits in the system, N. Two types of memory allocation are compared.

N Dimension of R and Ry | Memory “double-precision” | Memory “single-precision”
2 16 x 16 4 kB 2kB

3 64 x 64 64 kB 32 kB

4 256 x 256 1 MB 512 kB

5 1024 x 1024 16 MB 8 MB

6 4096 x 4096 256 MB 128 MB

7 16384 x 16384 4GB 2GB

Although it may seem that the dimensions of matrices and RAM memory needed in the
7—qubit case are within the size of RAM-memory of an average computer (a computer with 6GB
of RAM memory was used by the author of dissertation for these calculations), and it was indeed
possible to calculate matrices R and Ry for the 7— qubit case (it takes about 4 hours of calculation

time on an average computer to calculate each matrix), but Matlab runs out of memory when it tries
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to calculate the inverse of matrix Ry in Eq. (4.9), either by using the Matlab command “inv”, or
by using the Matlab right-divide operator “mrdivide”. Therefore six is the maximum number of
qubits in a quantum system, for which the process matrix x can be calculated by the linear inversion
method of full QPT, described in this Section, on an average computer.

The computer time requirements are not demanding for this algorithm. It takes less than
a second of computational time to run the QPT algorithm (both auxiliary and main scripts) for the
systems of two and three qubits on an average PC, and the computational time increases with the
increasing number of qubits. It takes about 1000 seconds to run the “auxiliary” script and about
260 seconds to run the “main” script for the case of 6 qubits on an average PC.

Let us provide the rough estimate of time resources it takes in an experiment to measure
the necessary full set of experimental probabilities for different numbers of qubits N (from N = 2
to N = 6) in the system. We compare two protocols of measurements. First we consider the mea-
surement protocol with the minimum number of basis rotations per qubit np = 3 and n;, = 4
different initial states per qubit in QST experiments. In this protocol an experimentalist needs to
perform 12% different experiments and measure 24" different probabilities. If a bigger number of
basis rotations per qubit nr = 6 is used in the so-called “overconstrained tomography” QST exper-
iment, keeping the same number of initial states ny, = 4 for every qubit, then the experimentalist
needs to perform 24% different experiments and measure 48" different probabilities. If it takes
about a millisecond (¢ = 1 ms) for measuring a single experimental outcome, and if one needs to
perform 1000 repetitions of experiment to achieve reasonable statistics for each probability (there
were actually 1500 repetitions in the experiments with two phase qubits, performed at UCSB, we

assume here 1000 repetitions for the simplification of our estimate), then we arrive at the follow-
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ing crude estimate for the time, required to measure the full set of probabilities for QPT, which is

presented in Table 4.2.

Table 4.2: Time required to measure the full set of probabilities in QPT, for different numbers of
basis rotations per qubit, np = 3 and np = 6, and for various numbers of qubits in the system, V.
The number of initial states for each qubit is nj, = 4.

N np=3, nip=4 np =6, ny=4
2 2.4 minutes 9.6 minutes

3 29 minutes 3.8 hours

4 5.76 hours 3.8 days

5 2.9 days 3 months

6 34.6 days 6 years

Here is an example of how this rough estimate can be obtained for N = 6 qubits, if the
number of basis rotations per qubit np = 3 and the number of different initial states per qubit is
nin = 4: 127V different experiments x 1000 repetitions x0.001sec = 12Vsec= 829.4 hours= 34.6
days. As we see, the “overconstrained” tomography with np = 6 becomes impractical for more

than four qubits.

4.4 Maximum likelihood and least-squares methods for QPT

We have just discussed in Section 4.3 the method of linear inversion in QPT that allows
one to invert Eq. (4.8) and thus find the process matrix y from the experimental set of probabilities
PP In this method, however, the conditions for the process matrix to be physically valid, such

as the positive semidefinite condition Eq. (4.5) and the trace preservation condition Eq. (4.6), were
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not imposed on the process matrix x. In practice, because of experimental uncertainties present in
PP the process matrix thus obtained is usually non-physical, that is, inconsistent with the condi-
tions Eqgs. (4.5) and (4.6). In standard QPT this problem is remedied by finding the physical process
matrix [satisfying Eqgs. (4.5) and (4.6)] that minimizes (in some sense) the difference between the

probabilities P(y) and the experimental probabilities PP

Two popular methods used to estimate a physical process matrix x compatible with the
experimental data are the maximum likelihood (ML) method [133, 123, 134] (see also [51, 135])
and the least-squares (LS) method [122, 36, 136]. The ML method minimizes the cost function
[133]

Cur = — Zj PP In Py(x), (4.11)

where the index j labels the measured probabilities, while the LS method (often also called maxi-
mum likelihood) minimizes the difference between ﬁ(x) and P in the f5-norm sense [?], so the

minimized cost function is
Cus = ||[P(x) = P, = > [P = B0 (4.12)

In both methods the conditions Eq. (4.5) and Eq. (4.6) should be satisfied to ensure that x corre-
sponds to a physical process. This can be done in a number of ways, for example using the Cholesky
decomposition, the Lagrange multipliers, or just stating the conditions Eqgs. (4.5) and (4.6) as a con-
straint (if an appropriate software package is used). The ML method Eq. (4.11) is natural when
the inaccuracy of PP is dominated by the statistical error due to a limited number of experimental
runs. However, this method does not work well if a target probability P; is near zero, but P;Xp is not

near zero due to experimental imperfections (e.g., “‘dark counts™); this is because the cost function
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Eq. (4.11)is very sensitive to changes in P;Xp when Pj(x) = 0. Therefore the LS method Eq. (4.12)
is a better choice when the inaccuracy of PP is not due to a limited number of experimental runs.

Note that other cost functions can also be used for minimization in the procedure. For ex-
ample, by replacing In P;(x) in Eq. (4.11) with In[P;(x)/ P;Xp] (this obviously does not affect opti-
mization), then expanding the logarithm to second order, and using condition }; P;(x) = >_; P; P
(which cancels the first-order term), we obtain [S1] Casz ~ const + Y ;[P — Pj(x)]?/2P]*.

This leads to another natural cost function

[Pj(x) — PP
C= Z Do +Ja , (4.13)
j J

where we phenomenologically introduced an additional parameter a, so that for a > 1 the mini-
mization reduces to the LS method, while for a < 1 it is close to the ML method (the parameter a
characterizes the relative importance of non-statistical and statistical errors). One more natural cost
function is similar to Eq. (4.13), but with P;XP in the denominator replaced by P;Xp (1— Ppr) (see
[133]), which corresponds to the binomial distribution variance.

Both problems Eq. (4.11) and Eq. (4.12) are convex optimization problems [29, 39, 137],
therefore it is convenient to use the special Matlab software for solving these convex optimiza-
tion problems, such as YALMIP [138] or CVX [139]. Unfortunately, the ability to solve the log-
convex problems described by Eq. (4.11) has not been implemented in any of these Matlab packages
YALMIP or CVX by its developers so far, but efficient numerical algorithms capable of solving the
least-squares convex optimization problems of the type of Eq. (4.12) are implemented in both these
packages. Therefore, it is much easier to solve the least-squares convex optimization problem of

the type of Eq. (4.12) from the computational point of view. In this dissertation we use the LS

method Eq. (4.12) for the standard QPT. In particular, we find the process matrix xy,y for the full
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data set ﬁglxl'f by minimizing || P(x¢u) — ﬁgﬁmg? subject to the conditions Egs. (4.5) and (4.6).
Such minimization problem is computationally tractable as it is a convex optimization problem, and
the author of this dissertation has written the Matlab computer program that calculates the process
matrix x by the least-squares method. As an example, two process matrices Xy reconstructed by
the LS method from the two sets of experimental data for two-qubit CZ gates are shown in Figs. 4.2
and 4.3. The process matrix presented in Fig. 4.2 is calculated from the experimental data for the
CZ gate based on phase qubits, while the experimental data obtained with Xmon qubit are used in
the calculation of the the process matrix presented in Fig. 4.3.

In the next Chapter 5 we benchmark the results of the compressed sensing QPT process
matrix reconstruction from partial data against the process matrix Y1, obtained by the LS method

using the full data set.
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Figure 4.2: The process matrix y calculated by the least squares method of QPT. The experimental
data for the two-qubit CZ gate realized with the phase qubits have been used. The process fidelity
with the ideal y-matrix is F' = Tr(x Xideal) = 0.51. The modified Pauli basis { £, } has been used.

Figure 4.3: The process matrix y calculated by the least squares method of QPT. The experimental
data for the two-qubit CZ gate realized with the Xmon qubits have been used. The process fidelity
with the ideal y-matrix is F' = Tr(x Xideal) = 0.91. The modified Pauli basis { £, } has been used.
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Chapter 5

Compressed Sensing Quantum Process
Tomography of two and three qubit

gates

5.1 Introduction to Compressed Sensing Quantum Process Tomogra-
phy

As we have seen in Chapter 4, the standard QPT suffers from a fundamental drawback
in that the number of required experimental configurations and therefore the number of measured
probabilities scale exponentially with the number of qubits, this makes the standard QPT imprac-

tical for systems of several qubits. As we have discussed in Chapter 4, for an N-qubit system, the

N

number of measurement configurations in standard QPT is Mcons = 15, ng , while the total number

of probabilities in the data set is M = MontNprob, (Where nyy is the number of input single-qubit
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states and ny is the number of basis rotations per qubit, and the number of measured probabilities
per configuration V1, s usually 2N). These numbers M., and M become very large even for
few-qubits systems, implying the amount of information one needs to collect during the experiment
and the computer resources required for post-processing the data are becoming unmanageable. The
method of compressed sensing QPT (CS QPT) proposed in [39, 40] is hoped to alleviate this prob-
lem. Compressed sensing techniques are based on the idea that the ideal operation can be described
by a maximally sparse process matrix in a special basis which includes the intended unitary process.
Therefore, a nearly precise implementation of the intended process will be described by an approxi-
mately sparse matrix in this basis. The concepts of compressed sensing techniques as used in signals
processing [41, 42, 43, 44] are then applied to efficiently characterize the implemented process. As
it has been shown in [40], if the process matrix y is known to be s—compressible1 in some known
basis, then for a d-dimensional quantum system the CS QPT method is supposed to require only
O(slogd) experimental probabilities to produce a good estimate of the process matrix y. The CS
QPT method was experimentally validated in Ref. [40] for a photonic two-qubit controlled-Z (CZ)
gate.

The CS idea also inspired another (quite different) algorithm for quantum state tomogra-
phy (QST) [140, 141], which can be generalized to QPT [141, 142]. This matrix-completion method
of CS QST estimates the density matrices of nearly pure (low rank r) d-dimensional quantum states
from expectation values of only O(rd poly log d) observables, instead of d? observables required
for standard QST. It is important to mention that this method does not require any assumption about
the quantum state of a system, except that it must be a low-rank state (in particular, we do not need

to know the state approximately). The CS QST method has been used to reconstruct the quantum

'Roughly speaking, a matrix is s-compressible if it can be well approximated by an s-sparse matrix.
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states of a 4-qubit photonic system [143] and cesium atomic spins [144]. In Ref. [141] it has been
shown that using the Jamiotkowski process-state isomorphism [145] the formalism of CS QST can
also be applied to the QPT, requiring O(rd? poly log d) measured probabilities (where r is the rank
of the Jamiotkowski state) to produce a good estimate of the process matrix x. Therefore there
is crudely a square-root speedup compared with standard QPT. Note that this algorithm requires
exponentially more resources than the CS QPT method of Ref. [40], but it does not require us to
know a particular basis in which the matrix x is sparse. The performance of these two methods has
been compared in the recent paper [142] for a simulated quantum system with dimension d = 5; the
reported result is that the method of Ref. [141] works better for coherent errors, while the method
of Ref. [40] is better for incoherent errors.

The method of compressed sensing is now an already well-developed mathematical field
with numerous applications in signal processing, including medical magnetic resonance tomogra-
phy [146], photography [147], face recognition [148], holography [149], seismic imaging [150],
etc. Compressed sensing typically involves forming a convex optimization involving the f2-norm
of the measurement error and the /;-norm (we define norms in the subsequent Section 5.2) of the
estimation variable, the latter being a convex heuristic for sparsity. The estimate is obtained by
solving a convex optimization problem where under suitable measurement conditions the underde-
termined measurements plus the sparsity heuristic yields a very accurate solution. Perfect recovery
of a sparse signal is achieved with no measurement noise, and the errors grow gracefully with noise
and near-sparsity of the signal.

Compressed sensing quantum process tomography (CS QPT) enables one to recover the

process matrix y from far fewer experimental configurations than the standard QPT. In this Chapter
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we apply the method of CS QPT, introduced in Ref. [40] and experimentally validated there for a
photonic two-qubit controlled-Z (CZ) gate, to several two-qubit CZ gates realized with supercon-
ducting Xmon and phase qubits, as well as to the simulated data for the three-qubit Toffoli gate with
numerically added noise.

This Chapter is structured as follows. We first formulate the problem of CS QPT math-
ematically in Section 5.2, then discuss the set of measurement configurations used to collect QPT
data for the systems with Xmon and phase qubits, and also briefly discuss our way of computing
the process matrix x via compressed sensing in Section 5.3. In the following sections we present
our numerical results for the CS QPT of a superconducting two-qubit CZ gate. We explain the im-
portance of choosing the proper value for the so-called noise parameter € in Section 5.4, then we
present the results of the reconstruction of the process matrix x by the CS QPT method from the
reduced (partial) data set in Sections 5.5 and 5.6 for various values of the noise parameter . We
also compare numerical results obtained by applying the CS QPT method in two different operator
bases, where the process matrix is expected to be almost sparse (the Pauli-error basis and the SVD
basis), in Section 5.7. We also compare the performance of the CS QPT method with the least op-
timization, using partial data, in Section 5.8. Finally, we present the results of our study of the CS

QPT of a simulated three-qubit Toffoli gate with the numerically added noise in Section 5.9.

5.2 Fundamentals of Compressed Sensing Quantum Process Tomog-
raphy

If the number of available experimental probabilities in the quantum process tomography

problem is smaller than the number of independent parameters in the process matrix (i.e. m <
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d* — d?), then the set of linear equations Eq. (4.8) from Chapter 4 for the process matrix x becomes
underdetermined. Actually, the LS method may still formally work in this case for some range
of m, but, as discussed in Sections 5.8 and 5.9, it is less effective. As a natural alternative, the
methodology of compressed sensing is applicable to an underdetermined set of equations where the
unknown signal is known to be sparse with an unknown sparsity pattern. By using the ideas of
compressed sensing [41, 43, 42, 44], the method of CS QPT requires a significantly smaller set of
experimental data to produce a reasonably accurate estimate of the process matrix.

Let us formulate the problem mathematically as follows: we wish to find the physical

process matrix Yo satisfying the equation
PP = &y + 7, (5.1)

where the vector PP € C™ (with m < d* — d?) and the matrix ® € Ccmxd® are given, while
Z € C™ is an unknown noise vector, whose elements are assumed to be bounded (in the root-mean-
square sense) by a known limit ¢, ||Z]|¢, /+/m < e. While this problem seems to be ill-posed since
the available information is both noisy and incomplete, in Ref. [41] it was shown that if the vector
Xo is sufficiently sparse and the matrix ® satisfies the restricted isometry property (RIP), xo can be
accurately estimated from Eq. (5.1). Note that the CS techniques of Ref. [41] were developed in
the context of signal processing; to adapt [39] these techniques to QPT we also need to include the
positivity and trace-preservation conditions, Egs. (4.5) and (4.6) from Section 4.1 of Chapter 4.
The idea of CS QPT [40] is to minimize the /1-norm of X in a basis where x is assumed
to be approximately sparse. The definitions of the ¢; and /2 norms are the following: for a vector
x € C™, the l norms is defined as ||z, = Vzlz = V> lzi[2, and the ¢4 norm as ||z, =

>, || Mathematically, the method of compressed sensing is solving the following convex
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optimization problem:

minimize ||x]/,, , (5.2)
subject to || P(x) — P*®||,, /v/m < e (5.3)

and conditions (4.5), (4.6).

As shown in Refs. [42, 40], a faithful reconstruction recovery of an approximately s-sparse pro-
cess matrix o via this optimization is guaranteed (see below) if (i) the matrix ® satisfies the RIP

condition,
|®X1 — PXal7,
[1X1 — Xall7,

15, < <1+ 46, (5.4)

for all s-sparse vectors (process matrices) Y1 and X, (ii) the isometry constant J is sufficiently
small, ; < v/2 — 1, and (iii) the number of data points is sufficiently large,

m > Cyslog(d*/s) = O(sN), (5.5)
where Cj is a constant. Quantitatively, if x g is the solution of the optimization problem [Egs. (5.2)

and (5.3)], then the estimation error ||xcs — Xol|,, is bounded as

l[xcs — xolle - Cillxo(s) — xolle,

vmo Vms

+ Cae, (5.6)

where x((s) is the best s-sparse approximation of x, while C; and C are constants of the order
O(ds). Note that in the noiseless case (¢ = 0) the recovery is exact if the process matrix xg is s-
sparse. Also note that while the required number of data points m and the recovery accuracy depend
on the sparsity s, the method itself [Egs. (5.2) and (5.3)] does not depend on s, and therefore s need
not be known.

The inequality Eq. (5.5) and the first term in the inequality Eq. (5.6) indicate that the

CS QPT method is supposed to work well only if the actual process matrix x is sufficiently sparse.
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Therefore it is important to use an operator basis { F, } [see Eq. (4.4) in Section 4.1 of Chapter 4], in
which the ideal (desired) process matrix Yijgear 1S maximally sparse, i.e., it contains only one nonzero
element. Then it is plausible to expect the actual process matrix xq to be approximately sparse [40].
In this paper we will use two bases in which the ideal process matrix is maximally sparse. These
are the so-called Pauli-error basis [18] and the SVD basis of the ideal unitary operation [39]. In
the Pauli-error basis { E, }, the first element E; coincides with the desired unitary U, while other
elements are related via the /N-qubit Pauli matrices P, so that £, = UP,. The N-qubit Pauli
matrices P are calculated as the Kronecker product (also called tensor product or direct product) of
the single-qubit Pauli matrices o9, 0., 0y, 0, introduced in Section 2.1.3 of Chapter 2. In the SVD
basis £ = U/ \/&, and other elements are obtained via a numerical SVD procedure. More details
about the Pauli-error and SVD bases are discussed in Appendices B and C.

As mentioned previously, the method of CS QPT involves the RIP condition Eq. (5.4)
for the transformation matrix ®. In Ref. [40] it was shown that if the transformation matrix ®
in Eq. (4.8) is constructed from randomly selected input states p}ﬂn and random measurements I1;,
then ® obeys the RIP condition with high probability. Notice that once a basis {E,} and a to-
mographically complete (or overcomplete) set { p}cn, I1;} have been chosen, the matrix Py corre-
sponding to the full data set is fully defined, since it does not depend on the experimental outcomes.
Therefore the mentioned above result of Ref. [40] tells us that if we build a matrix ®,,, by randomly
selecting m rows from Py, then @, is very likely to satisfy the RIP condition. Hence the subma-
trix ®,,, € Cmxd", together with the corresponding set of experimental outcomes P ¢ C™ can

be used to produce an estimate of the process matrix via the ¢;-minimization procedure Eq. (5.2)

and (5.3).
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5.3 CS QPT for two-qubit controlled-Z gate

In the following sections, we present results for the experimental CZ gate realized with
superconducting Xmon and phase qubits, which were introduced in the sections 2.2.4 and 2.2.5 of
Chapter 2. Before proceeding to presenting our results, we first introduce in this section the set of
measurement configurations used to collect QPT data and the experimental device used, and also
briefly explain our way of computing the y-matrix via compressed sensing.

As was explained in Section 4.2 in Chapter 4 of this dissertation, for an /N-qubit system
the number of measurement configurations in standard QPT is M., = nfl\inf\{ , while the total
number of probabilities in the data setis M = Mcont Npro,. We denote the number of input single-
qubit states as ni,, the number of basis rotations per qubit as nr, and the number of measured
probabilities for each configuration as V0. In this dissertation we focus on the case ny, = 4,
nr = 3, and Ny = 2N Then for a two-qubit quantum gate there are M o = 12NV = 144
measurement configurations and M = 24~ = 576 probabilities (432 of them independent). For
a three-qubit gate there are M ..,y = 1728 configurations and M = 13824 probabilities (12096 of
them independent).

The main experimental data used in this dissertation are for the two-qubit CZ gate realized
with Xmon qubits [98]. The data were obtained with n;,, = 6, ngr = 6, and Ny, = 2N However,
since the main emphasis of this dissertation is the analysis of QPT with a reduced data set, we started
by reducing the data set to n;, = 4 and ng = 3 by using only the corresponding probabilities and
removing other data. We will refer to these data as “full data” (with M.y, s = 144 and M =
24N = 576). For testing the CS method we randomly choose mconr < Meone configurations, with

corresponding m = 4mcons €xperimental probabilities (3mcons Of them independent). Since the
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process matrix Y is characterized by 16" — 4" = 240 independent parameters, the power of the CS
method is most evident when mq,¢ < 80, so that the system of equations (4.8) is underdetermined.
[For a three-qubit gate the system of equations becomes underdetermined for meons < (167 —
4Ny /(2N —1) = 576.]

The main experimental data used for the analysis in this dissertation were taken on an
Xmon device, similar to the one used in Ref. [11], but there were some differences in its designz.
For the device used here the qubits were coupled via a bus, and the entangling gate between qubits
A and B was implemented with three multiqubit operations: 1) swap state from qubit B to bus, 2)
CZ gate between qubit A and bus, 3) swap back to qubit B. The swap was done with the resonant
Strauch gate [151], by detuning the frequency of qubit A with a square pulse. Generating a square
pulse is experimentally challenging, moreover this gate has a single optimum in pulse amplitude
and time. We also note that the qubit frequency control was not optimized for imperfections in the
control wiring, as described in Ref. [152] (see also Fig. S4 in Supplementary Information of [11]).
The combination of device, non-optimal control, and multiple operations, leads to the experimental
process fidelity F, = 0.91 of the CZ gate used for the analysis here to be significantly less than
the randomized benchmarking fidelity F'rp = 0.994 reported in [11]. Moreover, QPT necessarily
includes state preparation and measurement (SPAM) errors [33], while randomized benchmarking
does not suffer from these errors. This is why we intentionally used the data for a not-well-optimized
CZ gate so that the gate error dominates over the SPAM errors. (Note that we use correction for

the imperfect measurement fidelity [113]; however, it does not remove the measurement errors

2The data were collected during an experiment performed by postdoc Rami Barends and graduate student Julian Kelly
at the University of California, Santa Barbara. The author of this dissertation used in his theoretical work the experimental
data provided by Rami Barends.
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completely.) It should also be mentioned that in the ideal case 1 — F) = (1 — Fgp) x (1 +2° %),
so the QPT fidelity is supposed to be slightly less than the randomized benchmarking fidelity.

Besides performing the CS QPT analysis of the experimental data, obtained with an Xmon
device, we also used in our calculations two other sets of experimental data, obtained with phase
qubits. In fact, experiments with the phase qubits at UCSB were done much earlier than the experi-
ments with Xmon qubits, and there were several technical problems in initial attempts to implement
the CZ gate using phase qubits, such as low anharmonicity and low 77 decoherence time, which
resulted in a low quality of both CZ gates implemented with phase qubits. In the phase-qubit exper-
iments, the data were obtained with n;, = 4, ng = 6, and Ny, = 2N In analogy to the Xmon
data, we reduced both data sets, obtained with phase qubits, to niy, = 4 and ng = 3 by using only
the corresponding probabilities and removing other data. These “full data” have M q,s = 144 and
M = 24N = 576, the same M_,r and M as the “full data” for Xmon qubits.

Now we briefly explain the overall procedure of our calculations using CS QPT method,
the details of calculations and our results will be presented in the following sections of this Chapter.

We first calculate the process matrix xgy for the full data set by using the least-squares
method described in Eq. (4.12) in Section 4.4 of Chapter 4. For that we use three different operator
bases { E, }: the Pauli basis, the Pauli-error basis, and the SVD basis. The pre-computed transfor-
mation matrix ® in Eq. (4.8) depends on the choice of the basis, thus giving a basis-dependent result
for xru1. We then check that the results essentially coincide by converting xg,;1 between the bases
and calculating the fidelity between the corresponding matrices (the infidelity is found to be less

than 107).

82



As a natural extension of the fidelity between quantum states to quantum channels, intro-
duced in Eq. (2.24) in Chapter 2, the fidelity between two process matrices y1 and 2 is defined as

the square of the Uhlmann fidelity [153, 69],

2
F(x1,x2) = (TT\/ Xi/z X2 X}/z) ; (5.7)

so that it reduces to F'(x1, x2) = Tr(x1x2) [154] when at least one of the process matrices corre-
sponds to a unitary operation. Since 0 < F' < 1, we refer to 1 — F' as the infidelity.

The LS method using the full data set produces the process matrix X1, which has the
process fidelity F'(xfun, Xideal) = 0.907 relative to the ideal CZ operation in the experiments with
Xmon qubits. Note that our full data set is actually a subset of an even larger data set (as explained
above), and the x matrix calculated from the initial set corresponds to the process fidelity of 0.928
for the Xmon qubits; the difference gives a crude estimate of the overall accuracy of the procedure.
The values of the same process fidelities for the two sets of data obtained with phase qubits were
significantly lower, only F'(Xfull, Xideal) = 0.62 and F'(Xful, Xideal) = 0.51.

After calculating g,y for the full data set, we can calculate its fidelity compared to the
process matrix Yideal Of the desired ideal unitary operation, F\, = Fpy; = F(Xfull; Xideal)- This is
the main number used to characterize the quality of the quantum operation.

Then we calculate the compressed-sensing process matrix xcs by solving the ¢; - mini-
mization problem described by Egs. (5.2) and (5.3), using the reduced data set. It is obtained from
the full data set by randomly selecting m,¢ configurations out of the full number M,,,¢ configura-
tions. We use the fidelity F'(xcs, xfun) to quantify how well the process matrix ycs approximates

the matrix g, obtained from full tomographic data. Additionally, we calculate the process fidelity
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F(xcs, Xideal) between xcs and the ideal operation, to see how closely it estimates the process
fidelity Ffy)1, obtained using the full data set.

Since both the least-squares and the ¢;-norm minimization are convex optimization prob-
lems [39, 137], they can be efficiently solved numerically. We used two ways for MATLAB-based
numerical calculations: (1) using the package CVX [139], which calls the convex solver SeDuMi
[155]; or (2) using the package YALMIP [138], which calls the convex solver SDPT3 [156]. In
general, we have found that for our particular realization of computation, CVX with the solver
SeDuMi works better than the combination YALMIP-SDPT3 (more details are below in the subse-
quent Chapters).

The CS method calculations were mainly done in the Pauli-error basis, using the CVX-
SeDuMi combination for the ¢;-norm minimization. This is what is implicitly assumed in this
and the next Chapters, unless specified otherwise. Note that the CS-method optimization is very
different from the LS method. Therefore, even for the full data set we would expect the process
matrix xcg to be different from yg,;. Moreover, xcs depends on the noise parameter € [see Eq.
(5.3)], which to some extent is arbitrary. To clarify the role of the parameter ¢, we will first discuss
the CS method applied to the full data set, with varying €, and then discuss the CS QPT for a reduced

data set, using either near-optimal or non-optimal values of ¢.

5.4 Full data set, varying noise parameter c

We start with calculating the process matrix ycg by solving the ¢;-minimization prob-
lem, Egs. (5.2) and (5.3), using the full data set and varying the noise parameter . The resulting

matrix is compared with the LS result x,; and with the ideal matrix Yjgea;. Figure 5.1 shows the
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corresponding fidelities F'(xcs, Xfu) and F'(xcs, Xideal) as functions of . We see that xcg co-
incides with xgy [so that F'(xcs, xfun) = 1] at the optimal value e, = 0.0199. This is exactly
the noise level corresponding to the LS procedure, Hﬁf‘iﬁf’ — ®Xtuntlle,/VM = 0.0199. With ¢ in-
creasing above this level, the relative fidelity between xcg and xg,1 decreases, but it remains above
0.95 for ¢ < 0.028. Correspondingly, the process fidelity reported by xcs, i.e. F'(XCS, Xideal)» also
changes. It starts with F'(xcs, Xideal) = £ (Xtulls Xidea1) = 0.907 for ¢ = 0.0199, then increases
with increasing ¢, then remains flat above ¢ = 0.025, and then decreases at ¢ > 0.032. We note
that for another set of experimental data (for a CZ gate realized with phase qubits) there was no
increasing part of this curve, and the dependence of F'(xcs, Xideal) ON € remained practically flat
for a wide range of €, up to 4e,p¢, see Fig. 5.2. The process fidelity for this CZ gate was very
low, F(Xfuil, Xideal) = 0.51. One more set of experimental data for phase qubits with a little better
process fidelity of F'(Xfuil, Xidear) = 0.62 again had the increasing part of the curve F'(xcs, Xideal)»
see Fig. 5.3.

To check how close the result of ¢;-optimization Eq. (5.2) is to the upper bound of the
condition (5.3), we calculate the numerical value ey, = Hﬁf‘iﬁf’ — ®¥cslle, /M as a function of
€. The results for all three CZ gates are shown in the insets of Figs. 5.1 — 5.3, we see that €y, is
quite close to € for all three CZ gates. The CVX-SeDuMi package does not solve the optimization
problem for values of the noise parameter ¢ below the optimal value €.

Finding a proper value of ¢ to be used in the CS method is not a trivial problem, since
for the reduced data set we cannot find €,p¢ in the way we used. Therefore the value of € should
be estimated either from some prior information about the noise level in the system or by trying

to solve the ¢1-minimization problem with varying value of €. Note that the noise level HI3exp —
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Figure 5.1: The CS QPT procedure, applied to the full data set for the superconducting Xmon qubit,
with varying noise parameter . The red (upper) line shows the fidelity F'(xcs, xfun) between the
process matrix ycg obtained using the compressed-sensing method and the matrix xpy obtained
using the least-squares method. The blue (lower) line shows the process fidelity F'(xcs, Xideal)s
i.e., compared with the matrix yiqea) Of the ideal unitary process. The vertical dashed brown line
corresponds to the noise level cop, = || Poi? — ®Xrunl|e, /M = 0.0199 obtained in the LS pro-

cedure. The inset shows epyym = Hﬁﬁﬁf — ®Ycsle,/VM as a function of ¢ (green line); for
comparison, the dashed line shows the expected straight line, €,,,, = €. The process fidelity
F(Xtull, Xideal) = 0.91. The numerical calculations have been carried out in the Pauli-error basis
using CVX-SeDuMi package.

P Xideall| ¢, /V M defined by the ideal process is not a good estimate of €,py; in particular for our
full data corresponding to the CZ gate implemented with the Xmon qubit, it is 0.035, which is

significantly higher than €, = 0.0199.

5.5 Reduced data set, near-optimal noise parameter ¢

Now we apply the CS method to a reduced data set, by randomly choosing 7o, out of
M onr = 144 configurations, while using all 4 probabilities for each configuration. (Therefore the

number of used probabilities is m = 4Monr instead of M = 4 M ¢ in the full data set.) For the
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Figure 5.2: Similar to Fig. 5.1, but for the CZ gate, realized with superconducting phase qubits. The
process fidelity F'(Xfuil, Xideat) = 0.51 is much lower than that for the Xmon qubit gate. The CS
QPT procedure, applied to the full data set for the superconducting phase qubit, with varying noise
parameter . The red (upper) line shows the fidelity F'(xcs, Xru1) between the process matrix xcs
obtained using the compressed-sensing method and the matrix x g, obtained using the least-squares
method. The blue (lower) line shows the process fidelity F'(xcs, Xideal)s i-€., compared with the
matrix Xideal Of the ideal unitary process. The vertical dashed brown line corresponds to the noise
level copy = ||Pos? — ®Xpunll|r,/V/M = 0.0197 obtained in the LS procedure. The inset shows
Epum = ||ﬁ§ﬁf — ®Xcs||e,/VM as a function of ¢ (green line); for comparison, the dashed line
shows the expected straight line, £,,ym = €. The numerical calculations have been carried out in the
Pauli-error basis using CVX-SeDuMi package.

noise level € we use a value slightly larger than £, [40]. If a value too close to eqp is used, then the
optimization procedure often does not find a solution; this happens when we choose configurations
with a relatively large level of noise in the measured probability values. For the figures presented
in this Section, which are obtained from the experimental data for the CZ gate realized with the
Xmon qubits, we used € = 0.02015, which for the full data set corresponds to the fidelity of 0.995
compared with xr,1 and to the process fidelity of 0.910 (see Fig. 5.1).

Figure 5.4 shows the fidelities F(xcs, xtu) (upper line) and F(xcs, Xideal) (lower line)

versus the number m..,,r of used configurations. For each value of m.,,r we repeat the procedure
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Figure 5.3: Similar to Fig. 5.1, but for the CZ gate, realized with superconducting phase qubits. The
process fidelity F'(Xfuil, Xideat) = 0.62 is much lower than that for the Xmon qubit gate. The CS
QPT procedure, applied to the full data set for the superconducting phase qubit, with varying noise
parameter . The red (upper) line shows the fidelity F'(xcs, Xru1) between the process matrix xcs
obtained using the compressed-sensing method and the matrix x g, obtained using the least-squares
method. The blue (lower) line shows the process fidelity F'(xcs, Xideal)s i-€., compared with the
matrix Xideal Of the ideal unitary process. The vertical dashed brown line corresponds to the noise
level copy = ||Pos? — ®Xpunll|r,/V/M = 0.0146 obtained in the LS procedure. The inset shows
Epum = ||ﬁ§ﬁf — ®Xcs||e,/VM as a function of ¢ (green line); for comparison, the dashed line
shows the expected straight line, £,,ym = €. The numerical calculations have been carried out in the
Pauli-error basis using CVX-SeDuMi package.

50 times, choosing different random configurations. The error bars in Fig. 5.4 show the standard de-
viations (£o) calculated using these 50 numerical experiments, while the central points correspond
to the average values.

We see that the upper (red) line starts with fidelity F'(xcs, xru1) = 0.995 for the full data
set (Meont = 144) and decreases with decreasing m.qn¢. It is important that this decrease is not
very strong, so that we can reconstruct the process matrix reasonably accurately, using only a small
fraction of the QPT data. We emphasize that the system of equations (4.8) in the standard QPT

procedure becomes underdetermined at m,¢ < 80; nevertheless, the CS method reconstructs i1
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Figure 5.4: The CS method results using a reduced data set with randomly chosen Mmons config-
urations. The red (upper) line shows the fidelity F'(xcs, xfun) between the CS-estimated process
matrix xcs and the matrix xgy obtained from the full data set. The blue (lower) line shows the
estimated process fidelity F\, = F'(xcs: Xideal). The procedure of randomly choosing 1o Out
of 144 configurations is repeated 50 times; the error bars show the calculated standard deviations.
The noise parameter £ = 0.02015 is chosen slightly above £,,¢. The calculations are carried out in
the Pauli-error basis using CVX-SeDuMi. The experimental data are for the CZ gate realized with
Xmon qubits; the process fidelity is F'(Xful1, Xideal) = 0.907.

quite well for meons = 40 and still gives reasonable results for mcons = 20. In particular, for meons
between 40 and 80, the reconstruction fidelity F'(xcs, Xfu1) changes between 0.96 and 0.98.

The lower (blue) line in Fig. 5.4 shows that the process fidelity F), = F'(Xcs, Xideal) can
also be found quite accurately, using only mgons = 40 configurations (the line remains practically
flat), and the CS method still works reasonably well down to mcons = 20. Even though the blue
line remains practically flat down to m¢onr = 40, the error bars grow, which means that in a partic-
ular experiment with substantially reduced set of QPT data, the estimated process fidelity F, may
noticeably differ from the actual value. It is interesting that the error bars become very large at
approximately the same value (m.onr >~ 20), for which the average values for the red and blue lines

become unacceptably low.
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Figure 5.5: (a) The process matrix y based on the full data set (144 configurations) and (b,c) the
CS-estimated matrices ycs using a reduced data set: 72 configurations (b) and 36 configurations
(c). The process matrices are shown in the Pauli-error basis. The main element x 7 ;7 (process
fidelity) is off the scale and therefore is cut; its height is 0.907, 0.918, and 0.899 for the panels (a),
(b), and (c), respectively. All other peaks characterize imperfections. The fidelity F'(xcs, xfun) for
the matrices in panels (b) and (c) is equal to 0.981 and 0.968, respectively. The middle and lower
panels use the data set, corresponding to underdetermined systems of equations. Experimental data

for CZ gate realized with Xmon qubits have been used.
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Figure 5.6: Similar to Fig. 5.4, but for the CZ gate realized with superconducting phase qubits. The
process fidelity F'(xfull, Xideal) = 0.51 is much lower than that for the Xmon qubit gate. As we see,
CS QPT works significantly better for this lower-fidelity gate than for the better gate presented in
Fig. 5.4.

Figure 5.5 shows examples of the CS estimated process matrices xcg for meons = 72
(middle panel) and m¢ons = 36 (lower panel), together with the full-data process matrix x g, (upper
panel). The process matrices are drawn in the Pauli-error basis to display the process imperfections
more clearly. The peak x;; ;7 is off the scale and is cut arbitrarily. We see that the CS estimated
process matrices are different from the full-data matrix; however the positions of the main peaks are
reproduced exactly, and their heights are also reproduced rather well (for a small number of selected
configurations the peaks sometimes appear at wrong positions). It is interesting to see that the CS
procedure suppressed the height of minor peaks. Note that both presented xcs are based on the data
sets corresponding to underdetermined system of equations.

The computer resources needed for the calculation of results presented in Fig. 5.4 are not
demanding. The calculations require about 30 MB of computer memory and 2—4 seconds time for

a modest PC per individual calculation (smaller time for smaller number of configurations).
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Figure 5.7: Similar to Fig. 5.4, but for the CZ gate realized with superconducting phase qubits. The
process fidelity F'(xfull, Xideal) = 0.62 is much lower than that for the Xmon qubit gate. As we see,
CS QPT works significantly better for this lower-fidelity gate than for the better gate presented in
Fig. 5.4.

Besides the presented results, we have also performed analysis for the CS QPT of two
CZ gates based on phase qubits. The results are qualitatively similar, except the process fidelity for
phase-qubit gates was significantly lower: 0.62 and 0.51. The results for these gates are presented in
Figs. 5.6 and 5.7. Comparing with Fig. 5.4, we see that CS QPT works better for this lower-fidelity
gate. In particular, the blue line in Figs. 5.6 and 5.7 are practically flat down to mcons ~ 20 and the
error bars are quite small (in Fig. 5.7 the blue line has even values slightly exceeding the process
fidelity F'(Xtull, Xideal) = 0.62 for meons = 20 . We think that the CS QPT works better for a lower-
fidelity gate because experimental imperfections affect the measurement error relatively less in this
case than for a higher-fidelity gate.

Thus our results show that for a CZ gate realized with superconducting qubits CS QPT
can reduce the number of used QPT configurations by up to a factor of 7 compared with full QPT,
and up to a factor of 4 compared with the threshold at which the system of equations for the standard

QPT becomes underdetermined.
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5.6 Reduced data set, nonoptimal noise parameter ¢

As mentioned above, in a QPT experiment with a reduced data set, there is no straight-
forward way to find the near-optimal value of the noise parameter € (which we find here from the
full data set). Therefore, it is important to check how well the CS method works when a nonoptimal
value of ¢ is used. Figure 5.8 shows the results obtained using the experimental data for the CZ
gate realized with Xmon qubits, similar to those in Fig. 5.4, but with several values of the noise
parameter: ¢/eqp = 1.01, 1.2, 1.4, 1.6, and 1.8. The upper panel shows the fidelity between the
matrix ycs and the full-data matrix y,; the lower panel shows the process fidelity F'(xcs, Xideal)-
We see that the fidelity of the y matrix estimation, F'(xcs, Xfu1), becomes monotonously worse
with increasing e, while the estimated process fidelity, F'(xcs, Xideal)» may become larger when a
nonoptimal ¢ is used. This observation agrees with the results presented in Fig. 5.1, where we saw
that for the full data set (the most right points in Figs. 5.8) the fidelity between the matrix xcs and
the full-data matrix xfu1, F(Xxcs, Xfun ), monotonously decreases for increasing nonoptimal values
of €, while the process fidelity, F'(xcs, Xideal)» Mmay take larger values for nonoptimal values of .

Similar results are presented in Fig. 5.9 and Fig. 5.10 for the CZ gate based on phase qubits
(see Fig. 5.6 and Fig. 5.7) with the process fidelities of F'(xfuil, Xideal) = 0.62 and F (X full; Xideal) =
0.51, respectively. The values of the noise parameter were chosen as ¢/ gopt = 1.01, 2, 3, 4 (and
even 5 for the CZ gate with F'(xfu1, Xideal) = 0.51). The results presented in Fig. 5.9 and Fig. 5.10
show significantly better tolerance to a nonoptimal choice of ¢; in particular, even for € = 3eqp
the process fidelity practically coincides with the blue lines in Fig. 5.7 and Fig. 5.6 (obtained for
€ = gop). This result is in agreement with the behaviour of the process fidelities presented in

Fig. 5.3 and Fig. 5.2 for the full data, where we saw that the process fidelity remained practically
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Figure 5.8: (a) Fidelity F'(xcs, xfun) of the process matrix estimation and (b) the estimated process
fidelity F'(xcs, Xideal) @s functions of the data set size for several values of the noise parameter &
used in the CS optimization: a/sopt = 1.01, 1.2, 1.4, 1.6, and 1.8. Error bars show the standard
deviations calculated using 50 random selections of reduced data sets. The red lines are the same
as the lines in Fig. 5.4. The experimental data are for the CZ gate realized with Xmon qubits; the
process fidelity is F'(Xful1, Xidea) = 0.907.
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flat for a wide range of €, approximately up to 4e,,;. We believe the lower gate fidelity for phase

qubits is responsible for this relative insensitivity to the choice of ¢.
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Figure 5.9: (a) Fidelity F'(xcs, Xxfun) of the process matrix estimation and (b) the estimated process
fidelity F'(xcs, Xidea) @s functions of the data set size for several values of the noise parameter
€ used in the CS optimization: s/sopt = 1.01, 2.0, 3.0, and 4.0. Error bars show the standard
deviations calculated using 50 random selections of reduced data sets. The red lines are the same as
the lines in Fig. 5.7. The experimental data are for the CZ gate realized with the phase qubits; the
process fidelity is F'(Xfull, Xideal) = 0.62.

95



1.0

o

o0
—

5

[ ]

L

[ ]

&

z
306 B
a L h
O @ |
s ]
= . —e— &= 1.0lgyy
0.4 —e— &= 2gopt
I F(xcss Xta) | o &= 3ot
F —_— & = 580pt
0.2\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 20 40 60 80 100 120 140
Meonf
0.67
0.5+

=
i
T

F(xcs, Xideal)
(e)

e«
\S)

—e— &= 1.0lgyy
—_— &= 280pt

0.1} F(xcss Xideal) | —e— & = 3&opt
r —_— & = 580pt

00 L S T S R S S S| e S B B e S e e
0 20 40 60 80 100 120 140

Mconf

Figure 5.10: (a) Fidelity F'(xcs, xfun) of the process matrix estimation and (b) the estimated process
fidelity F'(xcs, Xideal) @s functions of the data set size for several values of the noise parameter
€ used in the CS optimization: ¢ /50pt = 1.01, 2.0, 3.0, and 5.0. Error bars show the standard
deviations calculated using 50 random selections of reduced data sets. The red lines are the same as
the lines in Fig. 5.6. The experimental data are for the CZ gate realized with the phase qubits; the
process fidelity is F'(Xfull, Xideal) = 0.51.
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5.7 Comparison between Pauli-error and SVD bases

So far for the CS method we have used the Pauli-error basis, in which the process ma-
trix x is expected to be approximately sparse because the ideal process matrix Xijgea contains only
one non-zero element, Xigea 77,77 = 1. However, there is an infinite number of the operator bases
with this property: for example, the SVD basis (see Appendix C) suggested in Refs. [39] and [40].
The process matrices are different in the Pauli-error and SVD bases, therefore the CS optimization
should produce different results in two different bases (which entails solving two different optimiza-
tion problems). To compare the results, we do the CS optimization in the SVD basis, then convert
the resulting matrix x into the Pauli-error basis, and calculate the fidelity F'(xcs-svp, Xcs) between
the transformed process matrix and the matrix ycs obtained using optimization in the Pauli-error
basis directly.

Figure 5.11 shows the comparison of the results obtained in the Pauli-error basis and the
SVD-basis, for the experimental data for the CZ gate realized with Xmon qubits. The green line
in Fig. 5.11 shows F(xcs.svD, xcs) as a function of the selected size of the data set for the CZ
gate realized with Xmon qubits, similar to Fig. 5.4 (the same ¢ is used). We also show the fidelity
between the SVD-basis-obtained matrix ycs.syp and the full-data matrix g as well as the ideal
process matrix Yideal- FOr comparison we also include the lines shown in Fig. 5.4 (dashed lines),
obtained using the Pauli-error basis. As we see, the results obtained in the two bases are close to
each other, though the SVD basis seems to work a little better at small data sizes, Mm¢ops >~ 20. We
also include a similar plot Fig. 5.12 presenting analogous results for the data, obtained using the
experimental data for phase qubits with the much lower process fidelity F'(xfu1, Xideal) = 0.51. As
we see, for the low-fidelity quantum gate, the results obtained in two bases are very similar to each

other for most values of mqnf, €xcept for the very low ones below mons =~ 20.
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Figure 5.11: Comparison between the CS results obtained in the SVD and Pauli-error bases for the
CZ gate realized with Xmon qubits. The green line shows the relative fidelity F'(xcs-svp, Xcs)
as a function of the number mqnr of randomly selected configurations. We also show the fi-
delities F'(xcs-svp; Xfun) (brown line), F'(xcs, xfun) (red dashed line), and process fidelities
F(Xxcs-svD, Xideal) (magenta line) and F'(xcs, Xideal) (blue dashed line). The dashed lines have
been shown in Fig. 5.4. The results using the SVD basis are somewhat more accurate than those for
the Pauli-error basis when mons < 40.

The visual comparison of y-matrices obtained in these bases (as in Fig. 5.5), presented
here at Fig. 5.13 and Fig. 5.14, show that although we worked in two different bases, the pro-
cess matrices recovered via CS exhibit a similar structure. In addition, the real and imaginary
parts of the process matrix g, reconstructed using the full set of experimental data, are plotted in
Fig. 5.15. Experimental data for the CZ gate realized with the phase qubits with the process fidelity
F(Xtull, Xideal) = 0.51 have been used in Fig. 5.13 — Fig. 5.15.

It should be noted that the calculations in the SVD basis are somewhat faster (~2 seconds
per point) and require less memory (~6 MB) than the calculations in the Pauli-error basis. This is
because the matrix ® defined in Eq. (4.8) for the CZ gate contains about half the number of non-zero

elements in the SVD basis than in the Pauli-error basis.
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Figure 5.12: Comparison between the CS results obtained in the SVD and Pauli-error bases for
the low-fidelity CZ gate realized with phase qubits. The green line shows the relative fidelity
F(xcs-svD, Xcs) as a function of the number mons of randomly selected configurations. We also
show the fidelities F'(xcs-svD, Xfull) (brown line), F'(xcs, xfun) (red dashed line), and process fi-
delities F'(Xcs-svD; Xideal) (magenta line) and F'(xcs. Xideal) (blue dashed line). The dashed lines
have been shown in Fig. 5.6. The results using the SVD basis and the Pauli-error basis are very
close to each other for most values of mqns. The experimental data are for the low-fidelity CZ gate
realized with the phase qubits; the process fidelity is F'(Xfun, Xideal) = 0.51.

All results presented here are obtained using the CVX-SeDuMi package. The results for
the CZ gate obtained using the YALMIP-SDPT3 package are similar when the same value of ¢
is used. Surprisingly, in our realization of computation, the YALMIP-SDPT3 package still finds
reasonable solutions when ¢ is significantly smaller than €, (even when ¢ is zero or negative), so
that the problem cannot have a solution; apparently in this case the solver increases the value of ¢
until a solution is found. This may seem to be a good feature of YALMIP-SDPT3. However, using
€ < €opt should decrease the accuracy of the result (see the next subsection). Moreover, YALMIP-
SDPT3 does not work well for the Toffoli gate discussed in Section 5.9. Thus we conclude that
CVX-SeDuMi package is better than YALMIP-SDPT3 package for our CS calculations. (Note that

this finding may be specific to our system.)
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Figure 5.13: Real (left figure) and imaginary (right figure) parts of the process matrix xcs—svp
for the CZ gate, calculated in the SVD basis and converted into the Pauli-error basis. We
used 36 randomly chosen measurement configurations out of the full set of 144. The fidelity
F(xcs—svp,xr) = 0.88, the fidelity F'(xcs, xcs—svp) = 0.94. The main element Re(x77,77)
(process fidelity) is off the scale and therefore is cut; its height is 0.52. The experimental data
are for the CZ gate realized with the phase qubits; the process fidelity calculated from full data is
F(Xfull;Xideal) = 0.51.
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Figure 5.14: Real (left figure) and imaginary (right figure) parts of the process matrix xycg for
the CZ gate calculated directly in the Pauli-error basis. We used 36 randomly chosen measure-
ment configurations out of the full set of 144. The fidelity F'(xcs, xan) = 0.91, the fidelity
F(xcs:;xcs—svp) = 0.94. The main element Re(x;7,77) (process fidelity) is off the scale and
therefore is cut; its height is 0.50. The experimental data are for the CZ gate realized with the phase
qubits; the process fidelity calculated from full data is F'(xfu, Xideal) = 0.51.
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Figure 5.15: Real (left figure) and imaginary (right figure) parts of the process matrix x g for the
CZ gate calculated from the full data. The main element Re(x7,77) (process fidelity) is off the scale
and therefore is cut; its height is 0.51. The experimental data are for the CZ gate realized with the
phase qubits; the process fidelity is F'(Xfull, Xideal) = 0.51.

5.8 Comparison with least-squares minimization

Besides using the CS method for reduced data sets, we also used the LS minimization
[with constraints Eq. (4.5) and Eq. (4.6) from Section 4.1 of Chapter 4] for the same reduced sets.
Solid lines in Fig. 5.16 show the resulting fidelity F'(xLs, xfun) compared with the full-data process
matrix and the estimated process fidelity F'(xLs, Xideal)-

Somewhat surprisingly, the LS method still works (though less well) in a significantly
underdetermined regime. Naively, we would expect that in this case Eq. (4.8) from Section 4.1
of Chapter 4 can be satisfied exactly, and there are many exact solutions corresponding to the null
space of the selected part of the matrix . However, numerical results show that in reality Eq. (4.8)
cannot be satisfied exactly unless the selected data set is very small. The reason is that the matrix
x has to be positive, and the (corrected) experimental probabilities can be close to the limits of the
physical range or even outside it.

The problem is that the experimental probabilities are not directly obtained from the ex-

periment, but are corrected for imperfect measurement fidelity [113]. As a result, they may become
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Figure 5.16: Comparison between the results obtained by the LS and CS methods. The solid lines
are for the LS method, the dashed lines (same as in Fig. 5.4) are for the CS method. The CS method
is more accurate for a substantially reduced data set. The experimental data are for the CZ gate
realized with Xmon qubits.

larger than one or smaller than zero. This happens fairly often for high fidelity gates because for an
ideal operation the measurement results are often zeros and ones, so the experimental probabilities
should also be close to zero or one. Any additional deviation due to imperfect correction for the
measurement fidelity may then push the probabilities outside of the physical range. It is obvious
that in this case Eq. (4.8) cannot be satisfied exactly for any physical x. To resolve this problem
one could consider rescaling the probabilities in such instances, so that they are exactly one or zero
instead of lying outside the range. However, this also does not help much because a probability of
one means that the resulting state is pure, so this strongly reduces the number of free parameters in
the process matrix y. As a result, Eq. (4.8) cannot be satisfied exactly, and the LS minimization is
formally possible even in the underdetermined case.

Another reason why Eq. (4.8) may be impossible to satisfy in the underdetermined case,

is that the randomly selected rows of the matrix @ can be linearly dependent. Then mathematically
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some linear relations between the experimental probabilities must be satisfied, while in reality they
are obviously not satisfied exactly.

These reasons make the LS minimization a mathematically possible procedure even in
the underdetermined regime. However, as we see from Fig. 5.16, in this case the procedure works
less well than the compressed sensing, estimating the process matrix and process fidelity with a
lower accuracy. Similar calculations for the CZ gate realized with phase qubits (not presented here)
also show that the LS method does not work well at relatively small m¢ons. The advantage of the
compressed sensing in comparison with the LS minimization becomes even stronger for the three-
qubit Toffoli gate considered in the next Section. Note though that when the selected data set is large
enough to give an overdetermined system of equations Eq. (4.8), the LS method works better than
the CS method. Therefore, the compressed sensing is beneficial only for a substantially reduced

(underdetermined) data set, which is exactly the desired regime of operation.
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5.9 Three-qubit CS QPT for Toffoli gate

In this Section we apply the compressed sensing method to simulated tomographic data
corresponding to a three-qubit Toffoli gate [2, 157, 158, 113, 130]. As discussed in Section 4.2
of Chapter4, the process matrix of a three-qubit gate contains 163 — 43 = 4032 independent real
parameters, while the full QPT requires Mc,ns = 123 = 1728 measurement configurations yielding
a total of M = 123 x 23 = 13824 experimental probabilities, if we use ny, = 4 initial states and
nRr = 3 measurement rotations per qubit, with all qubits measured independently. If we work with a
partial data set, the system of equations Eq. (4.8) becomes underdetermined if the number m¢ons Of
used configurations is less than 4032 /7 = 576. In such a regime the traditional maximum likelihood
or LS methods are not expected to provide a good estimate of the process matrix. In this section we
demonstrate that for our simulated Toffoli gate the compressed sensing method works well even for
a much smaller number of configurations, Mm¢ons < 576.

For the analysis we have simulated experimental data corresponding to a noisy Toffoli
gate by adding truncated Gaussian noise with a small amplitude to each of M = 13824 ideal
measurement probabilities P;deal. We assumed the set of experimental probabilities in Eq. (4.8) to
be of the form PieXp = Piideal + AP;, where AP; are random numbers sampled from the normal
distribution with zero mean and a small standard deviation o. By choosing different values of the
standard deviation o we can change the process fidelity of the simulated Toffoli gate: a smaller
value of o makes the process fidelity closer to 1. After adding the Gaussian noise A P; to the ideal
probabilities Piide“l, we check whether the resulting simulated probabilities Pf’Xp are in the interval
[0,1]. If a P;™" happens to be outside the interval [0, 1], we repeat the procedure until the condition

Ppr € [0, 1] is satisfied. Finally, we renormalize each set of 8 probabilities corresponding to the
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Figure 5.17: CS QPT for a simulated Toffoli gate. Red line: fidelity F'(xcs, Xfu1) of the pro-
cess matrix estimation, blue line: the estimated process fidelity F'(xcs, Xideal), both as functions
of the data set size, expressed as the number Moy Of randomly selected configurations. The full
QPT corresponds to 1728 configurations. The system of equations becomes underdetermined when
Meont < O76. The error bars show the standard deviations calculated by repeating the procedure of
random selections 7 times.

same measurement configuration so that these probabilities add up to 1.

Thus the simulated imperfect quantum process is defined by M = 13824 probabilities,
corresponding to M o,¢ = 1728 configurations; the process fidelity for a particular realization (used
here) with 0 = 0.01 is Fy, = F(Xfull, Xideat) = 0.959. We then test efficiency of the compressed
sensing method by randomly selecting mconr < 1728 configurations, finding the corresponding
process matrix xcs, and comparing it with the full-data matrix yg, by calculating the fidelity
F(xcs, xfun)- We also calculate the process fidelity F'(xcs, Xideal) given by xcs.

The red line in Fig. 5.17 shows the fidelity F'(xcs, xfui) as a function of the number
Mmeonf Of randomly selected configurations. The value of ¢ is chosen to be practically equal to
Eopt = H(ﬁgﬁf — ®Xtun)|e,/VM = 0.01146 (the relative difference is less than 1073). The /;-

minimization is done using the CVX-SeDuMi package. The error bars are calculated by repeating
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Figure 5.18: Comparison between the calculations using CS and LS methods for the simulated
Toffoli gate. Solid lines are for the LS method, dashed lines (the same as in Fig. 5.17) are for the CS
method. In the underdetermined regime the CS-method results are much better than the LS-method
results.

the procedure of random selection 7 times. We see a reasonably high fidelity F'(xcs, xfun) of
the reconstructed process matrix even for small numbers of selected configurations. For example,
F(xcs, xfun) = 0.95 for only mconr = 40 configurations, which represents a reduction by more
than a factor of 40 compared with the full QPT and approximately a factor of 15 compared with the
threshold of the underdetermined system of equations.

The blue line in Fig. 5.17 shows the process fidelity F'(xcs, Xideal) calculated by the CS
method. We see that it remains practically flat down to m¢ons = 40, which means that y cg can be
used efficiently to estimate the actual process fidelity.

Figure 5.18 shows similar results calculated using the LS method (for comparison the
lines from Fig. 5.17 are shown by dashed lines). We see that the LS method still works in the
underdetermined regime (Mm¢onr < 576); however, it works significantly worse than the CS method.

As an example, for meonr = 40 the fidelity of the process matrix estimation using the LS method
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Figure 5.19: Comparison between the CS results obtained in the SVD and Pauli-error bases for the
simulated Toffoli gate. The green line shows the relative fidelity F'(xcs-svp, Xcs) as a function of
the number mons of randomly selected configurations. We also show the fidelities F'(xcs-svp, Xfull)
(brown line), F'(xcs, xfun) (red dashed line), and process fidelities F'(xcs-svD, Xideal) (magenta line)
and F'(xcs, Xideal) (blue dashed line). The dashed lines have been shown in Fig. 5.17. The results
using the SVD basis and the Pauli-error basis are very close to each other for most values of m¢ops.
The error bars show the standard deviations calculated using 7 random selections of reduced data
sets.

is F(xLs, xfun) = 0.86, which is significantly less than F'(xcs, xfun) = 0.95 for the CS method.
Similarly, for m¢ons = 40 the process fidelity obtained via the CS method, F'(xcs, Xideal) = 0.96
is close to the full-data value of 0.959, while the LS-method value, F'(xLs, Xideal) = 0.85, is quite
different.

Besides using the Pauli-error basis for the results shown in Fig. 5.17, we have also per-
formed the calculations using the SVD basis. The results are presented in Fig. 5.19 and as we see,
they are very close to those in Fig. 5.17. In particular, we see that the relative fidelity F'(xcs-svD, Xcs)
is above 0.98 for mcons > 200 and above 0.95 for mcons > 40.

We have also performed the calculations using non-optimal values of the noise parameter

€. In comparison with the results for CZ gate shown in Fig. 5.8, the results for the Toffoli gate
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(shown in Fig. 5.20) are more sensitive to the variation of . In particular, the fidelity F'(xcs, Xfull)
is about 0.94 for € = 1.2¢ ¢ (not significantly depending on mons for meons > 40) and the process
fidelity F'(xcs, Xideal) for € = 1.2e4 is approximately 0.94 instead of the actual value 0.96. Note
that in contrast to Fig. 5.8, error bars showing the standard deviations at Fig. 5.20 were calculated
using only 7 random selections of reduced data sets, because it takes significantly longer time to
perform calculations for the three-qubit gate compared with the two-qubit gate.

Compared with the two-qubit case, it takes significantly more computing time and mem-
ory to solve the /;-minimization problem for three qubits. In particular, our calculations in the
Pauli-error basis took about 8 hours per point on a personal computer for monr =~ 1500 and about
1.5 hours per point for meons =~ 40; this is three orders of magnitude longer than for two qubits.
The amount of used computer memory was 3—10 GB, which is two orders of magnitude larger than
for two qubits. (The calculations in the SVD basis for the Toffoli gate took 1-3 hours per point
and ~2 GB of memory.) Such a strong scaling of required computer resources with the number of
qubits seems to be the limiting factor in extending the CS QPT beyond three qubits, unless a more
efficient algorithm is found. (Note that LS calculations required similar amount of memory, but the
computation time was much shorter.)

The presented results have been obtained using the CVX-SeDuMi package. We also
attempted to use the YALMIP-SDPT3 package. However, in our realization of computation the
calculation results were very unreliable for mops < 200 using the SVD basis, and even worse when
the Pauli-error basis was used. Therefore we decided to use only the CVX-SeDuMi package for the

3-qubit CS procedure.
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Figure 5.20: (a) Fidelity F'(xcs, Xfu1) Of the process matrix estimation for the simulated Toffoli
gate and (b) the estimated process fidelity F'(xcs, Xideal) as functions of the data set size for several
values of the noise parameter € used in the CS optimization: ¢/ €opt = 1.0,1.1,1.2, 1.4 and 1.6. The
error bars show the standard deviations calculated using 7 random selections of reduced data sets.
The red lines are the same as the lines in Fig. 5.17. The process fidelity is F'(Xful1, Xideal) = 0.-96.
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Chapter 6

Standard deviation of state fidelity

In this Chapter, we consider an equivalent to the process fidelity F) characteristic of a
quantum gate, called average state fidelity Fy;, which is sometimes also called the “gate fidelity”.
Since neither of these two fidelities provides any information about fluctuations in the gate fidelity
(i.e., how the errors vary over input states), it proves useful to be able to calculate the standard
deviation of the average state fidelity. We provide in Section 6.1 the results of the calculation of
the average state fidelity and the standard deviation of the state fidelity for both the two-qubit CZ
gate, realized with Xmon qubits, and for the three-qubit Toffoli gate with the numerically added
noise. In addition we provide the detailed derivation of the formula for the standard deviation of
the average state fidelity in Section 6.2, and to confirm our results, we perform the Monte Carlo

numerical simulation of the standard deviation of the average state fidelity in Section 6.3.
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6.1 Standard deviation of state fidelity

As shown in the previous Chapter, the process matrices ycs obtained via the CS method
allow us to estimate reliably the process fidelity F\, = F(x, Xidear) Of @ gate using just a small
fraction of the full experimental data. While F), is the most widely used characteristic of an exper-
imental gate accuracy, it is not the only one. An equivalent characteristic (usually used in random-
ized benchmarking) is the average state fidelity, defined as Fy, = [ Tr(pacwalpideat) d|¥in)/ | A in),
where the integration is over the initial pure states |¢;,) (using the Haar measure; it is often assumed
that f d|1in) = 1), while the states pigeal and pycrar are the ideal and actual final states for the initial
state |¢q,). The average state fidelity Fy is sometimes called the “gate fidelity” [33] and can can
naturally be measured via randomized benchmarking [31, 32, 33] (Frg = F'g); it is linearly related

[159, 160] to the process fidelity F) through the formula,

— Rd+1

= 1
YT od+1 ©.1)

where d = 2% is the Hilbert space dimension.

Besides the average state fidelity, an obviously important characteristic of a gate operation
is the worst-case state fidelity F min, Which is minimized over the initial state. Unfortunately,
finding the minimum state fidelity is a hard problem from the computational point view, even when
the process matrix x is known. Another natural characteristic is the standard deviation of the state
fidelity,

AFy =\ F2 -y, (6.2)

where F2 = JITt(pactualpidea) > d|tin)/ [ d|tin) is the average square of the state fidelity. The

advantage of AF in comparison with Fy m;, is that FT% and AF can be calculated from x in a

111



0.25F b

= 0.20F ~—1-Fy .

l : ——AFg ]

— 0.15} ]

S o100 (TN ]
[ \{-\J % & z Z

0.05 |Th L 1

0007 A L ]

0 20 40 60 80 100 120 140

Meonf

Figure 6.1: Blue (upper) line: average state infidelity 1 — Fy for the CS-estimated process matrix
Xcs as a function of the selected data set size for the experimental CZ gate, realized with Xmon
qubits (this line is linearly related to the blue line in Fig. 5.4). Brown (lower) line: the standard
deviation of the state fidelity AF}, defined via variation of the initial state, Eq. (6.2), using the
same xcs. The error bars are computed by repeating the procedure 50 times with different random
selections of used configurations.

straightforward way [161, 162]. Our way of calculating FT% is described in the next Section 6.2 [see
Eq. (6.14)].

We have analyzed numerically how well the CS QPT estimates A Fy from the reduced
data set, using the previously calculated process matrices xcs for the experimental CZ gate and the
simulated Toffoli gate (considered in Secs. 5.5 and 5.9 of Chapter 5). The results are presented in
Figs. 6.1 and 6.2. We show the average state infidelity, 1 — Fy, and the standard deviation of the state
fidelity, A Fy, as functions of the number of selected configurations, m¢ons. The random selection
of used configurations is repeated 50 times for Fig. 6.1 (7 times for Fig. 6.2), the error bars show
the statistical variation, while the dots show the average values.

As it may be seen in Figs. 6.1 and 6.2, the CS method estimates reasonably well not only

the average state fidelity F'y (which is equivalent to F), presented in Figs. 5.4 and 5.17), but also its
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Figure 6.2: The same as in Fig. 6.1, but for the simulated Toffoli gate. The random selection of
configurations is repeated 7 times for each point. The results for the standard deviation AF are
multiplied by the factor of 5 for clarity.

standard deviation A Fy. It is interesting to note that A Fy; is significantly smaller than the infidelity
1 — Fy, which means that the state fidelity Tr(pacualPideal) does not vary significantly for different
initial states [the ratio AF /(1 — Fy) is especially small for the simulated Toffoli gate, though this

may be because of our particular way of simulation].

6.2 Details of the formula for average square of state fidelity

In this Section we present a detailed derivation of an explicit formula for the squared state

fidelity F2, averaged over all pure initial states, for a quantum operation, represented via Kraus
operators. We follow the same steps as in Ref. [162], where a closed-form expression for FTQt in

terms of the process matrix y was presented. Although our approach is not new, we show it here for

completeness. In our derivation we use the theory of permutation operators, symmetric subspaces
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and we compute averages over Haar measures. We start this Section from the review of some basic
definitions from the theory of permutations.

Definition. A function f : A — B is called “one-to-one”, or “injective”, if each element
of B appears at most once as the image of an element of A. A function f : A — B is called “onto”,
or “surjective”, if f(A) = B. That is, if each element of B is the image of at least one element of
A. A function that is both injective and surjective is called “bijective”.

Definition. A “permutation” of a set A is a function o : A — A that is bijective (i.e. both
one-to-one and onto).

Unlike calculus, where most functions are defined on infinite sets and given by formulas,
permutations of finite sets are usually given by simply listing where each value goes. For example,

we can define a permutation « of the set S = {1, 2, 3} by stating:

A slightly more convenient way to represent this permutation « is by the so-called array
notation or Cauchy’s two-line notation:
1 2 3
a ( ) 7
2 1 3
where one lists the elements of the set .S in the first row, and for each element its image under the
permutation below it in the second row. Also the techniques of arrow diagrams and cycle-arrow
diagrams are nice visual ways of representing the permutation (not explained here).
Definition. The “identity” permutation is the permutation that does nothing:
1 2 ...n
ae ( )
1 2 ...n
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Definition. An k-cycle is a permutation which cyclically permutes (rearranges) k elements

of a set A while leaving the rest elements unchanged. For example (k = 3),

(e

2 31 4 ... n

For the first three numbers every number moves to the right and the third number, £ = 3, cycles
around back to 1.

An example of a 2-cycle is a “transposition”, which is an exchange of two elements of
a set A with all others staying the same. In other words a transposition is a permutation of two
elements.

Definition. The set of all permutations of n elements is called the “the symmetric group
of degree n”, and is denoted by S,,. For clarity, we can write this definition as S, = {a : ais a
permutation of Z,, }. Some authors use notation Sym(n) instead of S,,.

One of the basic properties of permutations is that every permutation can be written as
a product of “disjoint cycles”, that is where the various cycles have no numbers in common. The
algorithm to determine the cycle form of the permutation can be illustrated in the following example.

Suppose we need to determine the cycle form of the permutation

1 2 3 4 5 6 7 8 9 10
a=( )

5 1 6 8 4 10 7 2 9 3

We start with the smallest number in the set, in our case it is 1. Since a(1) = 5 we begin the cycle
by writing (1,5,...) ..., then as a(5) = 4, so we continue building the cycle as (1,5,4,...)...
until we reach the mapping a(2) = 1, which closes the first cycle (1, 5,4, 8, 2) .... Now we need to

find the smallest number that doesn’t appear in any previously constructed cycle, number 3 in our
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example. In a similar fashion, we build the second cycle (1,5,4,8,2)(3,6,10).... Now we pick
the smallest number that is not contained in any previously constructed cycle, 7 in our example, and
as it maps to itself, we get (1,5,4,8,2)(3,6,10)(7).... The only remaining number is 9, and as
it maps to itself, we get the following cycle form of permutation a: (1,5,4,8,2)(3,6,10)(7)(9).
Following the usual convention, we omit the 1-cycles, and simply write « as (1, 5,4, 8,2)(3, 6, 10).

Thus, in our case, « is the product of a 3-cycle and a 5-cycle.

After this brief review of the theory of permutation operators, we will explain the deriva-
tion of the formula for the squared state fidelity FTQt

We begin by writing the quantum operation as £ = U o £ [see Eq. (B.2)], where U
corresponds to the ideal (desired) unitary operation, while the map & accounts for the errors in the

actual gate, and o denotes composition. Let

E(p) = AnpAj, (6.3)

be the operator-sum representation of £, where {An};jf:l are Kraus operators satisfying the trace-
preservation condition ) A;An = I. The Kraus operators can be easily obtained from the process
matrix x,g describing the operation £. Note that by diagonalizing x, i.e., x = VDVT, where V is
unitary and D = diag(A1, Ao, ...) with A, > 0, we can express the Kraus operators in Eq. (6.3) as
A, = VN UT > o FaVan, where U is the desired unitary.

The state fidelity F (assuming a pure initial state |¢)) can be written in terms of Kraus

operators { A, } as follows:

Fy=(0|E(e) o) =D (¢] An|0) (6] A, |0) - (6.4)

n

Obviously, this expression depends on the state |¢). Using the identity Tr(A ® B) = Tr(A) Tr(B),
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one can rewrite the above expression for F, as

Fy= 3T (A |6) (6]) T (4] 16) (0] = 301 [(An @ 41)(10) (0°2)],  69)

n

where the notation |¢) (¢|*F = |¢) (4| ® |¢) (@] ... @ |$) (¢| means that the state is copied in k

k
identical Hilbert spaces (k equals 2 in formulae for the state fidelity). The expression Eq. (6.5) is
an inner product between a term including all Kraus operators and a term including all the state-

dependence. Similarly, one can express the squared state fidelity as

F? = ) (6| An|0) (6] AL 1) (6] A |6) (6] Al |6)

= ST [(An @ AL © A @ AL)(6) (6%)]. 6.6)

The average state fidelity Fy; of a quantum operation £ is defined as follows:

mz/wwﬂ@wz/&m, 6.7)

where the integral is over the uniform (Haar) measure d¢ on the initial pure states, normalized so
J d¢ = 1. Obviously, the averaging over the states |¢) should be performed on the second term in
Eq. (6.5) only, therefore we need to calculate the average of the type W

In order to compute the average state fidelity Fyy = [ Fyd¢, the average square of the

state fidelity
F%= /Fi dg, (6.8)
and higher moments of Fy (we assume the normalized integration over the initial pure states,

f d¢ = 1), one can use the following result [163]

1 1
/wwwmsz1m M =7 > P (6.9)

( d—1 ) T oesy,
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Here o is an element of the permutation group Sk (the k! permutations of k& objects), (’Hd'le) =

d(dﬂ)]g‘(i,:_zi')'_'_(_'ﬁk_l) is a binomial coefficient “(k + d — 1) choose (d — 1)”, Il is the projector

onto the symmetric subspace of H®¥, and the operator P, is the representation of permutation & in

H* = H®... H,ie.,
N——
k

Py(|o1) @ |¢2) - .- @ |dk) = [00(1)) @ |P0(2)) - - - @ [0 (r)) - (6.10)

(The operator P, acts on the wavefunction of kN qubits by permuting k& blocks, each containing N
qubits.)

In view of the above discussion, we see that the Ath moment Ft’“t =/ F;f d¢ can be
expressed as a sum of (2k)! terms corresponding to the elements in Sy [note that k& in Egs. (6.9)
and (6.10) is now replaced with 2k],

> WAy @ Al ® .. Ay, @ Al )P,
FE = Mk oS5 : 6.11)

i Rt k)

For example, the average state fidelity Fy; is determined by the sum over So,

1
Tr(A, @ Al 1Iy) = 5 > Tr(A, ® A} P,)

€Sy

1 . . .

=5 D0 (inyial Ay @ Al (i), 0 (ia))
0€ESy 11,12

1

=2 [Tr(An) Tr(AD) + Tr(A, Al) ] , (6.12)
identity transposition
which yields the well-known result [160]

— 1
Fi=—— Tr(A,)]? +d | . 6.13

In order to express the average square of the state fidelity FT% in terms of Kraus operators,

it is convenient to write each element of the group .Sy as a product of disjoint cycles. Using the so-
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called cycle notation for permutations, the 24 elements of the permutation groups 5S4 can be grouped
as follows:

o Identity (1 element): (1)(2)(3)(4) (this notation means that no change of position occurs
for all numbers in the sequence 1234);

e Transpositions (6 elements): (12), (13), (14), (23), (24), and (34) (this notations means

that only the specified numbers in the sequence are exchanged):

(12):<1 2 3 4>’ (13):<1 2 3 4>7 (14):<1 2 3 4>7

2 1 3 4 3 2 1 4 4 2 3 1
1 2 3 4 1 2 3 4 1 2 3 4
<23>=( ) (24>=< ) <34>=( )
1 3 2 4 1 4 3 2 1 2 4 3
1 2 3 4 1 2 3 4 1 2 3 4
@)= ( ). en=( ) eo=( )
1 3 2 4 1 4 3 2 1 2 4 3

e 3-cycles (8 elements): (123), (132), (124), (142), (134), (143), (234), and (243) [here the

notation (123) means the permutation 1 —-+2—3— 1, while the remaining number does not change]:

1 2 3 4 1 2 3 4
(123) = ( )=, - ( ) = s,
2 3 1 4 3 1 2 4

(124) = < b2 ):(124)(3), (142) = ( e >:(142)(3),

2 4 3 1 4 1 3 2
1 2 3 4 1 2 3 4

139 - ( ) - s, e - ( ) - s
3 2 4 1 4 2 1 3
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1 2 3 4 1 2 3 4
(234) = < ) = (234)(1), (243) = < ) = (243)(1);
1 3 4 2 1 4 2 3

e Products of transpositions (3 elements): (12)(34), (13)(24), and (14)(23) (two pairs of

numbers exchange):

(12)(34>=(1 o 4), (13)(24>=(1 o 4), <14><23>=(1 Y 4>;
2 1 4 3 3 4 1 2 4 3 2 1

o 4-cycles (6 elements): (1234), (1243), (1324), (1342), (1423), and (1432) [here (1234)

means the permutation 1 —-2—3—4—1]:

1 2 3 4 1 2 3 4 1 2 3 4
(1234) = < > (1243) = < > (1324) = < )
2 3 4 1 2 4 1 3 3 4 2 1

3 1 4 2 4 3 1 2 4 1 2 3

This classification simplifies keeping track of the terms IV, = an Tr [(An®AL®Am®
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A;rn) P,] in Eq. (6.11). The corresponding contributions to the sum ) ¢ N, are the following:

Identity:
(> T4

Transpositions:

2d> | Tr(Ay \2+2ZTrAAT ) Tr(Al) Tr(A,,)

+ 3 [ Tr(An ) Tr(AL) Tr(Af,) + Tr(AfAL,) Tr(An) Tr(Ap)|.

n,m

3-cycles:
437 T4+ 23 [n«(AnA;Am) Tr(Al ) + Tr(A, AT AT ) ﬁ(Am)] :

Products of transpositions:

@+ 3 [ITr(An )+ | Tr(An AL

n,m

4-cycles:

3d+ ) Tr(An Al AL AL) +2)  Tr(A, A, Al AL).

n,m n,m

(We used the trace-preservation condition ) |, AILAn = I). Substituting the above terms in Eq. (6.11)
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(with £ = 2), we finally obtain the average square of the state fidelity,

— 1
R = jar Ddr 2@+ {d2 +3d

$20d+2) Y [ Te(A)P + [0 P]

+ 3 (ITe(ApAp)? + | Tr(A, AL 1%)

+2) Tr(ApAnALAL) + > Tr(A, AL A A

+2)  Tr(A, Al) Tr(Al) Tr(4y,)

+2 " Re[Tr(AnAp,) Tr(Af) Tr(Al)]
+4>  Re[Tr(A Al Af) 'H(Am)]}- (6.14)

This is the formula we used in Section 6.1 to calculate FTQt

6.3 Monte Carlo numerical calculations

In order to verify the correctness of the formula Eq. (6.14), we have performed numerical
calculations of the average state fidelity F; and the average square of the state fidelity Fift, defined
in Eq. (6.7) and Eq. (6.8), using a Monte Carlo integration method. The idea of Monte Carlo
integration is to numerically evaluate the integrals Eq. (6.7) and Eq. (6.8) over the uniform Haar
measure d¢ by evaluating the discrete versions of the integrals for Fy; and FT% with randomly chosen
points. For this purpose we calculate in a sum over index r the values of the state fidelity and
its square for randomly generated quantum states {|®,)} = {|®1),|P2),...,|Pr)}, uniformly
distributed on a surface of a multidimensional sphere with a unit radius, and then average the results.
Our implementation of the algorithm for an N-qubit system is the following. 1) Using random

numbers from a uniform distribution, generate a random N-qubit quantum state |®,.) on the surface
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of the (2 x 2%)—dimensional sphere of unit radius, 2) at each iteration of  calculate the propagation
of the state |®,.) through the quantum channel described by a process matrix x, and 3) calculate the
quantum process characteristics such as the state fidelity Fy;, ; and the square of the state fidelity Fir
for each random state |®,.). After averaging over r we obtain the numerical results for the average
state fidelity Fy; and for the average square of the state fidelity FT% We observe that in the limit
of a large number R of random states |®,), used in the procedure, our numerical results for the
average characteristics asymptotically approach the values calculated using the analytic expressions

Eq. (6.13) and Eq. (6.14). We have for the state fidelity

R

_ 1 _
Fr=5) F(®)——F= [ doF(¢).
r=1

and for the square of the state fidelity

R
oy = é;ﬁ(qm o = [ )
These numerical results also make it possible to evaluate numerically the standard deviation of
the state fidelity. We perform Monte Carlo numerical simulations for two-qubit and three-qubit
quantum channels, which were considered in Chapter 5.
Below follows a more detailed description of our implementation of the Monte Carlo
algorithm. The steps of the algorithm at each iteration of the sum over r are the following.

1. First, we generate a random N-qubit quantum state (a vector) |®,.), which is described

by (2 x 2" independent real coefficients in the computational basis of 2%V basis states. For example,
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for the system of two qubits (N = 2) the computational basis consists of 4 states

1 0 0 0

0 1 0 0
00) = , 101) = , 110) = , |11) = ,

0 0 1 0

0 0 0 1

and the two-qubit quantum state is described by 8 real coefficients, corresponding to 4 complex

numbers, as follows:

‘CI)T> = (0600 + i/Boo) |00> + (aol + i[)’m) |01> + (Oélo + i/Blo) |10> + (all + Zﬂll) |11> , (6.15)

where the eight coefficients oy, ,, and By, (k,m = 0, 1) satisfy the normalization condition

Do lakmlP+ D0 1Beml’ =1 (6.16)

k,m=0,1 k,m=0,1

Eq. (6.16) is the equation of a (2 x 2N)—dimensional sphere of unit radius (8-dimensional sphere for
two qubits or 16-dimensional sphere for three qubits), centered at the origin of coordinates. There-
fore, the task of generating a uniformly distributed random N-qubit quantum state is equivalent to
the task of generating a uniformly distributed point on a surface of a (2 x 2V)—dimensional sphere
of unit radius.

To generate a uniformly distributed random point on the surface of a multidimensional
sphere, we use the following acceptance-rejection algorithm [164, 165]. We first generate a random
point within a (2 x 2)—dimensional hypercube, the center of which is at the origin of coordinates,
and the length of each of its sides equals 2. For this purpose we generate (2 x 2"V) random numbers
(denote them as xy, ,,, and v, ,, Where k, m = 0, 1) uniformly distributed on the interval [—1, +1]

(for example, generate 8 random numbers for a two-qubit system). These (2 x 2/V) random numbers
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determine a point inside a (2 x 2/V)-dimensional cube. We then reject the points that are within this
(2 x 2N)—dimensional cube, but outside the (2 x 2/V)—dimensional sphere of unit radius, keeping
only the points that are within the multidimensional sphere. We need this step in order to ensure that
the distribution of random points on the surface of the multidimensional sphere is uniform. Also in
order to reduce the possibility of the numerical (precision) errors, we discard the sets of randomly
generated points that happen to be in the immediate vicinity of the origin. Hence we check if the

following conditions
1< D lmeml + D leml* | <1 (6.17)
k,m k,m

are satisfied (most of the time the “right” condition in Eq. (6.17) is violated). The parameter 7 is a
small cut-off parameter, its value can be set arbitrarily. For our simulation we used n = 0.01. In the
rare case when the condition Eq. (6.17) is satisfied, we rescale the numbers xy, ,,, and ¥y, ,,, that is,

we compute

Tkm
= s /Bk,m =

Qe =
V[ S + S o]

Ykm

V[ Skl + T sl

9

which ensures that the vector with (2 x 2N ) components v, ,, and Sy, ,,, lies on the surface of the
multidimensional unit sphere, defined by Eq. (6.16).

Once we have, successfully, generated a random N-qubit state |®,), we can compute
Fy(|®)) and FZ(|2)).

It is not difficult to estimate the efficiency of the described algorithm by estimating the
ratio of “successful” random point generation events, when the points happen to be inside of the
(2 x 2N)—dimensional ball, to the total number of randomly generated sets of points inside of

a (2 x 2™)—dimensional cube. This ratio is equal to the ratio of the volume of the (2 x 2V)—
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712V pl2x2M]
M)

cube with the length of its side 2R, Vo = (2R) 2x2"] " In particular, for the two-qubit system

dimensional ball with radius R, Vg = , to the volume of the (2 x 2V)—dimensional

(N = 2) we have the ratio of volumes of an 8-dimensional ball and an 8-dimensional cube equal to
Ve _ R
Vo o 2841RS

= 0.016, which is not a very small number, so this algorithm is relatively efficient.
Roughly speaking, on average, we succeed in generating a random 2-qubit state after one hundred

attempts. In case of a three-qubit system (N = 3), this ratio of volumes of a 16-dimensional ball

] VB 7r8R16
and cube is —

Vo = Jl6g g6 — 3.6 x 1075, and the algorithm still works, although not as fast as

for the two-qubit situation: we succeed only one time in approximately one million attempts.

2. After we generated the random input pure state |®,) described by Eq. (6.15), and
its density matrix |®,.)(®,|, we calculate the corresponding output “experimental” density matrix
pr P at the output of the quantum gate by using the standard definition Eq. (4.4) of Chapter 4 of the
evolution of a quantum state propagating through the quantum gate described by a process matrix .
While performing this calculation, we substitute into Eq. (4.4) the process matrix x calculated either
from the full data by the Least-Squares method, or from the partial data by the compressed sensing

method. Also, using the same randomly generated input state |®,), we easily calculate the “ideal”

ideal

output density matrix pj

, corresponding to the unitary evolution of the input state |®,) described

by Eq. (2.18) of Chapter 2.

exp

3. Using the results for p, =~ and pideal

ideal " calculated at the 7 iteration of the loop over

various randomly generated states, we calculate the statistical characteristics of the channel after
r iterations of the loop in a cumulative way. We define the cumulative variables Fi ; and F, ; . (which
exp ideal)
r T

are initialized to zero before the iterative loop over r), as follows: Fyy, = Fy, 1 + Tr(pr " p

and F, qf = F ;.r—l + [Tr(pr P pideal)]2. Then the average state fidelity Fi;(r) after r realizations can
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be numerically calculated as

Fy(r) = Fy,/r, (6.18)

the average square of state fidelity Ft%(r) after r realizations as

Fi(r)=F3,/r, (6.19)

and the standard deviation of the fidelity A F(r) after r realizations as

AF(r) = \/ Fo. - T(G(T))Q. (6.20)

These results Egs. (6.18) — (6.20), obtained by Monte - Carlo numerical simulations, lead to the nu-
merical values of the statistical characteristics of the quantum channel (such as the average state

fidelity Fy;, the average square of state fidelity F2

4. and the standard deviation of the state fi-

delity AF'), which are in a good agreement with the analytical results obtained using the exact
formulae in Eq. (6.13) and Eq. (6.14), for both two and three qubits.

To demonstrate this agreement between the numerical and analytical results, consider
for simplicity the two-qubit case. We show that the difference between the numerical results for
the average state fidelity Fi(r) or its average square FT%(T) and their analytic values Fy; or FTQt
approaches zero, as the number r of random states used in the Monte-Carlo procedure increases.
As the values of Fi;(r) or F2(r) can fluctuate slightly for different randomly generated states used,
we repeat the Monte-Carlo procedure KX = 100 times for every specific number r, and denote as

Fix(r) and F2 | (r) the values for the statistical characteristics obtained at each of such repetitions

(index k changes from 1 to 100). Now we introduce the following two functions 0 (r) and 0.2 (r),

or(r) = | = > (Fax(r) — Fur), 6.21)



and

1 K

0a(r) = | 7 ST(F2 () - F3)?, (6.22)
k=1

which have the meaning of the standard deviation of the numerical values for Fy(r) or F2(r) from
their analytical values Fy; or FT%

We show in Fig. 6.3 and Fig. 6.4 the dependence of these functions o, (r) and o 2(r) on
the number of random states r used in the Monte-Carlo procedure, plotted in a log-log scale (the
number 7 varies from 1 to 10°). We see that as we increase the number of random states 7 used
in the Monte-Carlo procedure, these functions ¢ ,.(r) and o 2(r) approach zero. This means that
the results of the numerical estimation of the average state fidelity by Eq. (6.18) and the average
square of state fidelity by Eq. (6.19) asymptotically approach the corresponding results obtained
from the exact analytic formulae Eq. (6.13) and Eq. (6.14). Also, as we see, these functions o ()
and o,2(r) have the 1/./r dependence, which corresponds to the straight line on the log-log plot
(shown by the green dashed lines). The presented Fig. 6.3 and Fig. 6.4 have been obtained using the
experimental data for the two-qubit CZ gate realized with the phase qubits.

These results confirm the correctness of the analytic formulae Eq. (6.13) and Eq. (6.14),
which have been used in our analytic calculations of the average state fidelity, the average square of

the state fidelity, and the standard deviation of the fidelity.
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Figure 6.3: Verification of the formula for the average state fidelity by the Monte-Carlo method.
The blue curve shows the function o (r) defined in Eq. (6.21), for the various number r of the
random states used in the Monte-Carlo procedure. For comparison, the green dashed line shows the

1//r dependence. Experimental data for the two-qubit CZ gate realized with the phase qubits have
been used.

1074 : : : :
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Figure 6.4: Verification of the formula for the average square of the state fidelity by Monte-Carlo
method. The blue curve shows the function o2 (r) defined in Eq. (6.22), for the various number r
of the random states used in the Monte-Carlo procedure. For comparison, the green dashed line
shows the 1/+/r dependence.
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Chapter 7

Conclusion

In this dissertation we explored quantum process tomography (QPT), which is a technique
for fully characterizing a quantum operation. We first presented results for the analysis of the two-
qubit and multi-qubit quantum gates based on superconducting qubits using three distinct methods
of standard quantum process tomography: linear inversion, maximum likelihood, and least-squares.
A well-known problem of standard QPT is the exponential scaling of the resources, i.e., the number
of the required experimental configurations needed to characterize the evolution of a multi-qubit
system increases exponentially with the number of qubits. We showed that the method of com-
pressed sensing quantum process tomography (CS QPT), applied to the two-qubit and three-qubit
quantum gates based on superconducting qubits, offers a significant reduction of the needed amount
of experimental data.

In Chapter 2, we gave a brief review of the main concepts of quantum information and dif-
ferent types of superconducting qubits. In Chapter 3, we presented the results of the state estimation

using two methods for quantum state tomography (QST), which is the procedure of experimentally
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determining all the elements of the density matrix of an unknown quantum state. We wrote Matlab
code for the estimation of the density matrices of a system of two superconducting phase qubits
by the method of direct linear inversion, as well as by the method of maximum likelihood, and we
presented the resulting density matrices and their comparison. While the method of linear inversion
may lead to nonphysical artifacts, such as negative probabilities, the maximum likelihood method
guarantees the density matrix to be theoretically valid while giving the closest fit to the measured
experimental data.

In Chapter 4, we gave an overall introduction to the quantum process tomography, dis-
cussed the experimental details of QPT with superconducting qubits, and presented the results of
the estimation for the process matrix by the method of linear inversion. We discussed computational
resources required for the implementation of the linear inversion for various numbers of qubits, and
we concluded that the maximum number of qubits in the system that allows the exact computation
of the process matrix on an average personal computer is six. We also discussed that as the con-
straints for the process matrix to be physical were not imposed in the linear inversion method, the
resulting process matrix may be nonphysical. The methods of maximum likelihood or least-squares,
formulated as the convex optimization problems, result in a legitimate physical process matrix. We
discussed both these methods, and we presented the results of the two-qubit process matrix calcu-
lations by the least-squares method. The method of the least-squares was used in the subsequent
Chapters 5 and 6 to obtain a fully physical process matrix, against which the results of the CS QPT
process matrix reconstruction were benchmarked.

In Chapter 5, we numerically analyzed the efficiency of CS QPT applied to superconduct-

ing qubits. We used experimental data for two-qubit controlled-Z (CZ) gates realized with Xmon
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and phase qubits, and also used simulated data for the three-qubit Toffoli gate with numerically
added noise. We showed that CS QPT permits a reasonably high fidelity estimation of the process
matrix from a substantially reduced data set compared to the full QPT. In particular, for the CZ gate
(Fig. 5.4) the amount of data can be reduced by a factor of ~7 compared to the full QPT (which is
a factor of ~4 compared to the threshold of underdetermined system of equations). For the Toffoli
gate (Fig. 5.17) the data reduction factor is ~40 compared to the full QPT (~15 compared to the
threshold of underdeterminacy).

We primarily used two fidelity characteristics in our analysis: first, the fidelity F'(xcs, Xful)
of the CS QPT-estimated process matrix ycs compared with the matrix g, calculated from the
full data set, and second, the fidelity F'(xcs, Xideal) Of Xcs compared with the ideal process ma-
trix Yideal- Besides these two characteristics, we also calculated in Chapter 6 the standard deviation
of the average state fidelity A Fy. We established that the CS method estimates A F; from a reduced
data set (Figs. 6.1 and 6.2) with a high accuracy. The dependence of the standard deviation of the
average state fidelity A Fy on the number of measurement configurations was evaluated both ana-
lytically and numerically using a Monte Carlo simulation technique. In order to obtain an analytic
expression for the standard deviation of the state fidelity A Fy, a detailed derivation of the formula
for calculating the second moment FTQL of the average state fidelity Fy; for the CS QPT-estimated
process matrix xcs compared with xiqea; Was presented.

We also showed that the results of the compressed sensing method depend on the choice
of the basis, in which the process matrix should be approximately sparse. We used two bases in
this work: the Pauli-error basis and the singular value decomposition (SVD) basis. We found that
the results obtained in both bases are similar to each other, though the SVD basis required fewer
computational resources.
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We also performed the comparison of the CS method with the least squares (LS) optimiza-
tion. We showed that even though the LS method formally works, it gives a less accurate estimate
of the process matrix x than the CS method in the significantly underdetermined regime (although
it does give a better estimate in the overdetermined regime). The advantage of the CS method over
the LS method was more pronounced for the Toffoli gate (Fig. 5.18).

Overall, several different methods of performing quantum process tomography for the
quantum gates based on superconducting qubits were presented in this dissertation, and in partic-
ular we showed that the compressed sensing method of QPT offers efficient estimation of process

matrices of superconducting two-qubit and three-qubit logic gates.
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B Appendix B. Pauli-error basis

In this Appendix we discuss the definition of the Pauli-error basis used in this paper. The
detailed theory of the QPT in the Pauli-error basis is presented in Ref. [18].

Let us start with description of a quantum process £ in the Pauli basis {P, },

d2
P E(PM) = Y XasPap"Ph, (B.1)
a,f=1

where for generality P is not necessarily Hermitian (to include the modified Pauli basis, in which
Y = —ioy). Recall that d = 2V is the dimension of the Hilbert space for N qubits, and in N-qubit
systems the elements of the Pauli basis {P,} are built as the Kronecker (tensor) products of N
single-qubit Pauli operators from the set {og, 0, 0y, 0.}, introduced in Eq. (2.12) of Section 2.1.3
of Chapter 2.

In order to compare the process £ with a desired unitary rotation U [i.e. with the map
U (pin) = Up™U™, let us formally apply the inverse unitary U ! = UT after the process £. The
resulting composed process

E=U"0E (B.2)

characterizes the error: if £ is close to the desired ¢/, then & is close to the identity (memory)
operation. The process matrix x of £ in the Pauli basis is what we call in this paper the process
matrix in the Pauli-error basis.

The process matrix y obviously satisfies the relation

> XapPap"Ph=U"| > XasPap"P} | U, (B.3)
a,f3 a,f

which can be rewritten as

> Xas(UP)A"(UP) =D XasPab" P} (B.4)
anB a,ﬁ
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Therefore the error matrix x is formally the process matrix of the original map &, expressed in the
operator basis

E, =UP,. (B.5)

This is the Pauli-error basis used in our paper. (Another obvious way to define the error basis is to
use £, = P,U [18]; however, we do not use this second definition here.) The Pauli-error basis

matrices F, have the same normalization as the Pauli matrices,
(Eo|Eg) = Te(ELEg) = ddus. (B.6)
The matrices x and x (in the Pauli and Pauli-error bases) are related via unitary transformation,
X =VxVI, Vog = Te(PLUTPs)/d. (B.7)

The matrix y has a number of convenient properties [18]. It has only one large element,
which is at the upper left corner and corresponds to the process fidelity, Y77 = F\, = F (X Xideal)-
All other non-zero elements of x describe imperfections. In particular, the imaginary elements
in the left column (or upper row) characterize unitary imperfections (assuming the standard non-
modified Pauli basis), other off-diagonal elements are due to decoherence, and the diagonal elements

correspond to the error probabilities in the Pauli-twirling approximation.
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C Appendix C. Singular value decomposition (SVD) basis

The SVD basis used in this paper is introduced following Ref. [39]. Let us start with the

nat

so-called natural basis for d x d matrices, which consists of matrices £

, having one element equal
to one, while other elements are zero. The numbering corresponds to the vectorized form obtained
by stacking the columns: for v = (d — 1)i + j the matrix is (Ef™);;, = ;0. For a desired unitary

rotation U, the process matrix " in the natural basis can be obtained by expanding U in the natural

basis, U = o uaEg‘“, and then constructing the outer product,

nat

Xog = UalUp- (C.1)

For example, for the ideal CZ gate the components u,, are (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0, —1),

and "™ has 16 non-zero elements, equal to +1. Note that x"* is a rank-1 matrix with Tr(x") =

Za |u0t|2 =d.
We then apply numerical procedure of the SVD decomposition, which diagonalizes the

matrix " for the desired unitary process,
" = Vdiag(d,0,...,0)VT, (C.2)

where V is a unitary d?> x d? matrix and the only non-zero eigenvalue is equal to d because
Tr(x"™) = d. The columns of thus obtained transformation matrix V are the vectorized forms

of thus introduced SVD-basis matrices E5"P,
d2
ESVP = Vg BB (C3)
B=1

Note that the notation V' used in Appendix B has a different meaning.

The matrices of the SVD basis introduced via Egs. (C.2) and (C.3) have the different
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normalization compared with the Pauli basis,
Tr(E5YPTESYP) = 6ap. (C.4)

Correspondingly, the normalization of the process matrix xSV in the SVD basis is TrySVP = d (for
a trace-preserving process). For the ideal unitary process the matrix x>V has one non-zero (top left)
element, which is equal to v/d. For an imperfect realization of the desired unitary operation the top
left element is related to the process fidelity as X?}’D = F\d.

Note that when the numerical SVD procedure (C.2) is applied to x"* of ideal CZ and/or

ESVP coincide with the matrices of

Toffoli gates, many (most) of the resulting SVD-basis matrices
the natural basis E". Since these matrices contain only one non-zero element, the matrix ® in Eq.
(4.8) is simpler (has more zero elements) than for the Pauli or Pauli-error basis. (The number of
non-zero elements of ® in the SVD basis is crudely twice less for the CZ gate and 4 times less for

the Toffoli gate.) As the result, from the computational point of view it is easier to use the SVD

basis than the Pauli-error basis: less memory and less computational time are needed.
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