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Heating of a single-electron transistor (SET) caused by the current flowing through it is considered. 
The current and the temperature increase should be calculated self-consistently taking into account 
various paths of the heat drain. Even if there is no heat drain from the central electrode of the SET 
due to transfer of phonons, the temperature of this electrode remains finite because electron 
tunneling decreases the temperature difference between the central and outer electrodes. 
Overheating effects can cause hysteresis in the Z-V curve of the SET in the vicinity of the Coulomb 
blockade threshold. 

I. INTRODUCTION 

It is well known now that the charge of even one elec- 
tron can significantly affect the behavior of submicron tunnel 
structures.‘-3 These single-electron effects appear to be the 
physical basis of a new branch of nanoellctronic devices. 

During the last years much attention was focused on the 
simplest of such devices, the so-called single-electron tran- 
sistor (SET).4-‘o It consists of two small-capacitance tunnel 
junctions in series (Fig. 1). The subelectron charge q. in- 
duced on the central electrode of the SET controls the current 
through this device. There are three main ways that this 
double-junction structure is experimentally realized.3 It. can 
be made using thin metal films, semiconductor heterostruo 
tures, or scanning tunneling microscope @TM). 

The basis of the theoretical consideration of the SET is 
given by the relatively simple “orthodox” theory,’ which is 
in surprisingly good agreement with most of the experimen- 
tal results. Some other theories improve the orthodox theory, 
taking into account various effects, for example, cotunneling 
processes,11T12 the influence of the electromagnetic 
environment,13 and the discreteness of the electron 
spectrum.‘4*‘5 

One of the assumptions of the orthodox theory is that the 
energy relaxation of the tunneling electrons is fast enough so 
that one can use the Fermi distribution for the electrons: The 
corresponding temperature is assumed to be constant and 
equal to the temperature of the substrate. 

However, these assumptions can be inapplicable to real 
experiments because the rates of electron-electron and 
electron-phonon interactions are very small at low tempera- 
tures. 

The opposite limiting case of negligible energy ielax- 
ation in the central electrode of the SET was considered in 
Ref. 14. If the relaxation time is larger than the average time 
the tunneling electron spends on the central electrode, then 
the electron energy distribution function in this electrode is 

‘)Present address: Department of Physics, State University of New York, 
Stony Brook, NY 11794-3800. 

determined only by the kinetics of the tunneling. It was 
shown in Ref. 14 that in this case (extreme overheating) the 
Coulomb staircase of the Z-V curve is partially suppressed; 
however, for typical values of experimental parameters this 
effect is small. 

Between the orthodox theory and the model of Ref. 14 
there is the case in which the energy relaxation due to 
electron-electron and electron-phonon interactions is fast 
enough to produce a Fermi distribution; however; the corre- 
sponding electron temperature differs from that of the sub- 
strate and should be calculated self-consistently, It was found 
that this case is realized in experiments.‘6.‘7 

The detailed investigation of overheating was carried out 
recently in Ref. 17 for the thin-film SET. It was found that 
the electron temperature of the middle electrode (island) dif- 
fers from that of the outer electrodes and substrate. The 
bottleneck for heat drain from the island was taken to be the 
heat transfer from the electron gas to the phonons in the 
middle electrode. 

In the present article we consider overheating effects in 
various types of the SET (the metal films case, the semicon- 
ductor case, and the STM case). Several models of heat drain 
are discussed. In particular, we consider the case when the 
heat drain from the central electrode due to phonon flow is 
negligible; then the energy is transferred from the hot central 
electrode to the cold outer electrodes only by the tunneling 
electrons. 

We present some analytical and numerical results for the 
I-V curve and T(V) depende;ce. The important consequence 
of overheating is the possibility of hysteresis in the dc I-V 
curve. 

The article is organized as follows. In the following sec- 
tion the basic equations for the modification of the orthodox 
theory which takes into account overheating of the SET are 
presented. The various models for heat drain are discussed in 
the Sec. III. The analytical and numerical results for the I-V 
curve and the temperature-voltage dependence are presented 
in Sets. IV and V. We consider the case of negligible heat 
transfer between the central electrode and the substrate in 
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Following Refs. 10 and 18 let us use the WKB approxi- 
mation for the tunneling matrix element, 

FIG. 1. The single-electron transistor (SET) consisting of two tunnel junc- 
tions in series biased by a voltage source V. The current I through the SET 
can be controlled by subelectron variation of the charge q,, of the central 
electrode. 

Sec. IV and the model of considerable heat dram in Sec. V. 
We discuss in detail the hysteresis caused by the overheating 
effects. 

II. BASIC EQUATIONS 

Before consideration of the double-junction system, let 
us discuss the simpler case of a single junction biased by a 
voltage V (this voltage can be either positive or negative). 
The rate r of electron tunneling in the positive direction 
(from the first electrode to the second one) can be calculated 
using the golden rule 

r=T j- P1(E1)P2(EZ)ITE,~~12~*(E1)[1-nz(Ez)l 

XS(E~-E~+W)~E~ de*, (1) 

where indices (J 1 and 2 correspond to the electrodes, 
T eleZ is the tunneling matrix element, pi are the densities of 
electron states in the electrodes, ni(ei) are the electron dis- 
tribution functions, and W=eV is the energy gain due to the 
tunneling event. 

We consider the case when the energy relaxation in the 
electrodes is fast enough to produce the Fermi distribution 
ni(rzi)=f(q,Ti), f(e,T)=l/[l+exp(~/T)]; however, the 
corresponding electron temperatures T, and T, may be dif- 
ferent. Note that the energies el, ez are measured from the 
Fermi levels of the electrodes. 

Assuming that the densities of states and the matrix ele- 
ment are independent of the anergy (this approximation is 
usual for metal junctions), one obtains 

T(W,,T,,R)=~ f(E,T1)[1-f(E+W,TZ)ldE, (2) I 
where R is the tunnel resistance of the junction, and e is the 
electron charge. This expression can be simplified in some 
special cases, for example, if T,=T, or TIT,= 0. The rate 
given by Eq. (2) is insensitive to the interchange of electrode 
temperatures Tr tfT2;17 however, this is not true in the gen- 
eral case given by Eq. (1). As an example, consider the im- 
portant case of a low semiconductor tunnel barrier. 

]TC,EJzmexp( ,;y I:[ U(r)--?-- tIlli dx), (3) 

where m is the effective electron mass, and U(x). and d are 
the shape and the thickness of the tunnel barrier. Simple 
calculations to first order lead to the expression 

J.Y~J~.T?,R)=& [ e-v(F) sin(~~,,li) 
-exp( -7) J f(e--W,Tdf(Gd 

where 

r= 
I 

[2U(x)/ml-1’2 dx, 

-r’= (xld)[2U(x)lm]-“2 dx, 
I- - 

7-=7-r+, 

and R is the low voltage resistance at zero temperature. 
The tunneling through the junction causes heat genera- 

tion (or absorption) in the electrodes. Let us consider a pro- 
cess consisting of two steps: the tunneling conserving total 
energy and then the relaxation of the electron and the “hole” 
created in the electrodes. If the tunneling electron brings 
some energy l z to the second electrode, then after energy 
relaxation CZ~ transforms into heat. Similarly, if the electron 
having energy or leaves the electrode, an amount of heat --el 
is produced in it. Hence, the powers PI ,P2 of heat genera- 
tion in the electrodes are 

X S(Q- ET+ Wjdq de,, j= 1,2. (-3 

Adding these two expressions and taking. the relation 
e2- or = W= eq and. Eq. (1) into account, one obtains the 
obvious equation 

P1+Pz=Wr=I+V, (6) 

where I+ = er is the part of the current flowing in the posi- 
tive direction. 

Assuming the WKB approximation for the matrix ele- 
ment [as for Eq. (4)], one obtains from Eq. (5) 

1 
pliW,Tl J23)=~ exp (- 4f(QI) 

X[l-f(E+W,T2)]exp (7) 
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FIG. 2. Illustration of the possibility of cooling due to the tunneling. The 
curves separate regions of heating and cooling of the “fi&” electrode of the 
tunnel junction biased by the voltage V. Curve 1 corresponds to tunneling 
only from the first electrode to the second one, curve 2 corresponds to 
tunneling in the opposite direction, and curve 3 takes both processes into 
account. 

A further simplification assuming a constant matrix element 
(r+=f=O), gives 

PI(~I,TI,T?.,R)= (-- ~JC(E,TI) 

X[l --f(~+ W,Tz)]dc (8) 

If the temperatures are also equal, T, = T2 = T, then the 
total heat generated in the junction is evenly divided between 
two electrodes, 

PI =P,= iwr, 
1 W 

r=- 
e R l-exp(-W/T) ’ 

When the temperatures of the electrodes are different, 
the corresponding heating powers are different. Moreover, 
heat can be generated in one electrode and absorbed in the 
other one. The reason is that in accordance with general prin- 
ciples of thermodynamics the tunneling of electrons provides 
a heat flow from the hot side to the cold one. If the tempera- 
ture difference is large enough, the hot electrode will be 
cooled by tunneling. This effect is illustrated in Fig. 2 for the 
simplest case of constant matrix element [see Eq. (S)]. The 
curves separate regions of heating and cooling of the first 
electrode. Curve 1 corresponds to the heating or cooling due 
to tunneling only from the first electrode to the second one, 
curve 2 corresponds to tunneling in the opposite direction, 
and curve 3 takes both processes into account. 

Now let us consider single-electron transport in a system 
of two tunnel junctions in series (Fig. l), and extend the 
previous consideration to this case. The orthodox theo$ en- 
ables us to calculate all characteristics of the double junction 
system if one knows the rates I’fa(n) of tunneling through 
the first and second junctions leading to an increase (+) or 
decrease (-) in the number n of excess electrons on the 
central electrode. In particular, the stationary probability dis- 
tribution of the different charge states u(n) obeys the 
equation’ 

a(n)[r:(n)+r:(n)]=cr(n+l)[r;(n+l)+l~;(n+l)], 
(10) 

2 cT(n)=l, 
n 

and the average current through the system can be calculated 
as 

I=~C +)[r:(+r;(n)l. 
n 

(11) 

The only modification of the orthodox theory needed is 
the use of Eqs. (i), (2), (4) for calculation of I?t2(n) and 
self-consistent calculation of temperatures. Let T, , T, , ‘T, 
be the electron temperatures of the outer electrodes and the 
middle electrode (we assume that the parts of the middle 
electrode adjacent to different junctions have equal tempera- 
tures). Then [see Eqs. (2) and (4)] 

rf(P1)=r[Wj+(n),Tj,T,,Rj], j=1,2, 

r,~(n)=r[W~~(n),T,,Tj,Rj], (12) 

where the energy gain W,&(n) for the tunnel event is the 
decrease in the Gibbs energy of the whole system,’ 

wi'(nj=~~[qo+e(n~f)]t(-l)i~ ev. (13) 
I L-2 

Here R1,2 and C, a , are the tunnel resistances and capaci- 
tances of two tunnel junctions, Cx = C, f Ca, q. is the back- 
ground charge of the central electrode, and V is the total 
voltage (Fig. 1). 

The temperatures T, , T,, T,,, should be calculated self- 
consistently to ensure the balance in each electrode between 
the heat generated by tunneling and the heat drain P,,t by 
thermoconductivity, energy exchange between electrons and 
phonons, etc., 

c dn){f’~W:in),T~ ,T, 811 
n 

+PdW;(n),T,n ,TI ,RJ)=R,ut,1, 

2 ~(n)V’JW2f(n)J,n ,Tz,Rzl 
n 

(14aj 

(14b) 

C dn>C {f’1Cw~‘in),Tm tTj SjI 
n i 

+f’2CW~‘(n),Tj ,Tm ,Rjl)=Pout,m * (144 

Equations (lo)-(14) and the equations for heat drain 
Pout form a complete set for the calculation of overheating of 
the SET. In contrast to equations above (which accurately 
describe heat generation in a SET), we can use only rough 
estimates of Potit because of the lack of detailed experimental 
research in the interesting range of parameters. We consider 
several models for heat drain in the following section. 

At the end of this section let us consider briefly heat 
generation in the case when the voltage is smaller than the 
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blockade threshold, and the current is caused by cotunneling 
processes t1 only (this case is not a subject for the present 
article; however, it is important for experiments). In “elas- 
tic” cotunneling,‘” only the outer electrodes are heated be- 
cause the electron distribution in the middle one is not af- 
fected by the tunneling event. The expressions for heat 
generation in the outer electrodes are similar to Eqs. (5) and 
(8) for a single junction if one uses the effective matrix ele- 
ment and the effective resistance R,,=VII. In the case of 
“inelastic” cotunneling’” one electron-hole pair appears in 
the middle electrode after each tunneling event. Following 
Ref. 12, one can calculate the corresponding heating power, 

x[l-f(E2,~,~)lf(E3,Trn)Cl-f(E4,Tz)l E2-E;+E1 
i 

1 2 
+ 

~4- ~3 +E, 
G(eV+ El - E2+ E?-- EJ, (15) 

where the energies of the *intermediate (virtual) states are 
,5,=--W:(O), E,=-W;(O). The heat generation in the 
first and second outer electrodes is given by similar expres- 
sions with the substitution of (9-5) with --et and Q, re- 
spectively. 

Ill. MODELS FOR HEAT DRAIN 

For a crude estimate of overheating in the different types 
of SETS, let us first estimate the total heating power P =I V. 
Considering a SET made of thin metal films, assume that the 
voltage is on the order of the blockade threshold voltage 
\rl--l mV, and that the current is about VJRx, where 
Rx- 10’ a. Then the heating power is on the order of 10-r’ 
W. The use of voltages in the vicinity of the blockade thresh- 
old and the use of larger resistances or capacitances decrease 
this estimate; however, the heating power is usually not less 
than 10-‘4-10-‘3 W. 

The semiconductor SET (in which electrons tunnel 
through a small island of a 2D electron gas) usually has 
capacitances and resistances on the same order as in the me- 
tallic case. Hence, heat up to lO-‘l W can be generated in 
these experiments; however, bias voltages much smaller than 
the maximum blockade threshold are usually used. Let us 
take V=3 pV, then for an “open” SET (peak of the conduc- 
tance) the heating power is about lo-i6 W. 

The double-junction system in STM experiments can 
have a threshold voltage as high as 10-100 mV So, if the 
resistance of this system is on the order of lo6 a, the heating 
power is lo-“- lo-* W. Although this value is much larger 
than in the previous cases, one should note that the substrate 
temperatures are usually much higher in the STM case. 

The heat generated in the SET causes an increase in the 
electron temperature of the electrodes: In order to relate this 
increase to the heating powers in the electrodes, and to ob- 
tain the expressions for the right-hand side of Eqs. (14), one 
should consider the heat drain from the electrodes. 

The estimates above show that the heat generated in one 
or several SETS cannot increase the temperature of the whole 

substrate considerably, even if the experiment is carried out 
in a dilution refrigerator (this effect would be important only 
on large integration levels). Hence, the substrate temperature 
To far from the SET region is constant. 

For the thin metal films case, in the vicinity of the SET 
one should consider separately the temperature of the sub- 
strate, the lattice temperature of the electrodes, and the elec- 
tron temperatures in the electrodes. It is necessary to take 
into account the following: electron thermal conductivity in 
the leads; heat exchange between electron gas and lattice in 
each electrode; the Kapitza resistance19,20 for heat flow be- 
tween electrodes and substrate; the loss of the energy of the 
tunneling electron because of either electron-electron (e-e) 
or electron-phonon (e-ph) interactions; the escape of created 
phonons through thin tunnel barriers into metallic leads; heat 
spread in the substrate and leads. 

According to the Wiedemann-Franz law, high electrical 
conductivity of metal wires causes high thermal conductivity. 
In Ref. 17 it was shown that the electron temperature of the 
outer electrodes is close to the refrigeration temperature To. 
This fact should be valid also for the STM realization of the 
SET because the outer electrodes are bulk and therefore have 
better thermal conductivity. 

The heat flow from the middle electrode can be consid- 
ered as a process consisting of several steps. If the incoming 
electrons and holes lose their energy mainly in e-e interac- 
tions, the first step is a thermalization of the electron gas. 
Then the energy is transferred from the electron gas to 
phonons. The created phonon can leave the middle electrode 
without any scattering or be involved in e-ph or ph-ph inter- 
actions. In the latter case the temperature of the Rhonon gas 
in the middle electrode is well defined. As a next step, 
phonons can either escape through tunnel barriers into me- 
tallic leads or cross the boundary between electrode and sub- 
strate and cause heat spread in the substrate. 

If the incoming electrons and holes lose energy mainly 
in e-ph interactions, the first step mentioned above is absent. 
The increase in the electron temperature in this case is 
caused by secondary e-ph processes. 

For a crude estimation of e-e and e-ph interaction rates, 
one can use expressions 21 T,.$+- &/21.EF, T& 
= og[( E -- r5,)/2hkFc13 where wg is Debye frequency, c is 
the sound velocity, eF is the Fermi energy, and kF is the 
Fermi wave vector. Since the e-e interaction rate scales 
roughly as (E- I+)~ and the e-ph rate scales roughly as 
(E- eF)3 (there are of course, deviations from these depen- 
dencies in experiments), phonon emission should prevail at 
large electron and hole energies. In thin metal films it occurs 
for energies larger than approximately 4 KwO.4 rneVZ 
Hence, if the voltage across the SET is above several milli- 
volts (this is sometimes true in the thin-film case and always 
true in the STM case), the e-ph interaction probably plays the 
dominant role in the energy relaxation. 

Consider first this case and. assume that the electron tem- 
perature T, in the middle electrode is equal to the phonon 
temperature. If the thermoconductivity of the substrate is 
high, then the heat flow from the middle electrode to the 
substrate is restricted by the Kapitza resistance. The heat 
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drain P,,t, in this case follows approximately the 
dependence’912o 

P out,m =~xS(T;~-T;), (16) 

where S is the thermal contact area between the middle elec- 
trode and the substrate, and the parameter rxki (ks is Boltz- 
mann’s constant) is on the order of 10’ W/m2 K4.20Yw Note 
that there are deviations from this expression in experiments; 
however, it is quite sufficient for estimates. 

We should also take into account the heat drain through 
the thin tunnel barriers into the metallic leads. In the limit 
when the barriers are transparent to phonons, the heat drain 
satisfies again Eq. (16) with S being the area of tunnel con- 
tact andz4 

ak;=n2/(120fi3)(l/c;+2/cf), 

which is about 500 W/m2 K4 for Al (cr and c, are velocities 
of sound). 

Adding the two channels of heat drain, we can still use 
Eq. (16) by adding the corresponding terms aS. If the area of 
tunnel contacts is much less than the total middle electrode 
area, the correction due to the second channel is small. 

Now let us consider the case when the e-e interaction is 
stronger than the e-ph interaction. Then the temperature of 
the electron gas T, differs from the lattice temperature T,, 
of the middle electrode and the heat flow can be calculated 
asW6 

P ..t,,,=Cn(T5,-T~h)=~S(T~~-T~), (17) 

where fi is the volume of the middle electrode and the con- 
stant k$ is about 0.2-2 nW/K’ w3.17*25.26 The last part of 
Eq. (17) means that the Kapitza resistance also should be 
taken into account (we use the effective value for CUS as 
discussed above). 

If 

(T;+P out,&W l/5 - To-=W~+ Pout,mldj”4- To, (18) 

the electron and phonon temperatures practically coincide 
and Eq. (16) is valid. In the opposite case (small Pout,m and 
To), the Kapitza resistance can be neglected and 

P ..t,,=%U’~-Tif$ (19) 

For numerical estimates let us take the parameters 
a=100W/m2K4,~=2nW/K5~m3,S=1X0.1 pm”,fi=S 
X 0.05 pm, and To= 50 mK. Then the heating power which 
separates cases (16j and (19) is about lo-l1 W, and corre- 
sponds to overheating of about 1 K. Hence, Eq. (16) is ap- 
propriate only for very strong overheating. However, there is 
not much reason to discuss the distinction between models 
(16) and (19) because both models are crude approximations, 
and they show formal similarity. 

Using the parameters above, one can conclude that over- 
heating in thin-film SEls is considerable (T, - To> To) for a 
heat generation more than lo-l6 W, i.e., practically always. 

Now let us estimate overheating of the semiconductor 
SET. If the 2D electron gas has a resistance on the order of 
10 WCI; then from the Wiedemann-Franz law the thermal 
conductivity at To=50 mK is about 10-r’ W/K per square. 
Hence, overheating of the outer electrodes is negligible for a 

heat generation less than lo-r2 W, however, the electron 
temperature in the middle electrode (island of the 2D elec- 
tron gas) can differ considerably from To. The problem of 
hot electrons in the 2D gas has been extensively investigated 
for the temperature range 2-20 K (see, for example, Refs. 
27-29 and references therein). Extrapolating the experimen- 
tal data of Refs. 27 and 28, one can conclude that a heating 
power of about lo-l8 -lo-r7 W per electron is sufficient to 
increase the electron temperature from the mK range up to 
0.5 K. The same degree of overheating should appear in 
island containing lo’--lo3 electrons for heating power 
roughly on the order of lo-r5 W. If one is interested in the 
case when the temperature increases from To=50 mK to, 
say, To= 100 mK, one should reduce further the heating 
power probably by two orders of magnitude. Hence, even for 
bias voltages as small as 3 ,GV, overheating of the open SET 
is considerable. Note that the temperature of the island can 
exceed the bias voltage, T,>eV, in principle, T, can ex- 
ceed eV by many times. In this case the heat transfer due to 
tunneling discussed in the following section is very impor- 
tant. 

IV. COOLING DUE TO TUNNELING 

Let us consider the situation when the temperatures of 
the outer electrodes are equal to the temperature of the sub- 
strate, Tl = T, = To, and only the central electrode is heated. 
In Sec. II we noted that the tunneling provides heat flow 
from the hot electrode to the cold one. The tunneling leads 
not only to heat generation in the central electrode, but also 
to heat flow from it. Of course, the distinction between these 
processes is rather arbitrary (although it has a clear physical 
meaning), and Eqs. (14) and (5)-(8) take both effects into 
account simultaneously. 

In order to make clear the role of heat flow due to tun- 
neling and to estimate the effectiveness of it, let us assume 
that there is no other process of heat drain from the middle 
electrode, i.e., Pout+ = 0 in Eq. (14~) (a similar assumption 
was used in Ref. 30 for a single junction). The temperature 
T,,, of the middle electrode and the current through the 
double junction system can be calculated using Eqs. (2), (6), 
(8), (lo)-(13), and (14~) (for simplicity we consider only the 
case of constant tunneling matrix element). 

The numerical results for the dependence T,(V) are pre- 
sented in Fig. 3(a) (solid line) for the symmetrical system 
RI-R,, C,=C;! at T,=O. When the voltage is less than 
some critical value V, , only the trivial solution T, = 0 exists 
and no current flows through the system. In the voltage re- 
gion between V, and V,, formally two solutions exist: the 
trivial one and another solution with T,n # 0 corresponding to 
nonzero current through the system. One can show, however, 
that only the nontrivial solution is stable. 

It is possible to carry out analytical calculations in the 
vicinity of V, because T, is small and only two charge 
states, say, n= 0 and n = - 1 should be taken into account 
[this implies (C2-C1)Vc<2qo<e]. Using the low- 
temperature approximation of Eqs. (2) and (10) one obtains 
the probabilities 
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FIG. 3. Electron temperature T,,, of the thermally isolated middle electrode 
of the SET as a function of (a) the voltage V, and (b) the background charge 
qa. In (a) the solid line corresponds to Ta=O, the dotted line to 
T,=0.01e2/Cx, and the dashed line shows the analytical result [Eq. (22)]. 

RI Tm exdC~4V-VtK9,1 
+l)=KeV, l+(V/V,-l)(C,/Cs-R,C,/R2Cn) ’ 

fr(O)=l-(+(-l)%o(-1). 

In the case under consideration, tunneling events which in- 
crease charge states have W>O and heat the central elec- 
trode; events which decrease n have W<O and cool it. The 
energy balance [Eq. (14c)] has the form 

[o-(- 1)/2R,][ V:+2C2Vt(V-V,)IC, 

+ (V- W2(C;R JC;Rz + C;IC;)] 

=(TfJe2R2)[1-Cle(V-V,)/CzT,] 

Xexp[C1e(V- k;)/CzT,]. (21) 

The nontrivial solution (T,ZO) of this equation in the vi- 
cinity of V, is 

T,(V) =[l + (C,lC,)(R,/R,)“21 

X[1+(R~/R2)1’2]-1e(V-Vc), 

where 

Vc=Vtl[1+(C,/C,)(R,/R,>1’2]. 

w 

(23) 

This dependence is shown in Fig. 3(a) by the dashed line. 
If the temperature of the outer electrodes To is not 

strictly zero, the T,(V) dependence [the dotted line in Fig. 
3(a)] has no lower part between V, and V, because any small 
current heats the central electrode until the cooling due to 
tunneling becomes considerable. It is worth noting that the 
real bistability, leading to hysteresis, appears if the additional 
process of heat drain is taken into consideration (see follow- 
ing sectionj. 

Thus, the main consequence of the model of negligible 
heat drain from the central electrode is a strong shift of the 
threshold voltage V,--+V, and a relatively high temperature 
of the central electrode. For example, in the case shown in 
Fig. 3(a), we have T,,,CZle2=0.18 at V=V,. Such over- 
heating was never observed experimentally. This means that 
in this case the transfer of heat to the lattice plays the main 
role in the cooling of the central electrode. However, if the 
background charge q. is close to e/2 and V= V,<e/C, (this 
case is typical for semiconductor SET), then the heat balance 
provided by cooling due to tunneling only requires not very 
high overheating of the middle electrode [see Eq. (22) and 
Fig. 3(b)]. In this case the cooling due to tunneling can be 
dominant in comparison to the weak heat transfer to the lat- 
tice at low temperature. 

V. CONSIDERABLE HEAT DRAIN 

Now let us calculate the I-V curves and the temperature- 
voltage dependencies for the two models of heat drain dis- 
cussed in Sec. III. 

First, let us assume that the electron gas in the outer 
electrodes has fixed temperature T,=T*=T,, and the main 
factor determining the electron temperature in the central 
electrode is the Kapitza resistance for heat flow from the 
central electrode to the substrate. Then P,,t,m in Eq. (14~) is 
determined by Eq. (16). 

It is convenient to characterize the scale of overheating 
by a dimensionless parameter y= T&Z/e”, where T,, is the 
electron temperature of the middle electrode if the power 
(e/Cx)2/R, is dissipated in it and the substrate temperature 
is assumed to be zero. From Eq. (16) it follows that 

1.0 .jj.urr-l ‘wuL’f 

! R2,‘Rr= 10 
0.8 c, =c* 

qo=O. 1 e 

q-.0.6 : 
cl; 
c 0.4 

0.2 

VWe 
FIG. 4. Large scale I-V curves of the SET for three values of overheating 
parameter y=O, 0.025, and 0.05. The heat drain is described by Eq. (16). 
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FIG. 5. The hysteretic T,,,(V) dependence in the vicinity of the Coulomb 
blockade threshold V, for y=O.O25 and T,,=O. The dotted line corresponds 
to Eq. (25), the dashed line to J?q. (29). 

y= [C&h!x~)]“4. Taking, for example, typical param- 
etersoftheSTMSETC~=10-‘7F,S=(100~)2,Rg=107 
a, and k&~= 100 W/m2 K4, one obtains y=O.O4. It is obvi- 
ous that the overheating is considerable if To4 ye’/Cs , i.e., 
To47 K in this case. 

Results of the numerical calculations of the I-V curve 
are presented in Fig. 4 for the case C, = C2, R,= 1 OR,, 
qo=O.le, ToCx/e2=0.005, and three values of y: y=O, 
0.025, 0.05. Overheating causes additional rounding of the 
features of the Coulomb staircase. This rounding becomes 
stronger when the voltage increases. -The influence of over- 
heating in the vicinity of the Coulomb blockade threshold 
leads also to significant deviations from the I-V curve given 
by the orthodox theory (Fig. 4). Moreover, at small tempera- 
tures To hysteresis in the I-V curve is possible in this region. 

The origin-of the hysteresis is quite clear. Suppose that 
the temperatures of all electrodes of the SET are small and 
the voltage V is slightly below the Coulomb blockade thresh- 
old V, . Then no current flows and no heat is produced. Now 
suppose that the temperature increases, then current appears 
and produces heat. The amount of heat production can be 
enough to maintain the increased temperature. 

The hysteretic dependencies T,(V) and I(V) for To= 0 
near the blockade threshold are shown in Figs. 5 and 6. It is 
possible to carry out some analytical calculations for To = 0 
and small 7. 

Consider first the case 

T,,Je4(V,-Vj4Vt (24) 

and assume that the blockade threshold for the first junction 
is larger than that for the second junction. Then, using Eqs. 
(2), (8), and (6) one can write Eq. (14~) for heat balance ‘in 
the form 

(T,~,VJ2eR2jexp[Cle(V-V~)/C~Tm]=dT~. (25) 

The nontrivial solution of this equation is a two-valued 
function (see the dotted curve in Fig. 5) within the voltage 
range of width 

0.01 - 

o .oo 

-0.02 -0.01 0.00 0.01 0.02 

(U-V&/e 

FIG. 6. The hysteretic I-V curve for the parameters of Fig. 5. Dotted line: 
E?q. (27); dashed line: Eq. (30). 

l/3 

. @6) 

It is easy to prove that the lower branch is unstable. Hence, 
only the upper branch and the trivial solution T, =0 are 
stable within the hysteresis range. The current in this ap- 
proximation is given by the expression 

I=(T,JeR2jexp[C,e(V-V,)/CZT,,,], (27) 
which coincides well with numerical calculations only near 
the left-hand edge of the hysteresis region (Fig. 6). 

In the close vicinity of V,, 

eIV--Vtl*Tm, (28) 

Eqs. (2), (6), .(8), and (14~) give the following expressions 
for the temperature and the current: 

T,=T,+(Cl/C+4V-Vtj/(6 In 21, (29) 

-I=ln 2(T,/eR2)t(2C1/3Czj(k-Vt)lR2, (30) 

(31) 

They are represented by dashed lines in Figs. 5 and 6. 
The range of hysteresis is wider when the heat drain is 

weaker and consequently the parameter y is larger. The limit 
~--+a corresponds to the case considered in the previous sec- 
tion. The hysteresis range is small for small ‘y, A Va y4’3; 
however, it always exists for To = 0. The increase of the sub- 
strate temperature To decreases the hysteresis range (Fig. 7), 
which eventually disappears. 

Now let us consider briefly the situation in which the 
resistance for heat flow from the electron gas to the phonon 
gas in the middle electrode of the SET is larger than the 
Kapitza resistance, and Eq. (19) is close to reality. The only 
difference from the previous case is the change from the 
fourth to fifth power of the temperature. It is obvious that 
qualitatively all results above remain valid. Moreover, in 
practice it is difficult to distinguish between these two situ- 
ations. In Fig. 8 we show I(V) curves for T” and T5 models 
using the equal value of the dimensionless overheating pa- 
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FIG. 7. Hysteretic I-V curves for different temperatures: TC2/eZ= 0 (solid 
line); 0.001 (dotted line); 0.0025 (dashed line). The hysteresis disappears at 
TCr/ez=0.0025. 

rameter y=O.O5 [for the latter model it should be 
y=(C~/e8Rx%?,)“S]. Estimating the parameter y in pos- 
sible experiments with thin-film SETS, let us choose 
C~=10-‘~ F, Rx=105 a, kiz=2 nW/K5 ,um3, R=O.l 
pm3. Then y=O.O4 and overheating should be considerable 
for T,,+Z ye2/Cx-- 0.7 K. Analytical expressions in the vicin- 
ity of Coulomb blockade can be derived in a way similar to 
the derivation Eqs. (25)-(31) and show similar form. 

At the end of this section let us discuss the possibility of 
experimental observation of the hysteresis of the I-V curve. 
The observation is difficult because this effect is very weak. 
Using the T4 model for the STM case with parameters 
Cx=lO-I7 F, S=(lOO A)‘, RX=107 a, k&=100 
W/m2 K4; one obtains from Figs. 6 and 7 that at To = 0 the 
hysteresis has a voltage width of about 0.5 mV and an am- 
plitude of about 20 pA. The hysteresis completely disappears 
at temperatures higher than about 300 mK (see Fig. 7). How- 
ever, even when there is no hysteresis, the I-V curve is 
strongly modified. In particular, one can see that the dashed 

0.8 
’ ’ ’ ’ -----7 

a, ‘\ 
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E - 

R/R,=lO. 
c, =ci 
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O-OobTer?+ 1.4 

V&/e 

FIG, 8. The I-V curves without overheating (~0) and for considerable 
overheating (~0.05), when the heat drain is descriied either by E!q. (19) 
(solid line) or by Eq. (16j (dashed line). 
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line in Fig. 7 cannot be fitted by the exponential dependence 
which is the case in the theory. without overheating. 

Another effect which can destroy the hysteresis is cotun- 
neling processes, not taken into account above. A rough es- 
timate of its contribution to the current in the vicinity of the 
threshold voltage V, is*’ V,RQIR1R2, where RQ= dzf2e”. 
Since the cotunneling current also heats the middle electrode 
(see Sec. IIj, hysteresis can be observable only if the cotun- 
neling current is much smaller than the amplitude of the 
jump in current due to the hysteresis. This would require 
resistances at least on the order of lo7 G or more for the case 
shown in Fig. 7. The use of strongly different resistances 
RI&R, can help to solve this problem. If V, corresponds to 
the blockade threshold in the junction having the smaller 
resistance, then in the vicinity of V, the current calculated in 
the orthodox theory is insensitive to the value of the larger 
resistance. The cotunneling current, however, depends on 
both resistances, hence: its relative importance can be re- 
duced by the use of considerably different resistances. 

Vi. CONCLUSION 

The effect of overheating is important for all types of 
single-electron transistors. The difference. in electron tem- 
peratures among electrodes requires some modification of 
the orthodox theory. The heat generated in the middle elec- 
trode depends on its temperature, and energy balance can be 
achieved even if the heat drain due to phonon processes is 
negligible (this effect is important for a SET operating at low 
bias voltage and at low temperature). The correct consider- 
ation of heat drain is difficult, in particular, because of the 
lack of detailed experimental data in the interesting range of 
dimensions and temperatures. We have considered two 
simple models which both show strong dependence (T” and 
T5) on the temperature. It leads to a considerable change in 
the temperature in the vicinity of the Coulomb blockade 
threshold and ‘weak dependence at higher voltages. The in- 
teresting feature is the possibility of hysteresis. 

Overheating seems to be an important problem in the 
applications of SETS, especially at temperatures below 0.1 K. 
A simple way to reduce the temperature of the central elec- 
trode is by increasing its area and thickness (this increases 
the heat flow from electron gas to phonons and reduces the 
Kapitza resistance). Obviously this will lead to performance 
improvement at least until the stray capacitance C, of the 
central electrode becomes comparable to the capacitances . . Cr,z of the tunnel lunctrons. 

For a rough estimate of the optimal C, let us optimize 
the parameter Tm(Cl-tC,+ C,)/e’ using Eq. (16) or Eq. 
(l!?), and assuming that the heat drain is proportional to C, 
(for example, we alter the length of the central electrode). 
This gives C,9 about one-half of C,,, in the case of strong 
overheating. We believe that the search for the optimal size 
of the central electrode is an important experimental prob- 
lem. The shape of the middle electrode should also be sub- 
ject to optimization. It is clear that thin narrow electrode 
geometry (which is used often in experiments) is not the best 
choice. Note that if overheating is considerable (T,JT,,>2) 
then T,,, depends weakly on the heat drain. Hence, a consid- 



erable change of parameters is .needed to achieve a notice- 
able gain. 

Another important way to reduce overheating is the use 
of bias voltages much less than el(C1+Cz) (tuning the 
background charge q. close to e/2). This reduces also the 
cotunneling processes and can lead to considerable improve- 
ment of the charge sensitivity9 of the SET. 
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