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‘We present a simple formalism describing the evolution of a qubit in the process of
its measurement in a circuit QED setup. When a phase-sensitive amplifier is used, the
evolution depends on only one output quadrature, and the formalism is the same as
for a broadband setup. When a phase-preserving amplifier is used, the qubit evolution
depends on two output quadratures. In both cases, a perfect monitoring of the qubit
state and therefore a perfect quantum feedback is possible.

17.1 Introduction and qualitative discussion

The goal of this chapter is to present a physical picture of the process of continu-
ous quantum measurement of a qubit in the circuit quantum electrodynamics (QED)
setup [1-5] (Fig. 17.1), extending or reformulating the previous theoretical descriptions
[6-9]. Understanding qubit evolution in the process of measurement is important for
developing intuition, which is useful in many cases, in particular in designing various
schemes for quantum feedback [10-15]. When a quantum measurement is discussed
[16], there are usually two different types of questions to answer: we can either focus
on obtaining information on.the initial state (before measurement) or focus on the
quantum state after the measurement (i.e., evolution in the process of measurement).
Let us emphasize that we consider the latter problem here and essentially extend the
collapse postulate by describing continuous evolution “inside” the collapse timescale.

In the circuit QED setup (Fig. 17.1), a qubit interacts with a gigahertz-range
microwave resonator, whose frequency changes slightly depending on whether the qubit
is in the state |0) or |1) [1-9]. In turn, this frequency shift affects the phase (and, in
general, the amplitude) of a probing microwave, which is transmitted through the
resonator (in another setup, the microwave is reflected from the resonator, but the
difference is not important). The outgoing microwave is amplified, following which,
the radiofrequency (rf) signal is downconverted by mixing it with the original micro-
wave tone, so that the low-frequency (<100MHz) output of the IQ mixer provides
information on the qubit state. The output noise is mainly determined by the first
amplifying stage, the preamplifier. With the recent development of near-quantum-
limited superconducting parametric amplifiers [5, 17, 18], it is natural to use them
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Fig. 17.1 Schematic of the circuit QED setup. A microwave field of frequency wr, is transmit-
ted through (or reflected from) the resonator of frequency w,, which changes slightly, w, + x,
depending on the qubit state. After amplification, the microwave is sent to the IQ mixer, which
produces two quadrature signals: 7(¢) and Q(¢). For a phase-preserving amplifier, we define ()
as the quadrature carrying information on the qubit state, while for a phase-sensitive amplifier,
we define I(t) as corresponding to the amplified quadrature.
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as preamplifiers [5], instead of cryogenic high-electron-mobility transistors (HEMTs)
[1-4], which usually have noise temperatures above 3 K.
Continuous quantum measurement in the circuit QED setup in some sense falls in
" between a qubit measurement by a quantum point contact (QPC) or a single-electron
transistor (SET), the theory of which was developed over a decade ago [19-22] and
continuous quantum measurement in optics, for which the theory of quantum trajec-
tories was developed even earlier [23-25]. Nevertheless, the circuit QED setup differs
from both these cases, and this is probably the reason why there is still a confusion
about the proper physical description of the measurement process. The measurement
by the QPC or SET is of the broadband type, meaning that the monitored frequency
band starts from zero. In contrast, the circuit QED setup is of the narrowband type:
we deal only with a relatively narrow band around the probing microwave frequency
wm. This necessarily involves two orthogonal quadratures:* we work with rf signals
of the type A(t) cos(wp,t) + B(t) sin(wmt) and there are essentially two signals A(t)
and B(t) instead of only one in the broadband case. In this sense, the circuit QED
setup is similar to the optical (especially cavity QED) setup [23-25]; however, there
is an important difference—in the circuit QED case, the outgoing microwave is am-
plified (Fig. 17.1) before being mixed with the original microwave, while there is no
amplification stage in the standard optical setup. The operation will obviously depend
on whether a phase-sensitive or a phase-preserving amplifier is used, since a phase-
preserving amplifier necessarily adds the half quantum of noise into any quadrature
[7, 26-29]. Notice that the quantum trajectory theory for the circuit QED setup was
developed in [9]; however, the amplifier stage was essentially missing in the analyzed
model.

In this chapter, we consider the simplest circuit QED case, assuming a dispersive
regime [6], exactly resonant microwave frequency, absence of thie Rabi drive, and suffi-
ciently wide resonator and amplifier bandwidths for the Markov approximation to be
valid. Some generalizations are rather straightforward; however, our goal is a simple
picture in a simple case. ‘

A description of continuous qubit measurement is essentially a description of the
quantum backaction. Following the same quantum Bayesian framework as for the
measurement by QPC/SET [19, 20] (see [30] for a review), we will discuss two kinds of
measurement backaction onto the qubit, which we call here “spooky” and “realistic.”
The “spooky” (or “quantum,” “informational,” “nonunitary”) backaction does not
have a physical mechanism and therefore cannot be described by the Schrédinger
equation (in contrast to what people often think when trying to find a mechanism
for the quantum collapse); however, it is a commonsense consequence of acquiring
information on the qubit state in the process of measurement. This is essentially the
same backaction that is discussed in the EPR paradox [31] and in Bell inequality
violation [32]; the only difference is that in our case the information is incomplete and
therefore we have to use the quantum Bayes rule [30, 33, 34] instead of the projective
collapse rule. In contrast, the “realistic” (or “classical,” “unitary”) backaction has a

1 We use the term “quadrature” in a somewhat sloppy way.
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physical mechanism: in the circuit QED case, it is a fluctuation of the number of
photons in the resonator, which affects the phase of the qubit state. The “realistic”
backaction is usually discussed in the standard theories of circuit QED measurement
[6-8]. Actually, there is a certain spookiness even in the “realistic” backaction (it may
be affected by a delayed choice, as discussed in Section 17.5); however, we do not want
to emphasize it here, to keep the picture simple. When we measure the z coordinate
of the qubit state on the Bloch sphere (the basis states |1) and |0) correspond to the
north and south poles), then the “spooky” backaction changes the z coordinate and
leads to the state evolution along the meridian lines, while the “realistic” backaction
leads to the evolution around the z axis (i.e., along the parallels).

It is important to notice that when the probing microwave leaves the resonator
after interaction with the qubit, one quadrature of the microwave carries information
about the qubit state, while the orthogonal quadrature carries information on the
fluctuating number of photons in the resonator [6-9]. Therefore, if a phase-preserving
amplifier is used, then the “spooky” and “realistic” backactions are fully separated and
-correspond to two orthogonal quadratures I(t) and Q(t) measured after the mixer (it is
trivial to choose the proper linear combinations of the IQ mixer outputs). The signals
I(t) and Q(t) are necessarily noisy, and the measurement backactions are stochastic;
however, there is a correlation (full correlation in the ideal case) between the output
noise and the backaction noise in both channels. As a result (derived later), for a
quantum-limited phase-preserving amplifier and in the absence of extra decoherence,
the measured quadratures I(t) and Q(t) give us full information about the backaction,
so that a random evolution of the qubit wavefunction can be monitored precisely (a
useful analogy is with a Brownian particle under a microscope: we cannot predict its
motion, but we can monitor it). This is what is needed, in particular, for arranging
perfect quantum feedback control of the qubit state. It is interesting to notice that for
an ensemble-averaged evolution (in which the random but monitorable qubit evolution
is replaced by dephasing), exactly one half of the ensemble dephasing I' comes from
the “spooky” backaction and the other half comes from the “realistic” backaction.

In the case of a phase-sensitive amplifier, it is sufficient to measure after the mixer
only the quadrature that was amplified; let us still denote it by I(t), though now its
phase is determined by the amplifier instead of the microwave-qubit interaction. In
this case, the “spooky” and “realistic” backactions are in general mixed (not separ-
ated), because there is only one output signal I(¢). This situation corresponds exactly
to the broadband measurement by the QPC/SET with a correlation between the out-
put and “realistic” backaction noises [30]. The situation simplifies when the amplified
quadrature is the one that carries information about the qubit state (z coordinate).
Then, in the quantum-limited case, the “realistic” backaction is completely absent:
we cannot measure the photon number fluctuation and correspondingly it does not
fluctuate (in the imperfect case, the effect of the remaining “realistic” backaction can
be described by an extra dephasing). So we are left with only the “spooky” backac-
tion, and the quantum measurement description coincides with the simpler theory of
measurement by a symmetric QPC [30], which does not produce the “realistic” back-
action. In contrast, in the case when the photon-number quadrature is amplified; we

~do not obtain any information on the qubit z coordinate, and therefore there is no
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“spooky” backaction, but only the “realistic” one. In the general case, when the am-
plified quadrature makes an arbitrary angle ¢ with the qubit-information quadrature,
both types of backaction are present, and their strength depends on ¢. It is important
to mention that the ensemble dephasing rate I' does not depend on ¢, as required by
causality. In particular, in the quantum-limited case, the contribution I" cos? ¢ comes
from the “spooky” backaction, while I'sin? ¢ comes from the “realistic” backaction.
Let us emphasize that both the phase-sensitive and phase-preserving amplifiers
permit exact monitoring of the qubit state and therefore perfect quantum feedback.
The necessary condition in both cases is that the detection system be quantum-limited.
In the following sections, a formal description of these results is presented. We
start by reviewing the Bayesian approach for the broadband qubit measurement, then
briefly discuss the difference between phase-preserving and phase-sensitive amplifiers,
and then present the formalism of the narrowband continuous measurement of a qubit
in the circuit QED setup. In Conclusion we briefly discuss generalizations of the for-
malism, quantum feedback, and the causality principle. We note that our approach can
be converted into the formal language of positive-operator-valued-measure (POVM)-
type generalized quantum measurement [35, 36] (then separation of the “spooky” and
“realistic” backactions corresponds to the decomposition of the measurement oper-
ator into diagonal and unitary parts—see later), and our results for the case of a
phase-sensitive amplifier are very similar to the results of Gambetta et al. [9].

17.2 Broadband measurement

In this section, we review the Bayesian formalism {19, 20, 30] for the broadband meas-
urement of a qubit, considering only the simple case without additional evolution, and
thus emphasizing the main physical idea of the formalism. We start with the broadband
formalism because it is simpler than for the narrowband (circuit QED) measurement
and it can be used as a natural step in understanding the circuit QED setup.

For definiteness, let us assume that the qubit is a double quantum dot populated
with one electron (Fig. 17.2), and the states |0) and |1) correspond to-the electron
localized in one or the other dot. The qubit is measured by a small-transparency tunnel
junction (a model of a QPC), whose barrier height depends on the electron location,
so that the two qubit states correspond to different average currents Iy and I; through
the QPC. The voltage across the QPC is sufficiently large to make the detector output
classical (Markov approximation), and |AI| < |I.|, where AI = I — I; is the response
and I, = (Ip + I1)/2 is the mean value; this weak response assumption allows us to

:(1); g Qubit (double quantum dot)
10
7 Detector
(QPC)

Fig. 17.2 Schematic of a broadband measurement setup: a double-quantum-dot qubit is
measured by a QPC (tunnel junction). The output signal I(t) is the QPC current.
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consider the QPC current I(¢) as a quasicontinuous noisy signal (see [30] for a detailed
discussion of the required assumptions; the formalism needs only a minor change if
AI ~ I;). Then the output signal of the detector is

I(t) = I + (AI/2) 2(t) + £(t), S¢(w) =S, (17.1)
where 2 = p11 — pgo is the z component of the Bloch-sphere representation of the qubit
density matrix p(t), and £(t) is the white shot noise with spectral density S = 2el,
(we use the single-sided definition for the spectral density, in which the signal variance
(“power”) corresponds to [ S(w) dw/2m; the definition of S is smaller by a factor of
1/2 in [7] and a factor of 1/4w in [8] and [34]). We emphasize that the detector signal
I(t) is classical, and the qubit state p(t) is practically unentangled from the detector,

but obviously depends on I(%). :

‘ The detector Hamiltonian and the qubit-detector interaction Hamﬂtoman are given
in [19, 20, 30]; they are not really important for our discussion here. For simplicity, let
us assume that the qubit Hamiltonian is zero, Hg, = 0, so that the qubit evolution is
due to the measurement only. In this case, the qubit evolution during time ¢ happens
to be determined only by the time-averaged value of the measured detector output

- 1

v In(t) = E/Ojtl(t’) at’, (17.2)

which would contain full information for a classical measurement.

Because of the correspondence principle, the evolution of the diagonal elements of
the qubit density matrix p (Trp = 1) should correspond to the classical evolution of
probabilities, which are given by the classical Bayes rule. The Bayes rule says that an
updated (a posteriori) probability of a system state is proportional to the initial (a
priori) probability and the probability (likelihood) of the obtained measurement result
assuming this particular state. In our case, I, (t) is the measurement result, and its
probability for the qubit in the basis state |j) has the Gaussian distribution

_ I 2 S ’
Plj>(fm)=\/§17—rﬁe>cp[ (T)_} D=, (17.3)

where D is the variance, which decreases with the measurement time ¢. Therefore, the
correspondence principle demands the Bayesian evolution

p11(t)  p11(0) exp[—(Im(t) — [1)*/2D)]
poo(t)  poo(0) exp[—(Im(t) — Io)?/2D]’
which in our terminology is due to the “spooky” backaction; it cannot be described
by the Schrédinger equation, but follows from common sense.
If the phase of the qubit state is not affected by the measurement process (no
“realistic” backaction), then an arbitrary initial wavefunction |¢(0)) = 1/p00(0) |0) +

€*®+/p11(0) |1) becomes |1h(t)) = +/poo () |0) + €®+/p11 () |1) with the same phase ¢;

therefore, for an arbitrary mlxed state, we get

(17.4)

poo(t) p11 (%)
01(0) .
_ poo(0) p11(0)
Equations (17.4) and (17.5) describe the “spooky” backaction.

por(t) = (17.5)
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Now assume that due to the qubit-detector interaction (e.g., Coulomb interaction),
each electron passing through the detector rotates the qubit phase ¢ by a small amount
A¢. From the measured result I,,(t), we know exactly how many electrons passed
through (n. = I,(t)t/q, with ¢ being the electron charge), and can easily introduce
the corresponding phase factor into Eq. (17.5):

poo(t) p11(t)
poo(0) p11(0)

where K = A¢/q. The nonstochastic factor exp(:KI.t) can obviously be ascribed to
- the qubit Hamiltonian; however, this is not important here. The factor exp[iK 1, (t) ]
in Eq. (17.6) is the effect of the “realistic” backaction. It may or may not be present in
a particular physical situation; for example, K = 0 for measurement by a symmetric
QPC, while K # 0 in an asymmetric QPC or SET case.

Finally, if there is an extra pure dephasing of a qubit with rate -, then Eq. (17.6)
becomes

po1(t) = po1(0) exp[iK I, (t) t], (17.6)

poo(t) p11(t)

00(0) p11(0) exp[iK Im ()] €™ (17.7)

po1(t) = po1(0)

Egs. (17.4) and (17.7) are the main starting point of the Bayesian formalism [30]. It
is then easy to include a nonzero qubit Hamiltonian Hg, by differentiating Eqgs. (17.4)
and (17.7) with respect to time (paying attention to whether the Stratonovich or Ité
definition of the derivative is used) and adding terms due to Hg,. Energy relaxation
and other mechanisms of the qubit state evolution can be included in the same way.
Actually, there are many ways to derive the Bayesian equations (17.4) and (17.7)
[19-22, 30, 37, 38], but we focus here only on their meaning, not on their derivation.

Notice that averaging of Egs. (17.4) and (17.7) over the measurement result I,,
(i.e. ensemble averaging) with the probability. distribution "

P(ITm) = poo(0)Pioy(Tm) + p11(0) Py (Im) ; (17.8)

gives the same evolution as for a pure dephasing: the diagonal matrix elements of p
do not evolve, while the off-diagonal element po; decays as po1(0) e~ (neglecting the
non-stochastic phase evolution) with the ensemble dephasing rate [30]

_(an? | k%S

r 45 4

+7, (17.9)

which has clear contributions from the “spooky” backaction, “realistic” backaction,
and additional dephasing.

In the case v = 0, an initially pure qubit state remains pure; in other words, we
can monitor evolution of a qubit wavefunction. This property can be used as the def-
inition of a quantum-limited detector [19, 20, 30]. The quantum efficiency 7 can then
be naturally defined as n = 1 — /I". If, for some reason, the “realistic” backaction is
considered as dephasing (i.e., only in the averaged way), then the quantum efficiency
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can be defined as 7j = 1 —+/T'— K2S5/4T" (here the definitions of 7j and 7 are exchanged
compared with the definitions in [30]). In other words, 7j = (AI)2/4ST is the relative
contribution of only the “spooky” backaction in the ensemble dephasing I'. In partic-
ular, this definition is relévant to the peak-to-pedestal ratio of the Rabi spectral peak
[39, 40], which is equal to 4. As an example, if v = 0 and the contributions in Eq.
(17.9) from the “spooky” and “realistic” backactions are equal to each other (as in
the circuit QED setup with a phase-preserving amplifier), then n = 1 but 7 = 1/2.

A nonideal detector (n < 1) can be modeled in two equivalent ways [41]: we either
add an extra dephasing v to the qubit or add an extra noise to the output of the
ideal detector. Only the total dephasing I", response AI, total output noise S, and
correlation factor K = §(¢)/6(Imt) are physical (i.e., experimentally measurable)
parameters, while the distribution of the nonideality between the extra dephasing and
additional output noise is a matter of convenience (here ¢ = arg(po1), and the notation
(¢) reminds us about averaging over additional classical noise at the output). We
emphasize that the Bayesian formalism deals only with the experimentally measurable
parameters Al, S, K, T, and the output signal I(¢).

In the ideal case (n = 1), the evolution equations (17.4) and (17.6) can be translated
into the language of POVM-type generalized measurement. In this approach, the effect
of measurement is described as [35, 36]

Malp(©) o _  Mro(O)M
(MR (0|’ TY[M ], Mgp(0)]’
where Mp, is the so-called measurement (Kraus) operator, corresponding to the result
~ R. The probability of the result R is Pg = ||[Mg[%(0))||> using wavefunctions or
Pp = ’H[M;QM g p(0)] using density matrices; therefore, the POVM elements M;M R

should satisfy the completeness condition ) 5 M;QM r = 1. The relation between this
approach and the quantum Bayesian approach can be understood via the operator

decomposition )
Mg = UR\/M}T{MRa (1711)

where Up, is unitary and the square root of the positive operator M;;M R is defined in -

p(e)) = (17.10)

the natural way in the diagonalizing basis. It is easy to see that \/M};M R is essentially

the quantum Bayes rule (in the diagonalizing basis); in our terminology, it corresponds
to the “spooky” backaction, while Ur corresponds to the “realistic” backaction. For

the discussed setup, the result R is I, (t), the “spooky” backaction \/M};M R should

be determined by the probabilities P, (I,) given by Eq. (17.3), and the “realistic”
backaction Ug is given by the phase factor in Eq. (17.6). Therefore, the corresponding
measurement operator is

M(In,) = exp(—iKInto,/2)
< [VFo T 00+ A @ ), (r12)

where o, is the Pauli matrix.
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17.3 Phase-preserving versus phase-sensitive amplifiers

Before discussing microwave amplifiers, let us consider a measurement of an oscillator,
for example, a mechanical resonator with frequency w, and mass m. This is a very well-
studied problem [7, 16], so we will only discuss a way to understand the results. A clas-
sical resonator position z oscillates as z.(t) = A cos(wrt) + Bsin(w,t) (in this section,
z stands for the usual spatial coordinate, not for the Bloch-sphere coordinate). The
corresponding quantum state is called the “coherent state” in optical language; it is
represented by the wavefunction ¥(z,t) = Ygr[z — zc(t)] exp(ipcx/fi), where g (z) is
the ground state and p. = mz.(t) is the classical momentum. So the coherent state
is essentially the ground state with oscillating center position. Notice that continuous
quantum measurement of a resonator position can be described in the same Bayesian
way [42] as in Section 17.2; for example the “spooky” backaction gives the evolution
¥(z,t) = P(z,0) exp{—[Im(t) — I(z)]?/4D}/Norm, where I(z) is the average detector
signal for the resonator position z, and Norm is a normalization constant (see Egs.
(17.4) and (17.5)). The time step ¢ in this case should be chosen much shorter than w; !
so that the unitary evolution and evolution due to measurement may be simply added.

Let us consider the following game. Charlie prepares an oscillator in a coherent
state with quadratures A and B, and gives it to David, and David’s goal is to find
A as accurately as possible. An optimal strategy is- rather obvious: David should
make a projective measurement of z at time ¢ = 27n/w, with any integer n (to avoid
contribution from the B term), and the measurement result is the best estimate of A (if
the measurement is done at ¢t = (27n+ ) /w,, then the result should be multiplied by
—1). Even though the strategy is optimal, the inaccuracy of David’s result is obviously
the width (standard deviation) oy, = 1/h/2mw, of the ground-state shape |9 (z)|?;
in energy units, this inaccuracy corresponds to one half of the energy quantum.

Now assume that David cannot make projective measurements, but only “finite-
strength” (i.e., imprecise) measurements. The best accuracy oy can still be achieved

if the measurement is done in the simple but very clever “quantum nondemolition”
" (QND) way: many finite-strength measurements are made at times ¢ = 2wn/w,; this is
called “stroboscopic” measurement [16]. Since the oscillator returns to the same state
after a period 27 /w,, the unitary evolution is not important, and many finite-strength
measurements (described by the Bayesian equation above) are “stacked” to produce
a strong, essentially projective, measurement. More generally, the necessary condition
to have the best accuracy g for A is that the measurement is not sensitive to the
quadrature B. :

Now assume that David is only allowed to make a continuous measurement with
unmodulated weak strength (so that the inaccuracy achieved after w; ! is much larger
. than og;). Then the “spooky” backaction gets mixed with the unitary evolution, es-
sentially adding noise to the monitored evolution, so that, after a while, the resonator
state becomes mostly determined by the backaction and almost independent of the
initial state. As the result, the best accuracy for measurement of A becomes V2 Ogrs
which in energy units corresponds to two half-quanta. [16], which is twice as bad as for
the projective or stroboscopic measurement. However, the continuous monitoring gives
us information about B in the same way as for A, so the accuracy of B measurement
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is also v/20g,. Therefore, in some sense, continuous phase-insensitive measurement
brings the same total information as phase-sensitive (e.g., stroboscopic) measurement;
however, in our game, only half of this information is useful for David’s goal.

After discussing measurement of the resonator state, it is easy to understand the
quantum limits for high-gain microwave amplifiers. Now suppose Charlie prepares a
coherent state of a microwave resonator with quadratures A and B, and gives it to
David to find A, and David uses an amplifier for amplification of the microwave field,
which slowly leaks from the resonator until it is empty. There is only classical signal
processing after the amplifier, so amplification is essentially the quantum measure-
ment. The results are the same as above [7, 16, 28, 29]: a phase-sensitive amplifier,
which amplifies only the A quadrature and “de-amplifies” (attenuates) the B quadra-
ture, can measure A with accuracy og,, while a phase-preserving amplifier can measure
A only with accuracy v/2 0, (and also measures B with the same accuracy v2og).
Technically, the accuracy is limited by the noise at the amplifier output, so this noise
should forbid measuring A with accuracy better than o by a phase-sensitive amplifier,
and better than v/2 ogr by a phase-preserving amplifier. Therefore, in the quantum-
limited case, the output noise power of a phase-preserving amplifier (per quadrature)
is twice as large as for a phase-sensitive amplifier with the same gain; this is often -
called an “additional noise,” corresponding to one half of the energy quantum (one
more half-quantum is present in both cases) [7, 16, 28, 29]. It may seem somewhat
confusing that this result does not depend on the rate with which the microwave leaks
from the resonator. So let us check the scaling: for k times slower leakage (k times
larger Q factor), the microwave amplitude is vk times smaller, but the accumulation
time is k times longer, and therefore the measured signal for the quadrature A is vk
times larger, which is the same factor as for the noise accumulation. Therefore, the
signal-to-noise ratio that determines the A accuracy does not depend on the leakage
rate (resonator bandwidth).

17.4 Narrowband (circuit QED) measurement

Using the discussion of microwave amplifiers in Section 17.3, it is easy to extend the
Bayesian approach for a broadband quantum measurement to the narrowband circuit
QED setup.

We consider the standard circuit QED setup [1-9], in Wthh a qubit interacts with
a microwave resonator, and assume the dispersive regime with the Hamiltonian

= (hwqp/2) 05 + hwrata + hxalac., (17.13)

where wqp, = Wb, bare + X is the Lamb-shifted qubit frequency with no photons in the
resonator, X = g2/(Wqp bare — wr) is the effective coupling (with g being the Jaynes-
Cummings coupling), w.. is the bare resonator frequency, the Pauli operator o, acts on
the qubit state in the energy basis {|0),|1)}, and the resonator creation and annihila-
tion operators are a! and a. Notice that the resonator frequency increases by 2x when
the qubit state changes from |0) to |1); conversely, the qubit frequency increases by 2x
for each additional photon in the resonator. To measure the qubit state, a microwave
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field with frequency wiy, is either transmitted through or reflected from the resonator,
then amplified and sent to the IQ mixer, which measures both quadratures relative to
the original microwave tone (Fig. 17.1). The qubit state affects the resonator frequency
and therefore affects the phase (and in general amplitude) of the outgoing microwave.

An elementary Fabry-Pérot analysis gives the classical (complex) microwave field
F.. inside the resonator:

2Fintin/57rt

Fr= 1 — 2i(wm — wy) /K’

(17.14)

where Fi, is the applied incident field, ¢, is the transmission amplitude of the barrier
from the incident side, & is the resonator bandwidth due to the microwave leakage from
both sides (the Q factor is w,/k), and the round-trip time is 744 = 27/w, for a half-
wavelength resonator and 7y = 7/w, for a quarter-wavelength resonator. A similar
formula with the same denominator describes a lumped resonator. In the presence
of the qubit, the resonator frequency w, in this formula is substituted by w, + x,
depending on the qubit state. Notice that for the quantum measurement analysis, there
is no difference between the cases of transmission and reflection for the same F,. and
%, because the field leaking from the resonator is determined only by F,. and k. (The
reflection case has a technical advantage of dealing with an outgoing microwave field
of half the strength for the same measured signal.) However, an important parameter
is the collected fraction 7o) = Keoi/# Of the leaking microwave power; we will often
assume the ideal case 71, = 1 (for the transmission setup, this requires strongly
asymmetric coupling, [tin| < [tout|)- »

For simplicity, we assume the resonant case, wy,, = w,; then the ensemble qubit
dephasing due to measurement is [6, 7]

I = 8x*a/k, : (17.15)

where 71 is the average number of photons in the resonator. It is easy to include
Rabi oscillations in the model; however, we do not do so for simplicity and also for a
more transparent analogy with Section 17.2, in which we considered a qubit with zero
Hamiltonian, evolving only due to measurement; this case exactly corresponds to the
circuit QED Hamiltonian in Eq. (17.13) in the rotating frame.

We will need several assumptions to describe the qubit state evolution in the
process of measurement. First, for the validity of the dispersive approximation in
Eq. (17.13), we need sufficiently large qubit-resonator detuning, |wqp, — w,| > |g|, and
not too many photons in the resonator, i <« (wqp — wr)2 /g? (we do not consider the
recently discovered nonlinear regime [43]). Second, to use the Markov approximation
for the evolution, we need the so-called “bad-cavity” assumption: I' < x <« w, (if the
qubit evolves due to Rabi oscillations with frequency {2g, we also need Qg < «). This
assumption means that the photons leave the resonator much faster than evolution
of the qubit state, and therefore there is practically no entanglement between the
qubit and the unmeasured microwave field. This assumption also implies that the
two resonator states for the qubit states |0) and |1) are almost indistinguishable,
A(x/k)? < 1. Third, we use the “weak-response” assumption, which requires a small
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Aloge

Fig. 17.3 Phase-space representation: for each qubit state, the coherent state with (Fy) =
A cos(wrt) + Bsin(wrt) in the resonator is shown [44] as an “error circle” with radius 1, shifted
by 2+/% from the origin. Axes are normalized by the standard deviation 0gr of the ground
state. The B quadrature carries information about the qubit state, while the A-quadrature
corresponds to the number of photons in the resonator.

phase difference between the two resonator states, |x|/%x < 1. This means that each
outgoing photon carries only a little information about the qubit state. Notice that for
7 2 1 the previous assumption x> I' automatically implies the weak-response, and
even for n <« 1 the weak-response assumption is not always needed. Fourth, we will
neglect the qubit energy relaxation due to measurement [6, 7], which can be added
later. :

A coherent state in the resonator with average 7 photons and zero aver-
age phase corresponds to the oscillation of the field expectation value (F.(t)) =
2v/M o gy coS(wmt), Where oy, is the ground-state width (root-mean-square (rms) un-
certainty) and we assume w,, = w,. (Notice that the amplitude o4 corresponds
to one quarter of a photon.) Interaction with the qubit slightly changes the phase,
cos(wmt F 2x/k), depending on the qubit state, so that

(Fp(t)) = Acos(wmt) + Bsin(wmt), A=2VR0g, (17.16)

4 4
B = :t—X\/ﬁcrgr =X Nog 2,
5 K

where 2 is the qubit Bloch coordinate. Thus, the small B quadrature carries informa-
tion about the qubit state, while the larger A quadrature may give us information on
the fluctuations of the photon number in the resonator. In the optical representation
(Fig. 17.3) with axes A/og and B/ogy, the two resonator states for the qubit states
|0) and |1) are shown as two “error circles” [44] with rms uncertainty 1 along any
direction and distance 2/7 between the origin and circle centers (if axes A/20, and
B /204, are used, then the distance is /7, while the uncertainty is 1/2).

17.4.1 Phase-sensitive amplifier

Let us start with the case when a phase-sensitive amplifier is used in the circuit
QED setup (Fig. 17.4a). Also, we first assume the most ideal case: the amplifier is
quantum-limited, it amplifies the optimal B quadrature, there is no microwave collec-
tion loss (kco1/k = 1), and there is no extra noise or dephasing. Then, as discussed in
Section 17.3, measuring the microwave contents of the resonator once (by fully emp-
tying it), we can measure the B quadrature with imprecision og;. Therefore, in the
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(b)

10) A

Fig. 17.4 Relations between relevant quadratures. The quadratures A and B are for the micro-
wave field in the resonator. (a) For a phase-sensitive amplifier, the amplified quadrature makes
an angle ¢ with the informational B quadrature. The corresponding quadrature at the mixer
output is defined as I(¢) (the output @Q(¢) is then useless). (b) For a phase-preserving amplifier,
we define output quadratures I(t) and Q(£) as corresponding to the resonator quadratures B
and A.

continuous measurement for time ¢, the B quadrature is measured with imprecision
0gr/v/kt, which converts into the imprecision 1/k/t/(4x+/R) of the qubit z coordinate.
Following the language of Section 17.2, let us discuss the signal and noise at the output
of the setup. There are two outputs of the IQ mixer; however, only the amplified quad-
rature carries any information, so let us denote the corresponding output of the mixer
(or their linear combination) by I(t). Then the response AI = I; — Iy corresponds
to Az = 2 and AB = 8(x/k)y/7i0g. For measurement during time ¢, the variance
(k/t)/(4xv/7)? of the z coordinate converts into the variance (k/t)(AI/8x+/R)? of
the measured output I, = (1/¢) fy I(¢') dt'. Equating it with D = S/2¢, we find the
(single-sided) spectral density of the I(t) noise:

(Almax)?s

Smin = 32X2’fl )

(17.17)
where we have replaced S with Smin and AT with Alp.y torremind ourselves that we
are considering the quantum-limited case, and the response is maximized by amplifying
the optimal quadrature. Notice that, since Al & X+/f/k, the noise Sy, does not
depend on the qubit or resonator properties; it is essentially the amplified vacuum
noise and depends only on the amplifier gain.

Obtaining information on the qubit z coordinate via the signal I(t) with response
Alyax and noise Smin, we necessarily cause the “spooky” backaction described by
Egs. (17.4) and (17.5). As discussed in Section 17.2, this is a consequence of the
corresponding principle or just common sense. Now averaging the pp; evolution in Eq.
(17.4) over the measurement result I,, with its probability distribution, Eqs. (17.8)
and (17.3); we see that the “spooky” backaction dephases an ensemble of qubits with
a rate (see Eq. (17.9)) (ALnax)?/4Smin = 8x>7/k. This rate coincides with the total
ensemble dephasing in Eq. (17.15), and therefore the qubit state cannot additionally
fluctuate for any other reason. Thus, we have derived an important result: in the
ideal case with phase-sensitive amplifier, there is only the “spooky” backaction and
no “realistic” backaction. This means that the number of photons in the resonator
does not fluctuate (otherwise there would be an additional dephasing), which makes
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sense since we cannot measure the A quadrature, carrying information on the photon
number. Notice that it is also easy to prove this result when w,, # w,. Then, from
Eq. (17.14), we obtain that the informational quadrature amplitude is multiplied by
a factor [1 + 4(wy, — wr)?/K%]~/2 compared with Eq. (17.16). The response Alpayx
is multiplied by same factor, while the noise Sy, does not change. Therefore, the
“spooky” backaction contribution to the ensemble dephasing is multiplied by a factor
1 + 4(wm — wr)?/k?] 71, which again coincides with the result [6, 7] for the total
ensemble dephasing I'. This proves the absence of the “realistic” backaction for the
nonresonant case w., #* w, as well.

Now let us consider the case when an ideal phase-sensitive amplifier amplifies the
A quadrature (we again assume w,, = w, for simplicity). Then we do not get any
information on the qubit z coordinate, and therefore there is no “spooky” backaction,
but there is the “realistic” backaction due to the fluctuating number of photons. The
description of evolution in this case.is essentially the standard one [6, 7]. Let us still
denote by I(¢) the output signal from the mixer, corresponding to the amplified quad-
rature. For measurement during time ¢, we measure the A quadrature with imprecision
Ogr/ V/kt. This is consistent with the fluctuation of the number N of emitted photons:
var(N) = N, N = fixt. The correlation function of the photon number in the resonator
depends on time as exp(—+xt/2) [6, 7], which means that each extra photon inferred
from the I(t) fluctuation spends (on average) a time 2/ in the resonator and therefore
changes the qubit phase ¢ by 4x/k (the correlation time 2/« is essentially the lifetime
of the field, not power [6, 7]). Then the ¢ variance is var(¢) = (4x/x)?7ikst and the cor-
responding ensemble dephasing is var(¢)/2t = 8x*#A/k. As expected, this reproduces
the standard result from Eq. (17.15) for the ensemble dephasing, while for individual
qubit evolution we have the correlation discussed above: each additional photon in-
ferred from the I(t) fluctuation changes ¢ by 4x/k. For the same amplifier gain and
noise as for measuring the B quadrature, we get §v/A = (4x/k)v7 (61m)/Alnax, and
therefore the correlation is K = §{¢)/6(Imt) = 32(x%/k) 1/ Almax = Almax/Smin- It
is easy to check that K2Sy;,/4 (see Eq. (17.9)) coincides with the ensemble dephasing
T from Eq. (17.15), as expected for the presence of only the “realistic” backaction.

Finally, assume that the phase-sensitive amplifier amplifies the quadrature, which
makes an angle ¢ with the optimal B quadrature and an angle 7/2 — ¢ with the
A quadrature. The measured signal I(t) still denotes the output of the IQ mixer,
corresponding to-the amplified quadrature; now it gives information about both the B
and A quadratures, with factors cos ¢ and sin ¢, respectively. Combining the “spooky”
and “realistic” backactions, we get the same formulas as for the broadband detection
of Section 17.2:

NN

pu(t)  p11(0) ex {fm(t)AI] D= E, (17.18)

poo(t)  poo(0) D 2
o) = Ve SR 119

Al =1, — Iy = Alpax cosp, K = Ky sing, (17.20)

~—

~
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In(t) = % /0 ” It dt' — -{‘%{l (17.22)
10 =278 8L e, s =5 (17.23)

Here we have introduced I, by subtracting the constant (Ip + I1)/2 from I,, and
have performed some simple algebra to convert Eq. (17.4) into Eq. (17.18); the qubit
rotating frame corresponds to 7 photons, K. is the correlation for A-quadrature am-
plification discussed above, Aly,x is the response for B-quadrature amplification, and
S = Smin. Notice that the total ensemble dephasing in Eq. (17.9) does not depend on ¢:

(AIpax 08 ©)? /4Smin + (Kmax 5in ¢)2Smin/4 = T (17.24)

‘ So far, we have discussed only the ideal case. There are several mechanisms for

nonideality. First, the qubit may have an additional environmental dephasing yepy.
This will lead to an extra factor e~ 7! in Eq. (17.19) and increase the ensemble
dephasing I' by Yeny. Following the definitions in Section 17.2, the corresponding
quantum efficiency is Neny = (1 + Fenvk/8X?*%) L. Second, not all microwave power
leaking from the resonator may be collected and amplified. This can be character-
ized by the collection efficiency 7¢o1 = keol/k and multiplies the response AI and
correlation K by the factor ,/mco1, while not affecting the output noise S. Third, if
the phase-preserving amplifier is not quantum-limited, it introduces additional noise
Sadda compared with the quantum limit Spin (given by Eq. (17.17) when 7. = 1).
The corresponding amplifier efficiency i 7amp = Smin/(Smin + Sadd)- This does not
affect AI, but multiplies K by namp (because for uncorrelated Gaussian-distributed
random numbers z; and x5, averaging of 1 for a fixed sum z; + x5 gives a correlation
(x1)/(z1 + z2) = var(z1)/[var(z1) + var(zs)]).

If all three mechanisms of nonideality are present, then the evolution can still
be described [41] by Egs. (17.18)—(17.23), but S is now the total (experimen-
tal) output mnoise, Almax is the experimental response for ¢ = 0, so that S =
(ALnax)?/(32X2% Neol Tamp), the correlation K = 6{(¢)/6(I,t) is still given. by
Egs. (17.20) and (17.21), and the only change is the extra factor in Eq. (17.19):

po1(t) poo(t) p11(t) expliK Fn(£) 8] ™, (17.25)

po1(0) poo(0) p11(0)

v =T — (Almax)* /45, (17.26)

where the ensemble dephasing is now I' = 8x27/k + Yenv. We emphasize that the qubit
evolution depends only on the experimentally measurable parameters Al .., S, T, @,
and the output signal I(2). '

The quantum efficiencies can be expressed as

(ALjax)?
4ST

where, as in Section 17.2, 7 is the relative contribution to I' from both the “spooky”
and “realistic” backactions, while 7 is the relative contribution from only the “spooky”

n= = Narap Mool Menv 71 = 1 €OS” @, (17.27)
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backaction (see also {45]). The definition of 7j corresponds to replacing the “realistic”
backaction factor exp(: K fmt) in Eq. (17.25) with the corresponding ensemble dephas-
ing exp(—K?2St/4). As mentioned in Section 17.2, the peak-to-pedestal ratio of the
spectral peak of continuous Rabi oscillations is 47 = 47 cos? ¢.

17.4.2 Phase-preserving amplifier

Now assume that a phase-preserving amplifier (Fig. 17.4b) is used. (this includes par-
ametric amplifiers, HEMTs, etc.). Now both the A and B quadratures of Eq. (17.16)
are amplified independently with the same gain. Correspondingly, both quadratures
at the IQ mixer output carry physical information, instead of only one quadrature
in the case of a phase-sensitive amplifier. Let us denote by I(¢) the output of the
IQ mixer, corresponding to the B quadrature; thus, I(¢) provides information on the
qubit z coordinate. The output signal for the orthogonal quadrature is denoted by
Q(t); it corresponds to the A quadrature in the resonator and provides information
on the fluctuating number of photons. The main difference from the case of a phase-
sensitive amplifier is that now the “spooky”-and “realistic” backactions are related to
two different output signals: I(t) and Q(¢).

Let us start with the quantum-limited case and assume an amphﬁer with the
same gain as in the phase-sensitive case, so that the I(¢)-channel response is the same
as the optimal phase-sensitive response: AI = Aly,x. The “spooky” backaction is
always described by the quantum Bayes formulas (17.4)—(17.5), but now the noise S
of the output I(¢) is twice as large as the value in Eq. (17.17) for the phase-sensitive
amplifier, S = 2Sn;, (see the discussion in Section 17.3). Therefore, the “spooky”
evolution is twice as slow as in the phase-sensitive case with ¢ = 0. The signal Q(t)
has the same noise S = 2Snis. It is again twice as large as for the pha,se—sen31t1ve
case with ¢ = 7/2, and therefore, the correlation factor K = §(¢)/d[ fo Q(t") dt'] for
the “realistic” backaction is twice as small: K = Kyax/2 (this reduction is similar to
the effect of a nonideal amplifier discussed above). We see that K = AI/S, and the
ensemble dephasing is at least (AI)?/4S+K?2S/4 = (AI)?/2S = (Almax)/4Smin. This
again coincides with ' = 827 /k, and therefore there can be no additional evolution
of the qubit besides these “spooky” and “realistic” backactions.

Thus, in the ideal case, the qubit evolution is

Zézg? - Z;% exp[In()AI/D], D = % (17.28)
B
Al=1 — I, K =AIJS, (17.30)

_ % /0 " o) dt' - (Q), Sq=Si=S8, (17.31)

where (Q) is the average value of Q(t) (which depends on @), I,(t) is defined by
Eq. (17.22), and the channels I(¢) and Q(¢) both have the same (uncorrelated) noise
S = (AI)?k/(16x%n). Notice that (AI)2/4S = K2S/4 = 4x*n/k, and therefore, in
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the phase-preserving case, the ensemble dephasing I' contains equal contributions T'/2
from the “spooky” and “realistic” backactions. We emphasize that Eqgs. (17.28) and
(17.29) still allow us to monitor a qubit wavefunction if the initial qubit state is pure.

A nonideal case can be analyzed in the same way as for the phase-sensitive ampli-
fier. An extra dephasing ey of the qubit is described by 7eny = (1 + Yenvi/8x%7) 1,
imperfect collection efficiency is described by 7col = Keol/K, and the amplifier effi-
ciency is Namp. We define namp = Sq1/S for a phase-preserving amplifier by comparing
its output noise S (per quadrature) with the quantum limit for a phase-preserving
amplifier, Sq1 = 25min, 50 that Namp = 1 in the quantum-limited case. We also define
7 = Smin/S by comparison with a phase-sensitive amplifier having the same gain,
80 that famp = Namp/2 and obviously 7lamp < 1/2. Similarly to the phase-preserving
case, incomplete microwave collection multiplies the response AI and correlation K
by a factor ,/mcor but does not change the noise S; the extra noise in the amplifier
multiplies K by 9amp but does not change Al

The qubit evolution can still be described by Eqgs. (17.28)—(17.31), with the only
change being in Eq. (17.29):

por(t) _ vpoo@pul®) oA
psl Ol po;(O) 0 expliK Qrm (t) ] €™, (17.32)
v =T —2(AI)?/4S, (17.33)

where now S is the total (experimental) noise per quadrature, Al is the experimental
response, and I' = 8x27/Kk + Yenv is the total ensemble dephasing. The qubit evolution
is determined by the parameters AI, S, T, and output signals I(¢) and Q(¢).

The quantum efficiencies are

7 = Nampcolllenv = (AI)2/2SP) ﬁ = 77/2 (1734)
Here, 1 describes the fraction of I" due to the contribution from both the “spooky” and
“realistic” backactions. The efficiency 7 = flampcolMenv describes the fraction from only
the “spooky” contribution; it corresponds to replacing the term exp(iK Om t) in Eq.
(17.32) with the dephasing term exp(—K?t/4S). In particular, the peak-to-pedestal
ratio of the Rabi spectral peak for the signal I(t) is 47 = 27.

Let us mention that Eqs. (17.28)—(17.30) for the ideal phase-preserving case can
also be obtained from Egs. (17.18)—(17.21) for the phase-sensitive case in the following
way. Let us think about a phase-preserving amplifier as a phase-sensitive amplifier, in
which the angle ¢ changes rapidly with time, and we have to average over . When the -
coefficients cos ¢ and sin ¢ in Eq. (17.20) are substituted into Eqgs. (17.18) and (17.19),
we see a natural formation of the quadratures I, and Q,, of the phase-preserving
setup. Then the exponential factor in Eq. (17.18) becomes exp(/mAlnax/D), and
the exponential factor in Eq. (17.19) becomes exp(iKmax@mt). Now let us take
into account that the average response is Al = c082 0 Alpax = Almax/2, and the
phase-sensitive amplifier noise S splits equally between the I(t) and Q(t) quadratures
(the orthogonal, de-amplified quadrature is noiseless). The mutual cancellation of these
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two factors of 2 leads to the same form of Eq. (17.28) as in Eq. (17.18) and the relation
K =AI/S in Eq. (17.30).

One more way to understand the relation between the ideal phase-sensitive and .
phase-preserving cases is the following. Instead of using a phase-preserving amplifier,
let us split the outgoing microwave into two equal parts and use phase-sensitive am-
plifiers with ¢ = 0 and ¢ = /2 in the two channels. To keep the same noise S per
channel, we increase the gain by a factor v/2, which also compensates the signal loss at
the splitter. Then the channel ¢ = 0 produces the “spooky” backaction in Eq. (17.28),
while the channel ¢ = 7/2 informs us of the “realistic” backaction in Eq. (17.29), and
the relation (17.30) between K and AT is the same as between K. and Aly,y in
Eq. (17.21).

In the ideal case (n = 1), the qubit evolution description can be translated into the
language of the POVM-type measurement. In the same way as in Section 17.2, Egs.
(17.28) and (17.29) can be converted into the measurement operator

M (T, Qm) = exp(—iKQmto,/2)
[ oy @) 10)(0] + /Py Tom >11><1|}, (17.35)

where the probabilities Pj;y are given by Eq. (17.3). Simﬂérly, Eqgs. (17.18) and (17.19)
for the case of a phase-sensitive amplifier can be converted into the same measurement
operator (17.35), in which @, is replaced with I,.

17.5 Conclusion

We have presented a simple physical picture of qubit evolution due to its measurement
in the circuit QED setup. The “spooky” backaction is universal, it is caused by gradual
extraction of information about the qubit state. The “realistic” backaction is due to a
specific mechanism: fluctuation of the photon number in the resonator. For a phase-
sensitive amplifier, the qubit evolution is described by Egs. (17.18) and (17.25); it is
determined by the output signal I(t), which corresponds to the amplified quadrature.
For a phase-preserving amplifier, the evolution is described by Egs. (17.28) and (17.32);
it is determined by two output signals I(t) and Q(t), where I(t) now corresponds to
the quadrature, which provides information about the qubit state (B quadrature in
the resonator) and Q(¢) corresponds to the orthogonal A quadrature, which gives us
a record of the photon number fluctuations in the resonator.

While the circuit QED setup differs significantly from both the broadband quantum
measurement setup [30] and the standard optical setup [10] we see that the description
of qubit evolution is exactly the same as in both these cases if a phase-sensitive ampli-
fier is used. The description is only slightly different when a phase-preserving amplifier
is used: we should assign the “spooky” and “realistic” backactions to the separate out-
put signals I(t) and Q(t) instead of only one signal. It is also useful to think about
the phase-preserving case via the model. in which we split the outgoing microwave
(the quantum signal) into two equal parts and then use 90°-shifted phase-sensitive
amplifiers for these two channels.
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We have intentionally considered only the simplest case, because most of the fur-
ther steps and generalizations are quite straightforward [30]. In particular, it it very
simple to include Rabi oscillations and energy relaxation of the qubit state. For that,
we have to take the time derivatives of the evolution equations and add the terms
due to Rabi oscillations and energy relaxation. If the Stratonovich definition of the
derivative is used, we get the equations of the Bayesian formalism [30]; if the It6
derivative is used, we get the equations of the quantum trajectory formalism [9, 10].
Generalization to measurement of several entangled qubits is also straightforward [30].
We have considered only the resonant case, wm = wy; however, generalization to the
case Wm # w, is quite simple [9]: we just need a different definition of the informa-
tional B quadrature and photon-fluctuation A quadrature. In our formalism, we have
implicitly assumed sufficiently wide bandwidth of the amplifier (much larger than the
ensemble dephasing T' and Rabi frequency Qg). If this is not the case, the formalism
should change significantly. However, we believe that, in most practical cases, we can
take this effect into account by adding a classical narrowband filter to the classical
signal at the amplifier output; this will correspond to passing the signals I(¢) and Q(t)
through low-pass filters. A much more serious change in the theory is required when
the resonator bandwidth « is comparable to I' or 2g; this still has to be done.

Understanding the difference between the “spooky” and “realistic” backactions is
important for designing quantum feedback control of Rabi oscillations [13-15]. The
simplest case is when a phase-sensitive amplifier amplifies the informational B quad-
rature. Then there is no “realistic” backaction, and the feedback loop should only
modulate the amplitude of the Rabi drive (i.e., the Rabi frequency Qg); this case
has been well studied for the broadband setup [13-15]. The situation is different for
a phase-preserving amplifier. Then, we need two feedback channels: the first (usual)
channel should modulate the Rabi frequency Q5 to compensate the “spooky” back-
action, while the second channel should compensate the “realistic” backaction by
modulating the qubit frequency wgy or the frequency of the Rabi drive, wg. The
controller for the second feedback channel is quite simple:~it should compensate
the contribution iKQ(t) to the qubit phase derivative ¢(t) due to the K term in
Eq. (17.32). Therefore, the controller is '

Awgp — wr) = —K[Q(t) — (Q)]; (17.36)

that is, we should apply the signal Q(t) directly to modulate wqy, or wg. The second
feedback channel essentially eliminates the K term in Eq. (17.32) and decreases the
ensemble dephasing I by K25/4 = (AI)?/4S. Correspondingly, in the absence of the
first (main) feedback channel, the peak-to-pedestal ratio of the Rabi peak increases
from 2 to 4 in the quantum-limited case. The first feedback channel should be the same
‘as for the broadband setup; it depends on the signal I(¢) and can be realized using
various ideas for the controller (“direct,” Bayesian, “simple,” etc. [13-15]). Note that
without the second channel the feedback performance is determined by the quantum
efficiency 7, while with the second channel it is determined by 7 = 7/(1 —n+7) (this
is one more combination of the terms in Eq. (17.9), which can be used for the definition
[30] of quantum efficiency). The case of a phase-sensitive amplifier, which amplifies a



References 553

non-optimal quadrature (¢ # 0, ¢ # 7/2) is similar to the case of a phase-preserving
amplifier, but both feedback channels should start with the same signal I(¢). In both
the phase-sensitive and phase-preserving setups, perfect feedback control is possible in
the quantum-limited case n = 1.

Discussion of the “spooky” and “realistic” backactions in the circuit QED setup
necessarily raises the question of causality. When the microwave leaves the resonator,
it does not yet “know” in which way it will be measured (phase-preserving or phase-
sensitive, which angle ¢, etc.). Moreover, when a circulator is used for the outgoing
microwave, the field in the resonator and the qubit can never “know” in a realistic
way which method of measurement is used. Nevertheless, the qubit evolution strongly
depends on the measurement method. As we have discussed, the “spooky” evolu-
tion moves the qubit state along the meridians of the Bloch sphere, the “realistic”
backaction moves the state along the parallels, and the measurement method deter-
mines whether the qubit experiences the “spooky” or the “realistic” backaction (or
their combination). In this sense, the “realistic” backaction is not fully realistic: it
has a physical mechanism, but whether this mechanism works or not is determined
in a spooky way. Causality requires that we cannot pass “useful” information to the
qubit by choosing the measurement method. This means that the ensemble-averaged
evolution of the. qubit cannot depend on the measurement method (this is the general
requirement of causality in quantum mechanics). It is surely satisfied in our circuit

QED setup.
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