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Abstract

We discuss an experimental proposal on quantum feedback control of a double-dot qubit, which seems to be within the reach of the

present-day technology. Similar to the earlier proposal, the feedback loop is used to maintain the coherent oscillations in the qubit for an

arbitrary long time; however, this is done in a significantly simpler way. The main idea is to use the quadrature components of the noisy

detector current to monitor approximately the phase of qubit oscillations.
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The principle of feedback control is widely used in

physics and engineering. However, continuous feedback

control of quantum systems is a relatively new and not well

studied subject. Quantum feedback in optics has been

proposed theoretically a decade ago [1] and has been

recently demonstrated experimentally [2]. For a solid-state

system (qubit), the quantum feedback has been discussed for

the first time only few years ago [3], and there are no

experiments yet.

The possibility of a quantum feedback is based on the

fact that measurement by an ideal solid-state detector (with

100% quantum efficiency h) does not decohere a single

qubit [4,5], even though it decoheres an ensemble of qubits

because each qubit evolves in a different way. An example

of theoretically ideal detector is [4] the quantum point

contact (h comparable to 1 has been demonstrated

experimentally [6]).

The random evolution of a qubit in the process of

measurement can be monitored using the noisy detector

output [4,5], and this monitoring can naturally be used for

continuous feedback control of the qubit. In the proposal of

Ref. [3], the quantum feedback is used to maintain quantum

coherent (Rabi) oscillations in a qubit for an arbitrary long

time, synchronizing them with an external classical signal.

This is done by measuring the noisy current I(t) in a weakly

coupled detector and using the quantum Bayesian equations

[4] to translate information contained in I(t) into
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the evolution of qubit density matrix r(t). After that r(t) is

compared with the desired quantum state rd(t), and the

calculated difference is used to control the qubit Hamil-

tonian in order to decrease the difference.

An important difficulty in such experiment is a necessity

to solve the Bayesian equations in real time. Moreover, the

bandwidth of the line delivering I(t) to the circuit solving

the Bayesian equations, should be significantly wider than

the Rabi frequency U. Unfortunately, these conditions are

unrealistic for the present-day experiments with solid-state

qubits.

In this paper, we discuss (see also Ref. [7]) a much

simpler way (Fig. 1) of processing the information carried

by the detector current I(t). The idea is to use the fact that

besides noise, I(t) contains an oscillating contribution due to

Rabi oscillations in the measured qubit. Therefore, if we

apply I(t) to a simple tank circuit (which is in resonance with

U), then the phase of the tank circuit oscillations will

depend on the phase of Rabi oscillations. Instead of using

the tank circuit, almost equivalent theoretically procedure is

to mix I(t) with the signal from a local oscillator (Fig. 1) in

order to determine two quadrature amplitudes of I(t) at

frequency U, which will carry information on the phase of

Rabi oscillations. Since diffusion of the Rabi phase is a slow

process (assuming weak coupling to the detector and

environment), the further circuitry can be relatively slow,

limited by the qubit dephasing rate, but not limited by much

higher Rabi frequency. The simplicity of the information

processing and alleviation of the bandwidth problem are

the main advantages of this proposal in comparison with

Ref. [3].

Let us consider a ‘charge’ qubit made of double quantum

dot [8] occupied by a single electron, described by
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Fig. 1. Schematic of the proposed quantum feedback loop.

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1

2

F/C

D
,  

<
X

>
(4

/τ
∆

I)

4

8

0.5

0.2

[(∆I)2/SI]=

0.1
C = 0.1

 = 1η

τ

Fig. 2. Dependence of the synchronization degree D on the feedback factor

F in ideal case (gZ0) for several t. Experimentally D can be measured via

average in-phase current quadrature hXi.
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Hamiltonian Hqb Z ð3=2Þðc†
2c2Kc†

1c1ÞCHðc†
1c2Cc†

2c1Þ,

where c†
1;2 and c1,2 are the creation and annihilation

operators in the basis of ‘localized’ (charge) states, 3 is

their energy asymmetry, and the tunneling between dots

HZH0CHfb(t) can be controlled by the feedback loop

(Hfb). The qubit state is measured by the quantum point

contact [6], which barrier height depends on the qubit

charge. Instead of writing Hamiltonians explicitly [9,4], we

will characterize the measurement by two levels of the

average detector current, I1 and I2, corresponding to the two

charge states, by the detector output noise SI, and by the

qubit ensemble dephasing rate G due to detector back-action

and environment. Assuming sufficiently large detector

voltage and quasicontinuous detector current I(t), we

describe the qubit evolution by the Bayesian equations [4]

_r11 ZK2H Im r12 C2r11r22½IðtÞK I0�DI=SI ; (1)

_r12 Z i3r12 C iHðr11 Kr22ÞKgr12 K ðr11

Kr22Þr12½IðtÞK I0�DI=SI ; (2)

where ZZ1, DIZI1KI2, I0Z ðI1C I2Þ=2, and

gZGK ðDIÞ2=4SI . The decoherence rate gZgdCge of

the single qubit is due to detector nonideality,

gdZ ðhK1 K1ÞðDIÞ2=4SI , and due to additional coupling

with environment (ge). The current IðtÞZ I0C ðr11 K
r22ÞDI=2CxðtÞ has the noise component x(t) with the flat

spectral density SI. [Averaging over x(t) would lead to the

standard master equation with ensemble dephasing G.]

Notice that in the case 3Z0 (which is assumed unless

mentioned otherwise), we can disregard the evolution of

Re r12 (it becomes zero at t[GK1), so only two

degrees of freedom are left, which may be parameterized

as r11 Kr22 ZP cosðUtCfÞ and 2 Im r12 ZP sinðUtCfÞ,

where the feedback-maintained frequency U (see below) is

assumed to be equal (unless stated otherwise) to the bare

Rabi frequency U0Z ð4H2
0 C32Þ1=2.

We assume that two quadrature components of the

detector current (Fig. 1) are determined as

XðtÞ Z

ðt

KN
½Iðt 0ÞK I0�cosðUt 0ÞeKðtKt 0Þ=t dt 0; (3)

YðtÞ Z

ðt

KN
½Iðt 0ÞK I0�sinðUt 0ÞeKðtKt 0Þ=t dt 0; (4)

where U is the local oscillator frequency applied to the

mixer, and t is the averaging time constant. Similar
formulas are also applicable to the case of a

tank circuit with the resonant frequency U and

quality factor QZUt/2. If the detector current would be a

harmonic signal IðtÞZ I0 CPðDI=2ÞcosðUtCf0Þ, then

f0ZKarc tanðhY i=hXiÞ, so it is natural to use

fmðtÞhKarctanðY =XÞ (5)

as a monitored estimate of the phase shift f(t) between the

Rabi oscillations and the local oscillator (h.i means

averaging over time). Similar to Ref. [3] we consider the

feedback loop, which aim is to suppress the fluctuations of

the Rabi phase, so that the goal is f(t)Z0 (or as small as

possible). The linear feedback rule is assumed:

Hfb=H0ZKFfmðtÞ, where F is the dimensionless feedback

factor (by definition jfmj%p).

We characterize the performance of the feedback loop

by the synchronization degree DZ hPðtÞ cos fðtÞi

Z2hTr rðtÞrdðtÞiK1, where rd corresponds to the desired

perfect Rabi oscillations (PdZ1, fdZ0). The feedback

operation is simulated numerically using Monte Carlo

algorithm [4]. Fig. 2 shows the dependence of D on the

feedback factor F for several time constants t in the case of

weak coupling CZ0.1 and gZ0 (we normalize F by C, so

the results practically do not depend on C for C
~

!1).

Limiting ourselves to twSI =ðDIÞ2 (excluding wide-band-

width regime), we see that the maximum achievable

synchronization degree Dmax is about 90%. It is impossible

to reach 100% because the monitored simple phase estimate

fm is significantly different from the actual f; however, the

fidelity is still surprisingly large for such a simple feedback

loop.

An important question is how the operation of the

quantum feedback loop can be verified experimentally. One

of the easiest ways is to check that the average value hXi of

the in-phase quadrature component X(t) becomes positive,

while in absence of feedback (FZ0) positive and negative

values of X are obviously equally probable. Notice that any

Hamiltonian control of a qubit which is not based on
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Fig. 3. Solid lines: synchronization degree D (and in-phase current

quadrature hXi) as functions of F for several values of the detection

efficiency heff. Dashed and dotted lines illustrate the effects of the energy

mismatch (3s0) and the frequency mismatch (UsU0).
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the information obtained from the detector (i.e. feedback

control) cannot provide nonzero hXi. It is easy to show that

hXiZ ½DC hP cosð2UtCfÞi�tDI=4, and since the second

term in brackets vanishes at weak coupling (and 3Z0),

therefore, hXi is directly related to D. The numerical results

for hXi/(tDI/4) practically coincide with the curves for D in

Fig. 2 (within the thickness of the line).

The ideal case gZ0 is obviously not realizable in an

experiment because of finite nonideality of a detector (h!1)

and presence of an extra environment (geO0). Both effects

can be taken into account simultaneously introducing

effective efficiency of quantum detection

heff Z ½hK1C4geSI =ðDIÞ2�K1. Fig. 3 shows (solid lines) the

feedback performance for several values of heff assuming
tðDIÞ2=SI Z1. One can see that heffw0.1 is still a sufficient

value for a noticeable operation of the quantum feedback

loop.

Finally, let us discuss how accurately the conditions UZ
U0 and 3Z0 should be satisfied in an experiment. Dotted

lines in Fig. 3 show the feedback operation for heffZ0.2 and

two values of DU, confirming still good operation at

jDUjZ jUKU0j/CUwGwtK1. Energy mismatch

(3s0) also worsens the performance of the feedback loop;

however, the dashed lines in Fig. 3 (wheffZ0.5) show that a

relatively large mismatch (3
~

!H0) can be tolerated.

In conclusion, we have shown that a quite simple

feedback loop based on the monitoring of quadrature

components of the detector current, can maintain coherent

oscillations in a double-dot qubit with a surprisingly good

fidelity. The work was supported by NSA and ARDA under

ARO grant W911NF-04-1-0204.
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