
PHYSICAL REVIEW A, VOLUME 65, 052304
Continuous measurement of entangled qubits

Alexander N. Korotkov
Department of Electrical Engineering, University of California, Riverside, California 92521-0204

~Received 17 October 2001; published 15 April 2002!

We have developed Bayesian formalism to describe the process of continuous measurement of entangled
qubits. We start with the case of two qubits and then generalize it to an arbitrary number of qubits.

DOI: 10.1103/PhysRevA.65.052304 PACS number~s!: 03.67.Lx, 73.23.2b, 03.65.Ta
on
ffi
e-

o
t o
lo
es
de
au
in
b
a
th

r
s
o

th
e

ur
e-
s
e

-

n
i-

n

t

in

on

b
ta
p

rs

e
ry.
nin-
us
y

or
ion
e-
s

,
the

and
f
cale

,

ro-
-
e
w

t
ure-

is

trix
The problem of quantum measurement of a qubit~two-
level system! received renewed attention recently in relati
to its importance for quantum computing. The case of su
ciently fast~instantaneous! measurement can be readily d
scribed by ‘‘orthodox’’ collapse postulate@1#, and this is the
case assumed at present by all quantum algorithms. H
ever, in practice, especially for solid-state qubits, the ac
measurement is not instantaneous. Because of typically
coupling between a solid-state qubit and a detector, it tak
considerable time before the qubit state is completely
stroyed by the act of measurement. Correspondingly, bec
of fundamentally unavoidable noise of the detector, the
formation about the state of the measured qubit is availa
not immediately, but only after some time sufficient to get
acceptably large signal-to-noise ratio. It is important that
time scale of measurement~and collapse! process may be
comparable to the time scale of ‘‘free’’ qubit evolution~e.g.,
due to Rabi oscillations! or to the duration of the detecto
on-off operation sequence.~For example, if the detector i
switched off when signal-to noise ratio is still on the order
unity, the measurement is only partially completed.!

So, for practical needs we should be able to describe
measurement of a solid-state qubit as a continuous proc
The formalism suitable to describe a continuous meas
ment of anensembleof qubits has been developed two d
cades ago@2# ~for its use in quantum computing problem
see, e.g., Ref.@3#!. In contrast, the formalism describing th
process of measurement of asingle qubit have been pre
sented only recently@4–6# and is still in the stage of active
development.~In fact, it can be considered as a direct co
tinuation of the well-developed field of selective or cond
tional quantum measurements — see, e.g., Refs.@7–12# and
references in Ref.@5#!. This formalism is called Bayesia
~because of the essential role of the Bayes formula@13#! and
combines advantages of the ‘‘orthodox’’ approach@1# ~the
ability to treat single quantum systems! and the Leggett’s
approach@2# ~the ability to treat continuous measurement!.

The Bayesian approach has been applied so far only to
continuous measurement of a single qubit.@4–6,14–16# In
this paper we apply it to derive the equations describ
continuous measurement of entangled qubits.

Let us consider first the case of two entangled qubits,
of which is continuously measured by a detector~Fig. 1!.
As a main example, we consider qubits made of dou
quantum dots while the detector is a quantum point con
@realizations based on single-electron transistors and su
conducting quantum interference devices~SQUIDs! are also
possible — see Ref.@5##. Let us denote four basis vecto
characterizing the state of two qubits asu1&[ u↑↑&,
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u2&[ u↑↓&, u3&[ u↓↑&, and u4&[ u↓↓&. ~The basis for
the first qubit is determined by its interaction with th
detector, while for the second qubit, the basis is arbitra!
The qubits can interact with each other as well as be no
teracting ~the entanglement can be a result of previo
interaction!. The free evolution of qubits is described b
the Schro¨dinger equation dC/dt5(2ı/\)HqbC, where
Hqb is the Hamiltonian of qubits only (Hqb accounts for
energy asymmetries and ‘‘tunnelings’’ within qubits and f
interaction between qubits, but does not include interact
with the detector!. Correspondingly, in the case without d
tector the density-matrixr of a double-qubit system evolve
asdr/dt5(2ı/\)@Hqb ,r#.

The detector output is characterized by two dc currentsI ↑
andI ↓ , corresponding to two states of the first qubit, and
frequency-independent spectral densityS of the detector
noise. As usual@5# we assume weakly responding~linear!
detector,uDI u!I 0, whereDI[I ↑2I ↓ and I 0[(I ↑1I ↓)/2, to
neglect individual electrons passing through the detector
consider the detector currentI (t) as a continuous function o
time. For the same purpose we assume that the time s
e/I 0 ~where e is the electron charge! is much shorter than
other time scales in the problem~due to collapse, dephasing
and free evolution of qubits!.

Let us start with the simplest case when qubits are ‘‘f
zen,’’ @17# Hqb50 ~so all the evolution is due to the mea
surement only!, the initial state of qubits is pure, and th
detector is ideal~for example, quantum point contact at lo
temperature is an ideal detector@5#, as well as single-electron
transistor well inside the cotunneling range@18#!. We can
always represent the initial pure state asC5au↑& ^ (a↑u↑&
1b↑u↓&)1bu↓& ^ (a↓u↑&1b↓u↓&), where the states of the
second qubit are normalized,ua↑u21ub↑u25ua↓u21ub↓u251,
and consequentlyuau21ubu251. Since the detector is no
coupled to the second qubit, the evolution due to meas
ment affects only the factorsa andb, which can be calcu-

FIG. 1. Schematic of two entangled qubits, one of which
continuously measured by a detector. The noisy detector outputI (t)
is used to monitor the evolution of the double-qubit density-ma
r(t).
©2002 The American Physical Society04-1
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lated using the single-qubit Bayesian result@5# ~the overall
wave function phase is of course not important!.

a~t!

a~0!
5F P↑~t!

ua~0!u2P↑~t!1ub~0!u2P↓~t!
G 1/2

, ~1!

b~t!

b~0!
5F P↓~t!

ua~0!u2P↑~t!1ub~0!u2P↓~t!
G 1/2

, ~2!

where P↑(t) and P↓(t) characterize the conditional prob
abilities ~for the first qubit inu↑& andu↓& states! of getting a
particular realization of the detector output@19# I (t),

P↑~t!5~2pD !21/2exp@2~ Ī ~t!2I ↑!2/2D#, ~3!

P↓~t!5~2pD !21/2exp@2~ Ī ~t!2I ↓!2/2D#, ~4!

Ī ~t![t21E
0

t

I ~ t !dt, D[S/2t. ~5!

In the language of double-qubit density matrix the evolut
described by Eqs.~1! and ~2! can be rewritten as

r11~t!

r11~0!
5

r22~t!

r22~0!
5

r12~t!

r12~0!
5

P↑~t!

r↑P↑~t!1r↓P↓~t!
, ~6!

r33~t!

r33~0!
5

r44~t!

r44~0!
5

r34~t!

r34~0!
5

P↓~t!

r↑P↑~t!1r↓P↓~t!
, ~7!

r13~t!

r13~0!
5

r14~t!

r14~0!
5

r23~t!

r23~0!
5

r24~t!

r24~0!

5
@P↑~t!P↓~t!#1/2

r↑P↑~t!1r↓P↓~t!
, ~8!

where r↑[r11(0)1r22(0) and r↓[r33(0)1r44(0) corre-
spond to initial probabilities to find the first qubit inu↑& and
u↓& states.

If the initial stater(0) is not pure, its evolution can b
calculated in the following way. Let us representr(0) as

r~0!5(
s

ps~0!rs~0!, ~9!

whereps is the classical probability of a pure stateus&, rs is
its density matrix, and the sum is over a necessary numbe
pure states.~Of course, such representation is not unique
general.! To calculater(t) we can apply the ‘‘double Bayes
procedure: classical Bayes theorem to obtain probabili
ps(t),

ps~t!5
ps~0!@rs,↑P↑~t!1rs,↓P↓~t!#

( rpr~0!@r r ,↑P↑~t!1r r ,↓P↓~t!#
, ~10!

and the quantum Bayesian result@Eqs. ~6!–~8!# to calculate
eachrs(t). It is easy to show that the resulting evolution
r(t)5(sps(t)rs(t) satisfies Eqs.~6!–~8!, which therefore
are valid for arbitrary mixed states as well. Notice that E
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~8! has an obvious interpretation as the conservation of
‘‘degree of purity’’ similar to the one-qubit case@5#.

Besides the derivation of Eqs.~6!–~8! using one-qubit
Bayesian result~as above!, they can also be obtained~in the
case of pure states! directly using the ‘‘quantum Bayes theo
rem’’ @20#, which says that the classical Bayes formula@13#
is applicable not only to the probabilities described by t
diagonal matrix elements~that is obvious because of the co
respondence principle!, but also applicable to the wave func
tion amplitudes. Besides that, Eqs.~6!–~8! can be easily de-
rived ‘‘microscopically’’ in the case of a low-transparenc
quantum point contact at zero temperature. In this case, s
ing the Schro¨dinger equation for the qubits coupled to th
detector~for the model see Refs.@21# and@5#! one can obtain
the following Bloch equations@21# for the density matrixr̃ i j

n

which contains indexn corresponding to the number of ele
trons passed through the detector:

dr̃11
n /dt52~ I ↑ /e!r̃11

n 1~ I ↑ /e!r̃11
n21 , ~11!

dr̃33
n /dt52~ I ↓ /e!r̃33

n 1~ I ↓ /e!r̃33
n21 , ~12!

dr̃12
n /dt52~ I ↑ /e!r̃12

n 1~ I ↑ /e!r̃12
n21 , ~13!

dr̃13
n /dt52~ I 0 /e!r̃13

n 1~AI ↑I ↓/e!r̃13
n21 , ~14!

dr̃14
n /dt52~ I 0 /e!r̃14

n 1~AI ↑I ↓/e!r̃14
n21 . ~15!

The equations for other components ofr̃ i j
n are similar and

can be obtained by the substitutions:r̃11
n → r̃22

n , r̃33
n → r̃44

n ,

r̃33
n → r̃34

n , r̃13
n → r̃23

n , andr̃13
n → r̃24

n . Solving these equation
and collapsing the numbern at timet ~measuring the charge
passed through the detector and obtaining, for exam
chargeme),

r̃ i j
n ~t10!5dnmr i j ~t10!, ~16!

r i j ~t10!5
r̃ i j

m~t20!

(kr̃kk
m ~t20!

, ~17!

one reproduces Eqs.~6!–~8!.
Now let us take into account finite detector ideality~effi-

ciency!, h<1, where in the one-qubit case@5# h
[(DI )2/4SG is the ratio of the ‘‘information acquisition
rate’’ @22# (DI )2/4S and the ensemble dephasing rateG.
Similar to the derivation of Ref.@4#, let us consider first the
case of a detector with neglected output~which is equivalent
to ‘‘pure environment’’!. Then, averaging Eqs.~6!–~8! over
the probability distributionr↑P↑(t)1r↓P↓(t) of Ī (t) @see
Eqs. ~3!–~5!#, we get the following: the right-hand side o
Eqs.~6! and~7! becomes unity~which means thatr11, r22,
r12, r33, r44, andr34 do not change on average!, while the
right-hand side of Eq.~8! is replaced by exp@2(DI)2/4S#
~which means thatr13, r14, r23, andr24 decay on average
with the rate (DI )2/4S). Similar to the one-qubit case, w
can regard a nonideal detector as two detectors ‘‘in paral
@23#, neglecting the output of the second detector. In t
4-2
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way, we obtain the following result for a nonideal detect
Eqs. ~6! and ~7! remain valid, while Eq.~8! should be re-
placed by

r13~t!

r13~0!
5

r14~t!

r14~0!
5

r23~t!

r23~0!
5

r24~t!

r24~0!

5
@P↑~t!P↓~t!#1/2

r↑P↑~t!1r↓P↓~t!
exp~2gt!, ~18!

whereg5(h2121)(DI )2/4S.
Notice that since the second qubit is not coupled to

detector, the state of the second qubit changes only due t
entanglement with the first qubit. In particular, in the case
no initial entanglement@whenr(0) can be represented as
direct product#, the state remains disentangled, the sec
qubit density matrix does not change, and Eqs.~6!–~8! re-
duce to the Bayesian result for the first qubit.

If the qubits are not frozen,HqbÞ0, the evolution due to
Hqb should be added to the evolution due to measurem
~Simple adding of contributions from two evolutions is po
sible because the measurement process in the Bayesian
malism is assumed to be Markovian that requires, for
ample, the ‘‘attempt’’ frequency of tunneling electrons in t
detector to be much larger that the typical frequency of qu
system evolution.! In differential form @we use Stratonovich
representation@5#, so we take the usual derivatives of Eq
~6!, ~7!, and~18!# we get the following Bayesian equation

ṙ115
2ı

\
@Hqb ,r#111r11~r331r44!

2DI

S
„I ~ t !2I 0…,

~19!

ṙ335
2ı

\
@Hqb ,r#332r33~r111r22!

2DI

S
„I ~ t !2I 0…,

~20!

ṙ125
2ı

\
@Hqb ,r#121r12~r331r44!

2DI

S
„I ~ t !2I 0…,

~21!

ṙ345
2ı

\
@Hqb ,r#342r34~r111r22!

2DI

S
„I ~ t !2I 0…,

~22!

ṙ135
2ı

\
@Hqb ,r#132r13~r111r222r332r44!

DI

S

3„I ~ t !2I 0…2gr13, ~23!

ṙ145
2ı

\
@Hqb ,r#142r14~r111r222r332r44!

DI

S

3„I ~ t !2I 0…2gr14. ~24!

The equations for remaining components can be obta
from Eq. ~19! by substitution$11%→$22%, from Eq. ~20! by
substitution$33%→$44%, and from Eq.~23! by substitutions
$13%→$23% and$13%→$24%.
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These equations allow us to monitor the evolution of t
double-qubit density matrix if we know the initial stater(0)
~for example, we have prepared qubits ourselves! and we
know the detector outputI (t) from an experiment.@To em-
phasize the noisy nature ofI (t) we show this time depen
dence in Eqs.~19!–~24! explicitly, while the time depen-
dence of the density matrixr is not shown explicitly.# To
simulate the measurement process numerically, we n
~similar to Ref. @5#! to complement these equations by t
formula

I ~ t !2I 05
DI

2
~r111r222r332r44!1j~ t !, ~25!

where j(t) is a zero-correlated~‘‘white’’ ! random process
with zero average and the same spectral density as the d
tor noise,Sj5S. @Equation~25! is derived from the probabil-
ity distribution r↑P↑(t)1r↓P↓(t) for the average curren
Ī (t) at sufficiently smallt, so that evolution due toHqb can
be neglected.#

The conventional~ensemble-averaged! evolution equa-
tions can be obtained from Eqs.~19!–~24! by averaging over
j(t) ~it is easier to do using Itoˆ representation – see simila
procedure in Ref.@5#!. In the resulting equations the term
proportional to DI disappear, whileg is replaced byg
1(DI )2/4S. This result can be also obtained directly, sin
ensemble averaging is equivalent to the use of comple
nonideal detector:DI 50, h50.

The generalization of Eqs.~19!–~25! to the case of arbi-
trary numberN of entangled qubits, one of which is bein
continuously measured~Fig. 2!, is pretty obvious. If both
basis vectorsi and j ~from the set of 2N basis vectors! cor-
respond to the stateu↑& of the measured qubit, then the ev
lution of the matrix elementr i j is given by the equation

ṙ i j 5
2ı

\
@Hqb ,r# i j 1r i j r↓

2DI

S
„I ~ t !2I 0…. ~26!

If both i and j correspond to the stateu↓& of the measured
qubit, then

ṙ i j 5
2ı

\
@Hqb ,r# i j 2r i j r↑

2DI

S
„I ~ t !2I 0…. ~27!

Finally, if i corresponds to the stateu↑& while j corresponds
to the stateu↓&, then

FIG. 2. Schematic ofN entangled qubits, one of which is con
tinuously measured by a detector. Bayesian formalism allows u
monitor N-qubit density-matrixr(t), using detector outputI (t).
4-3
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ALEXANDER N. KOROTKOV PHYSICAL REVIEW A 65 052304
ṙ i j 5
2ı

\
@Hqb ,r# i j 2r i j ~r↑2r↓!

DI

S
@ I ~ t !2I 0#2gr i j .

~28!

In these equationsHqb is again the Hamiltonian of qubit
~without detector! while r↑(t) and r↓(t) ~now time depen-
dent! are the sums of the diagonal matrix elements ofr(t),
corresponding to the statesu↑& and u↓& of the measured qu
bit. Equation~25! should be generalized as

I ~ t !2I 05
DI

2
@r↑~ t !2r↓~ t !#1j~ t !. ~29!

Now let us generalize the formalism to the case when
detector is coupled to all qubits~Fig. 3!. Classically, in this
case there are up to 2N different dc current levelsI i , corre-
sponding to various combinations of qubit states. Some
these levels can coincide, for example, if the detector is
coupled to some qubits or if some qubits are coupled to
detector equally strong. Applying the quantum Bayes th
rem in the case of frozen qubits,Hqb50, and taking into
account finite idealityh of the detector, we obtain the fol
lowing equations:

r i j ~t!

r i j ~0!
5

APi~t!Pj~t!

(krkk~0!Pk~t!
exp~2g i j t!, ~30!

Pi~t!5~2pD !21/2exp@2„Ī ~t!2I i…
2/2D#, ~31!

g i j 5~h2121!~ I i2I j !
2/4S, ~32!

whereĪ (t) andD are defined by Eq.~5!, and the sum in Eq
~30! is over all 2N basis vectorsk ~the basis is defined by th
interaction between the detector and each qubit!. Corre-
spondingly, the probability distribution of Ī (t) is
( ir i i (0)Pi(t). Notice that the exponent due to nonideal
in Eq. ~30! disappears for diagonal matrix elements (i 5 j )
and also if the classical currentsI i and I j for two different
configurations coincide. This is becauseI i5I j means equa
coupling of the detector to the statesi and j, so the detector
noise cannot destroy the coherence between these state

Let us briefly discuss what will happen to Eqs.~30!–~32!
if we relax the assumption of weak detector response,uI i
2I j u!(I i1I j )/2. As an example, let us again consider a lo
transparency quantum point contact at zero temperature
the case of moderate or strong response, each electron p
through the detector brings significant information and, c

FIG. 3. N entangled qubits, continuously measured by a de
tor, coupled to all qubits.
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respondingly, changes significantly the density-matrixr of
the qubits. Then the language of continuous detector cur
is not applicable anymore, and instead of considering a
age currentĪ (t) we should count the numbern of electrons
passed through the detector during timet. Equation~30! in
this case does not change~exceptg i j 50 since the detector is
ideal!, while the Gaussian distribution in Eq.~31! should
be replaced by the Poissonian distribution:Pi(t)
5(n!) 21(I it/e)n exp(2Iit/e). It is not easy to introduce
nonideality for a detector with finite response. If, howev
we defineh in a way @6# similar to optical quantum effi-
ciency as a probability to observe~not to miss! each electron
tunneled through a detector~unfortunately, this definition is
hardly justified in typical solid-state setups!, then we can
keep the exponential term in Eq.~30! and should replace Eq
~32! by g i j 5(h2121)(AI i2AI j )

2/2e.
Returning to the case of weak detector response and

tinuous current, differentiating Eq.~30! over time, and add-
ing the free evolution due toHqb , we finally obtain the fol-
lowing equation:

ṙ i j 5
2ı

\
@Hqb ,r# i j 1r i j

1

S (
k

rkkF S I ~ t !2
I k1I i

2 D
3~ I i2I k!1S I ~ t !2

I k1I j

2 D ~ I j2I k!G2g i j r i j .

~33!

Equation~25! in this case is replaced by

I ~ t !5(
i

r i i ~ t !I i1j~ t !. ~34!

Our final generalization is to the case of several detect
coupled toN qubits. Each detector has its own set of up toN

classical current levels. It is important to notice that coupli
of qubits to different detectors can define different sets
basis vectors. So, generalization of Eq.~33! requires us to
sum the terms due to measurement over all detectors, ch
ing particular basis for each detector.

In conclusion, we have developed the Bayesian formal
describing continuous measurement of entangled solid-s
qubits. The case of two qubits, one of which is measured
a detector is considered in detail and then generalized to
arbitrary case. For nonideal detectors we have assumed
absence of correlation between output and backaction no
so the formalism applicable to nonideal detectors with su
correlation@5# still has to be developed. The results of th
paper@evolution Eqs.~19!–~24!, ~26!–~28!, and~33!# can be
experimentally tested. However, such experiments seem
be still a little beyond the reach of the present-day solid-s
technology. They could be attempted after proposed Ba
sian experiments with a single solid-state qubit, in particu
Bell-type experiment@15#.
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