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We analyze the effect of local decoherence of two qubits on their entanglement and the Bell-inequality
violation. Decoherence is described by Kraus operators, which take into account dephasing and energy relax-
ation at an arbitrary temperature. We show that in the experiments with superconducting phase qubits the
survival time for entanglement should be much longer than for the Bell-inequality violation.
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Entanglement of separated systems is a genuine quantum
effect and an essential resource in quantum information pro-
cessing �1�. Experimentally, a convincing evidence of a two-
qubit entanglement is a violation of the Bell inequality �2� in
its Clauser-Horne-Shimony-Holt �3� �CHSH� form. How-
ever, only for pure states the entanglement always �4� results
in a violation of the CHSH inequality. In contrast, some
mixed entangled two-qubit states �as we will see, most of
them� do not violate the CHSH inequality �5�, though they
may still exhibit nonlocality in other ways �6�. Distinction
between entanglement and Bell-CHSH-inequality violation,
in its relevance to experiments with superconducting phase
qubits �7�, is the subject of our paper.

The two-qubit entanglement is usually characterized by
the concurrence �8� C or by the entanglement of formation
�9�, which is a monotonous function �8� of C. Nonentangled
states have C=0, while C=1 corresponds to maximally en-
tangled states. There is a straightforward way �8� to calculate
C for any two-qubit density matrix �. The Bell inequality in

the CHSH form �3� is �S��2, where S=E�a� ,b��−E�a� ,b���
+E�a�� ,b��+E�a�� ,b��� and E�a� ,b�� is the correlator of results
��1� for measurement of two qubits �pseudospins� along

directions a� and b� . This inequality should be satisfied by any
local hidden-variable theory, while in quantum mechanics it
is violated up to �S�=2�2 for maximally entangled �e.g.,
spin-zero� states. Mixed states produce smaller violation �if
any�, and there is a straightforward way �10� to calculate the
maximum value S+ of �S� for any two-qubit density matrix.

For states with a given concurrence C, there is an exact
bound �11� for S+ :2�2C�S+�2�1+C2: �we consider only
S+�2�, so that the CHSH inequality violation is guaranteed
if C�1 /�2. For any pure state the upper bound is reached:
S+=2�1+C2, so that nonzero entanglement always leads to
S+�2. The distinction between entanglement and CHSH in-
equality violation has been well studied for so-called Werner
states �5� which have the form �= f�s+ �1− f��mix, where �s
denotes the maximally entangled �singlet� state, and �mix
=1 /4 is the density matrix of the completely mixed state.
The Werner state is entangled for �5� f �1 /3, while it vio-
lates the CHSH inequality only when �10� f �1 /�2.

The Werner states, however, are not relevant to most of
experiments �including those with superconducting phase
qubits �7��, in which an initially pure state becomes mixed
due to decoherence �Werner states are produced due to so-
called depolarizing channel �1��. Recently a number of au-
thors have analyzed effects of qubit decoherence on the Bell-

CHSH-inequality violation �12–16� and entanglement
�17–23�. Best-studied models of decoherence in this context
are pure dephasing �12,13,15,19,21,23� and zero-temperature
energy relaxation �14,16,18,22�, while there are also papers
considering a combination of these mechanisms �17,20�,
high-temperature energy relaxation �14�, and nonlocal deco-
herence �14,15,23�. In particular, for the case of pure dephas-
ing it has been shown �19,20� that the concurrence C decays
as a product of decoherence factors for the two qubits, and
therefore a state remains entangled for arbitrarily long time;
moreover, the calculation of S+ shows �12,13� that the CHSH
inequality is always violated also. For the case of zero-
temperature energy relaxation it has been shown that en-
tanglement can still last forever �16,18,22� �depending on the
initial state�, while a finite survival time has been obtained
�16� for the CHSH inequality violation.

In this paper we consider a two-qubit state decoherence
due to general �Markovian� local decoherence of each qubit
�including dephasing and energy relaxation at a finite tem-
perature� and assume absence of any other evolution. For
this model we compare for how long an initial state remains
entangled �C�0�, and for how long it can violate the Bell-
CHSH inequality �S+�2�. In particular, we show that for
typical �best� present-day parameters for phase qubits �7�
these durations differ by �8 times.

Before analyzing this problem let us discuss which frac-
tion of the entangled two-qubit states violate the Bell-CHSH
inequality. This question is well-posed only if we introduce a
particular metric �distance� and corresponding measure �vol-
ume� in the 15-dimensional space of density matrices. Vari-
ous metrics are possible; let us choose the Hilbert-Schmidt
metric �1,24�, for which the geometry in the space of states is
Euclidean. Then random states � with the uniform probabil-
ity distribution can be generated as �24� �=A†A / tr�A†A�,
where A is a 4�4 matrix, all elements of which are inde-
pendent Gaussian complex variables with the same variance
and zero mean. Using this method, we performed Monte
Carlo simulation, generating 109 random states and checking
if they are entangled �25–27� and if they violate the CHSH
inequality �10�. In this way we confirmed that 75.76% of all
states are entangled �28� and found that only 0.822% of all
states violate the Bell-CHSH inequality. Therefore, only a
small fraction, 1.085% of entangled states violate the Bell-
CHSH inequality.

Now let us discuss the effect of decoherence. For one
qubit it can be described by the Bloch equations �29� �we use
the basis of the ground state �0� and excited state �1�� and
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characterized by the energy relaxation time T1, dephasing
time T2 �T2�2T1�, and the Boltzmann factor h=exp�−� /��,
where � is the energy separation of the states and � is the
temperature. The usual solution of the Bloch equations can
be translated into the language of time-dependent superop-
erator L for the one-qubit density matrix �, so that ��t�
=L���0��=	i=1

4 Ki��0�Ki
†, where four Kraus operators Ki can

be chosen as

K1 = 
 0 0

�g 0
�, K2 = 
�1 − g 0

0 �/�1 − g
� , �1�

K3 = �0 0

0 �1 − hg −
�2

1 − g

, K4 = 
0 �hg

0 0
� ,

where g= �1−exp�−t /T1�� / �1+h�, �=exp�−t /T2�, and in our
notation �1�= �1,0�T, �0�= �0,1�T. It is easy to check that the
term under the square root in K3 is always non-negative, and
equals 0 �for t�0� only if T2=2T1 and �=0. Notice that
choice of the Kraus operators Ki is not unique.

In general, decoherence of two qubits is described by
many parameters �out of 240 parameters describing a general
quantum operation only 15 parameters describe unitary evo-
lution�. We choose a relatively simple but physically relevant
model when the decoherence is dominated by local decoher-
ence of each qubit. �Nonlocal decoherence would be physi-
cally impossible in the case of large distance between the
qubits.� The model now involves six parameters: T1

a,b, T2
a,b,

and ha,b=exp�−�a,b /�a,b�, where subscripts �or superscripts�
a and b denote qubits, and the evolution is described by
the tensor-product superoperator L=La � Lb �which is
completely positive because of complete positivity of La,b�.
This superoperator contains 16 terms: ��t�=L���0��
=	i,j=1

4 Kij��0�Kij
† , Kij =Ki

a
� Kj

b, where operators Ki
a,b are

given by Eq. �1� for each qubit.
As an initial state we consider an “odd” pure state

�	� = cos 
�10� + ei� sin 
�01� �2�

�0�
�
 /2�, which is relevant for experiments with the
phase qubits �7�. Since the parameter � corresponds to z
rotation of one of the qubits, while decoherence as well as
values of C and S+ are insensitive to such rotation, all our
results have either trivial or no dependence on �. The evo-
lution of the state �2� due to local decoherence L can be
calculated analytically, and at time t the nonvanishing ele-
ments of the two-qubit density matrix � are

�11�t� = �1 − ga�hbgb cos2 
 + haga�1 − gb�sin2 
 , �3�

�22�t� = �1 − ga��1 − hbgb�cos2 
 + hagagb sin2 
 ,

�33�t� = gahbgb cos2 
 + �1 − haga��1 − gb�sin2 
 ,

�44�t� = ga�1 − hbgb�cos2 
 + �1 − haga�gb sin2 
 ,

�32�t� = �23
� �t� = exp�− t/T2

a − t/T2
b�ei��sin 2
�/2,

where ga,b are defined below Eq. �1� and �ij subscripts i , j
=1,2 ,3 ,4 correspond to the basis ��11� , �10� , �01� , �00��.
These equations become very simple at zero temperature be-
cause then ha=hb=0. Notice that the dephasing times T2

a,b

enter Eqs. �3� only through the combination 1 /T2
a+1 /T2

b �this
is not so for a general initial state� so that the two-qubit
dephasing can be characterized by one parameter T2
�2 / �1 /T2

a+1 /T2
b�.

For the state �3� the concurrence is �14,20�

C = 2 max�0, ��23� − ��11�44� , �4�

and the CHSH inequality parameter S+ is �10,16�

S+ = 2 max�2�2��23�,�4��23�2 + �1 − 2�11 − 2�44�2� , �5�

while for the initial state C=sin 2
�0 and S+=2�1+C2

�2. Notice that the first and second terms in Eq. �5� corre-
spond to the “horizontal” and “vertical” measurement con-
figurations, using the terminology of Ref. �30�. Equations
�3�–�5� are all we need to analyze entanglement and CHSH
inequality violation.

Notice that for a pure dephasing �T1
a=T1

b=�� we have
�11=�44=0, and therefore

C = exp�− 2t/T2�sin 2
, S+ = 2�1 + C2. �6�

In this case at any t the state remains entangled �19,20� and
violates the CHSH inequality �12,13�. �It also remains within
the class of states producing maximal CHSH inequality vio-
lation for a given concurrence �11�.� In the case when both
dephasing and energy relaxation are present but temperature
is zero, �a=�b=0, the concurrence C is still given by Eq. �6�
and lasts forever �16,22�; however S+ does not satisfy Eq. �6�
and the CHSH inequality is no longer violated after a finite
time �16�. Finally, in presence of energy relaxation at non-
zero temperature �at least for one qubit� the entanglement
also vanishes after a finite time, as seen from Eq. �4�, in
which limt→� �11�44�0.

Let us consider in more detail the case when both dephas-
ing and energy relaxation are present, but temperature is zero
and T1

a=T1
b�T1. Then Eq. �5� for S+ becomes very simple

since �11=0 and �44=1−exp�−t /T1�. The time dependence
S+�t� consists of three regions: at small t it is always deter-
mined by the second term �31� in Eq. �5�, then after some
time t1 the first term becomes dominating, while after a later
time t2 the second term becomes dominating again. Notice
that in the second region S+=4�2��23�=2�2C, so such state
provides minimal S+ for a given concurrence C �11,32�. The
time �B after which the Bell-CHSH inequality is no longer
violated falls either into the first or second region, because
S+�t2��2. The time �B can be easily calculated if S+�t1��2,
so that �B falls into the second region and therefore

�B = �T2/2�ln��2 sin 2
� . �7�

This case is realized when pure dephasing is relatively weak:
T1 /T2� ln��2 sin 2
� / �2 ln�4−2�2��; since T1 /T2�1 /2, it
also requires sin 2
�2�2−2. �For T1 /T2=1 /2 Eq. �7� has
been obtained in Ref. �16�.� Notice that �B in Eq. �7� corre-
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sponds to the condition C=1 /�2, while in general �B corre-
sponds to C�1 /�2.

Now let us focus on calculating the duration �E of the
entanglement survival, duration �B of the Bell-CHSH-
inequality violation, and their ratio �E /�B at nonzero tem-
perature. For simplicity we limit ourselves to the case of
maximally entangled initial state �
=
 /4�, and we also as-
sume equal energy relaxation, splitting and temperature for
both qubits: T1

a=T1
b�T1, �a=�b��, and �a=�b��. As fol-

lows from Eq. �4�, the entanglement duration �E can be cal-
culated numerically using the equation ��23�=��11�44. Figure
1 shows �E �normalized by T2� as a function of the ratio
T1 /T2 for several values of the normalized inverse tempera-
ture � /�. As we see, in a typical experimental regime �7�
when � /��10, the ratio �E /T2 does not depend much on
T1 /T2 when T1 is larger but comparable to T2 �which is also
typical experimentally�. In other words, �E is approximately
proportional to T2, and in this regime �E also has crudely
inverse dependence on temperature �see Eq. �8� below�.

Analytical formulas for �E can be easily obtained in the
limiting cases. In absence of pure dephasing �T1 /T2=1 /2�
and at low temperature ����� we find �E /T2�� /2�
−ln�2�2+2� /2�� /2�−0.79, while at high temperature ��
��� we have �E /T2� ln��2+1� /2�0.44. In the case of
strong dephasing �T1 /T2�1� we find �neglecting some cor-
rections� �E /T2�� / �4��+ln�T1 /T2� /2.

However, these asymptotic formulas are not very relevant
to a typical experimental situation with phase qubits �7�, in
which T1�T2. As another way to approximate �E we have
chosen the value at the minimum of the curves in Fig. 1; this
minimum occurs at the ratios T1 /T2 somewhat close to the
experimental values, and the result is naturally not much
sensitive to T1 /T2 in a significantly broad range. For suffi-
ciently small temperatures �� /��2� we have obtained
approximation ��E /T2�min�� /4�+ln�33/4 /2��� /4�+0.13
and found that the minimum occurs at T1 /T2
���E /T2�min / ln 3. So, as the crudest approximation in the
experimentally relevant regime �� /��10−1, T1 /T2�1�, the
two-qubit entanglement lasts for �see dashed lines in Fig. 1�

�E � T2�/4� . �8�

The duration �B of the Bell-CHSH-inequality violation is cal-
culated using Eq. �5� as S+��B�=2. Solid and dotted lines in
Fig. 2 show numerical results for �B �in units of T2� as a
function of the ratio T1 /T2 for low and high temperatures:
� /�=15 and 0. The curves are almost indistinguishable, that
means that �B is practically independent of the temperature
for fixed T1 and T2. Notice that each curve consists of a
constant �horizontal� part and an increasing part, which cor-
respond to two terms in Eq. �5�. It can be shown that at zero
temperature the horizontal part is realized at T1 /T2
� ln 2 / �4 ln�4−2�2���1.1, while at high temperature ��
��� it is realized at T1 /T2�1. The horizontal part corre-
sponds to the first term in Eq. �5� dominating at �B: S+
=2�2 exp�−2t /T2�, so at sufficiently weak pure dephasing
we have �B /T2=ln 2 /4�0.17 �see also Eq. �7��. In the op-
posite case of strong pure dephasing �T1 /T2�1� the duration
�B is the solution of the equation �B /T2=ln�T1 / �4�B�� /4
�dashed line in Fig. 2�, so roughly �B /T2� ln�T1 /T2� /4 �dot-
dashed line in Fig. 2�. Combining these results, we get a
crude estimate

�B � T2 max�0.17,0.25 ln�T1/T2�� . �9�

Figure 3 shows the ratio �E /�B of the survival durations of
entanglement and the Bell-CHSH-inequality violation. We
see that the ratio �E /�B increases with the decrease of tem-
perature and decrease of the pure dephasing contribution,

FIG. 1. The two-qubit entanglement duration �E in units of the
dephasing time T2 for the maximally entangled initial state
�
=
 /4� and several values of the temperature �. Dashed lines
correspond to Eq. �8�.

FIG. 2. The duration �B of the Bell-CHSH-inequality violation
�assuming 
=
 /4� for � /�=15 �solid line� and � /�=0 �dotted
line�. The dashed line: �B /T2=ln�T1 / �4�B�� /4.

FIG. 3. The ratio �E /�B for the maximally entangled initial state
and several values of the temperature �.
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which are both the desired experimental regimes. �This rule
does not work in the experimentally irrelevant regime �
�� and T1�T2.� Notice that the kinks on the curves corre-
spond to the change of the dominating term in Eq. �5�. In
absence of pure dephasing �T1 /T2=1 /2� the low-temperature
result ����� is �E /�B��2 / ln 2��� /�−ln�2�2+2��, while at
��� the ratio is �E /�B�2 ln��2+1� / ln 2�2.5. In the limit
of strong pure dephasing �T1 /T2�1� the asymptotic result is
�E /�B�2+ �� /�� / ln�T1 /T2� �as we see, �E�2�B for any
parameters�. In the experimentally relevant regime when
� /��10−1 and T1 /T2�1, the ratio can be obtained from
Eqs. �8� and �9�, giving a crude estimate �E /�B
��� /��min�1.5,1 / ln�T1 /T2��.

For an experimental estimate let us choose parameters
typical for best present-day experiments with superconduct-

ing phase qubits �7�: � /2
��6 GHz, ��50 mK, T1

�450 ns, T2�300 ns. Then � /��6, T1 /T2�1.5, and we
obtain �E�470 ns, �B�60 ns, and �E /�B�7.7.

In conclusion, we have found that in the Hilbert-Schmidt
metric only 1.085% of entangled states violate the Bell-
CHSH inequality, thus explaining why entanglement can last
for a significantly longer time ��E� than the Bell-CHSH-
inequality violation ��B�. Using the technique of Kraus op-
erators, we have considered local decoherence due to
dephasing and energy relaxation at finite temperature, and
for this model calculated �E, �B, and their ratio �E /�B.
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