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Bell-inequality violation versus entanglement in the presence of local decoherence
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We analyze the effect of local decoherence of two qubits on their entanglement and the Bell-inequality
violation. Decoherence is described by Kraus operators, which take into account dephasing and energy relax-
ation at an arbitrary temperature. We show that in the experiments with superconducting phase qubits the
survival time for entanglement should be much longer than for the Bell-inequality violation.
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Entanglement of separated systems is a genuine quantum
effect and an essential resource in quantum information pro-
cessing [1]. Experimentally, a convincing evidence of a two-
qubit entanglement is a violation of the Bell inequality [2] in
its Clauser-Horne-Shimony-Holt [3] (CHSH) form. How-
ever, only for pure states the entanglement always [4] results
in a violation of the CHSH inequality. In contrast, some
mixed entangled two-qubit states (as we will see, most of
them) do not violate the CHSH inequality [5], though they
may still exhibit nonlocality in other ways [6]. Distinction
between entanglement and Bell-CHSH-inequality violation,
in its relevance to experiments with superconducting phase
qubits [7], is the subject of our paper.

The two-qubit entanglement is usually characterized by
the concurrence [8] C or by the entanglement of formation
[9], which is a monotonous function [8] of C. Nonentangled
states have C=0, while C=1 corresponds to maximally en-
tangled states. There is a straightforward way [8] to calculate
C for any two-qubit density matrix p. The Bell inequality in
the CHSH form [3] is |S|=2, where S=E(a,b)-E(a,b")
+E(a’,b)+E(a’',b') and E(a,b) is the correlator of results
(x£1) for measurement of two qubits (pseudospins) along
directions a and b. This inequality should be satisfied by any
local hidden-variable theory, while in quantum mechanics it
is violated up to |S|=2y2 for maximally entangled (e.g.,
spin-zero) states. Mixed states produce smaller violation (if
any), and there is a straightforward way [10] to calculate the
maximum value S, of |S| for any two-qubit density matrix.

For states with a given concurrence C, there is an exact
bound [11] for §,:2V2C=S,=21+C?* (we consider only
S,>2), so that the CHSH inequality violation is guaranteed
if C>1/42. For any pure state the upper bound is reached:
S,=21+C?, so that nonzero entanglement always leads to
S.>2. The distinction between entanglement and CHSH in-
equality violation has been well studied for so-called Werner
states [5] which have the form p=fp,+(1—f)pmi, Where p,
denotes the maximally entangled (singlet) state, and py
=1/4 is the density matrix of the completely mixed state.
The Werner state is entangled for [5] f>1/3, while it vio-
lates the CHSH inequality only when [10] > 1/2.

The Werner states, however, are not relevant to most of
experiments (including those with superconducting phase
qubits [7]), in which an initially pure state becomes mixed
due to decoherence (Werner states are produced due to so-
called depolarizing channel [1]). Recently a number of au-
thors have analyzed effects of qubit decoherence on the Bell-
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CHSH-inequality violation [12-16] and entanglement
[17-23]. Best-studied models of decoherence in this context
are pure dephasing [12,13,15,19,21,23] and zero-temperature
energy relaxation [14,16,18,22], while there are also papers
considering a combination of these mechanisms [17,20],
high-temperature energy relaxation [14], and nonlocal deco-
herence [14,15,23]. In particular, for the case of pure dephas-
ing it has been shown [19,20] that the concurrence C decays
as a product of decoherence factors for the two qubits, and
therefore a state remains entangled for arbitrarily long time;
moreover, the calculation of S, shows [12,13] that the CHSH
inequality is always violated also. For the case of zero-
temperature energy relaxation it has been shown that en-
tanglement can still last forever [16,18,22] (depending on the
initial state), while a finite survival time has been obtained
[16] for the CHSH inequality violation.

In this paper we consider a two-qubit state decoherence
due to general (Markovian) local decoherence of each qubit
(including dephasing and energy relaxation at a finite tem-
perature) and assume absence of any other evolution. For
this model we compare for how long an initial state remains
entangled (C>0), and for how long it can violate the Bell-
CHSH inequality (S,>2). In particular, we show that for
typical (best) present-day parameters for phase qubits [7]
these durations differ by ~8 times.

Before analyzing this problem let us discuss which frac-
tion of the entangled two-qubit states violate the Bell-CHSH
inequality. This question is well-posed only if we introduce a
particular metric (distance) and corresponding measure (vol-
ume) in the 15-dimensional space of density matrices. Vari-
ous metrics are possible; let us choose the Hilbert-Schmidt
metric [1,24], for which the geometry in the space of states is
Euclidean. Then random states p with the uniform probabil-
ity distribution can be generated as [24] p=ATA/tr(ATA),
where A is a 4 X4 matrix, all elements of which are inde-
pendent Gaussian complex variables with the same variance
and zero mean. Using this method, we performed Monte
Carlo simulation, generating 10° random states and checking
if they are entangled [25-27] and if they violate the CHSH
inequality [10]. In this way we confirmed that 75.76% of all
states are entangled [28] and found that only 0.822% of all
states violate the Bell-CHSH inequality. Therefore, only a
small fraction, 1.085% of entangled states violate the Bell-
CHSH inequality.

Now let us discuss the effect of decoherence. For one
qubit it can be described by the Bloch equations [29] (we use
the basis of the ground state |0) and excited state |1)) and
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characterized by the energy relaxation time 7, dephasing
time T, (T,=2T),), and the Boltzmann factor h=exp(—A/ 6),
where A is the energy separation of the states and 6 is the
temperature. The usual solution of the Bloch equations can
be translated into the language of time-dependent superop-
erator £ for the one-qubit density matrix p, so that p(r)
=L[p(0)]==7,K;p(0)K], where four Kraus operators K; can
be chosen as

p (0 0) p (y’l—g 0 ) 0
T\We o) T\ 0 i)

0 0 —
3 0 Vhg
Ky = N K=y o )

0 1—hg—1
- &

where g=[1-exp(~t/T;)]/(1+h), N\=exp(-t/T,), and in our
notation |1)=(1,0)7, [0)=(0,1). It is easy to check that the
term under the square root in K3 is always non-negative, and
equals O (for 7>0) only if 7,=2T; and 6=0. Notice that
choice of the Kraus operators K; is not unique.

In general, decoherence of two qubits is described by
many parameters (out of 240 parameters describing a general
quantum operation only 15 parameters describe unitary evo-
lution). We choose a relatively simple but physically relevant
model when the decoherence is dominated by local decoher-
ence of each qubit. (Nonlocal decoherence would be physi-
cally impossible in the case of large distance between the
qubits.) The model now involves six parameters: TP, T‘zl’b,
and h,,=exp(-A,,/ 6,,), where subscripts (or superscripts)
a and b denote qubits, and the evolution is described by
the tensor-product superoperator L£=L,® L, (which is
completely positive because of complete positivity of £, ;).
This superoperator contains 16 terms: p(f)=L[p(0)]
=Eij=1Kijp(0)ij, Kij:Kf®Kj-’, where operators K;”b are
given by Eq. (1) for each qubit.

As an initial state we consider an “odd” pure state

|W) = cos B]10) + ¢ sin B|01) ()

(0<B<m/2), which is relevant for experiments with the
phase qubits [7]. Since the parameter « corresponds to z
rotation of one of the qubits, while decoherence as well as
values of C and S, are insensitive to such rotation, all our
results have either trivial or no dependence on «. The evo-
lution of the state (2) due to local decoherence £ can be
calculated analytically, and at time ¢ the nonvanishing ele-
ments of the two-qubit density matrix p are

p11(2) = (1 = g hyg), cos™ B+hyg,(1 - gy)sin” B, (3)
p() = (1= g,)(1 = hyg,)cos® B+ h,g,g, sin® B,
p33(t) = g gy, cos® B+ (1 —h,g,)(1 — g,)sin® B,

paa(t) = g,(1 - hbgb)C052 B+ -h.g,)g, sin’ B,
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p3a(t) = pas(t) = exp(— 1/ T3 — t/T5)e(sin 28)/2,

where g,; are defined below Eq. (1) and p;; subscripts i,
=1,2,3,4 correspond to the basis {|11>,(10>,|01>,|00>}.
These equations become very simple at zero temperature be-
cause then h,=h,=0. Notice that the dephasing times 7‘2“’
enter Egs. (3) only through the combination 1/75+1/T} (this
is not so for a general initial state) so that the two-qubit
dephasing can be characterized by one parameter 7,
=2/(1/T3+1/T5).
For the state (3) the concurrence is [14,20]

P23| - \'/P11P44}’ 4)
and the CHSH inequality parameter S, is [10,16]

S, =2 max{2y2|py; ,V'/4|P23|2 +(1-2p11—2p0)%}, (5)

while for the initial state C=sin28>0 and S,=2y1+C?
>2. Notice that the first and second terms in Eq. (5) corre-
spond to the “horizontal” and “vertical” measurement con-
figurations, using the terminology of Ref. [30]. Equations
(3)—(5) are all we need to analyze entanglement and CHSH
inequality violation.

Notice that for a pure dephasing (T¢=T%=%) we have
p11=p44=0, and therefore

C =2 max{0,

C=exp(=2t/Ty)sin 28, S,=2\1+C>. (6)

In this case at any ¢ the state remains entangled [19,20] and
violates the CHSH inequality [12,13]. (It also remains within
the class of states producing maximal CHSH inequality vio-
lation for a given concurrence [11].) In the case when both
dephasing and energy relaxation are present but temperature
is zero, 6,=6,=0, the concurrence C is still given by Eq. (6)
and lasts forever [16,22]; however S, does not satisfy Eq. (6)
and the CHSH inequality is no longer violated after a finite
time [16]. Finally, in presence of energy relaxation at non-
zero temperature (at least for one qubit) the entanglement
also vanishes after a finite time, as seen from Eq. (4), in
which liml_m P11P44 #0.

Let us consider in more detail the case when both dephas-
ing and energy relaxation are present, but temperature is zero
and T¢=T;=T,. Then Eq. (5) for S, becomes very simple
since p;;=0 and pyy=1-exp(-1/T,). The time dependence
S, (1) consists of three regions: at small 7 it is always deter-
mined by the second term [31] in Eq. (5), then after some
time ¢, the first term becomes dominating, while after a later
time 7, the second term becomes dominatglg again. Notice
that in the second region S,=412|py;|=212C, so such state
provides minimal S, for a given concurrence C [11,32]. The
time 7 after which the Bell-CHSH inequality is no longer
violated falls either into the first or second region, because
S,(t;) <2. The time 75 can be easily calculated if S,(¢;)>2,
so that 73 falls into the second region and therefore

75 = (Ty/2)In(\2 sin 28). (7)

This case is realized when pure dephasing is relatively weak:
T,/T,=In(\2 sin 2B)/[2 In(4-242)]; since Ty/T,=1/2, it
also requires sin 28=2\2-2. (For T,/T,=1/2 Eq. (7) has
been obtained in Ref. [16].) Notice that 75 in Eq. (7) corre-
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FIG. 1. The two-qubit entanglement duration 7z in units of the
dephasing time 7, for the maximally entangled initial state
(B=m/4) and several values of the temperature 6. Dashed lines
correspond to Eq. (8).

sponds to the condition C=1/ V2, while in general 7y corre-
sponds to C=1/12.

Now let us focus on calculating the duration 75 of the
entanglement survival, duration 73 of the Bell-CHSH-
inequality violation, and their ratio 7/ 7z at nonzero tem-
perature. For simplicity we limit ourselves to the case of
maximally entangled initial state (8=/4), and we also as-
sume equal energy relaxation, splitting and temperature for
both qubits: TY=T,=T,, A,=A,=A, and 6,=6,= 6. As fol-
lows from Eq. (4), the entanglement duration 75 can be cal-
culated numerically using the equation |p,;|=p;;pas. Figure
1 shows 75 (normalized by T,) as a function of the ratio
T,/T, for several values of the normalized inverse tempera-
ture A/ 6. As we see, in a typical experimental regime [7]
when A/6~ 10, the ratio 7z/T, does not depend much on
T,/T, when T} is larger but comparable to T, (which is also
typical experimentally). In other words, 75 is approximately
proportional to 7,, and in this regime 75 also has crudely
inverse dependence on temperature [see Eq. (8) below].

Analytical formulas for 7z can be easily obtained in the
limiting cases. In absence of pure dephasing (7,/T,=1/2)
and at low temperature (6<<A) we find 75/T,~A/20
—ln(2\f§+2)/2%A/26’—0.79L while at high temperature (6
>A) we have 75/T,~In(y2+1)/2~0.44. In the case of
strong dephasing (T,/T,> 1) we find (neglecting some cor-
rections) 75/ T,=A/(46)+In(T;/T,)/2.

However, these asymptotic formulas are not very relevant
to a typical experimental situation with phase qubits [7], in
which 77=T,. As another way to approximate 7z we have
chosen the value at the minimum of the curves in Fig. 1; this
minimum occurs at the ratios 7,/7, somewhat close to the
experimental values, and the result is naturally not much
sensitive to 7/T, in a significantly broad range. For suffi-
ciently small temperatures (A/6>2) we have obtained
approximation  (7z/Ty)min=A/46+1In(3¥4/2) =~ A/46+0.13
and found that the minimum occurs at T,/T,
=~ (7/ Ty)min/In 3. So, as the crudest approximation in the
experimentally relevant regime (6/A~ 107!, T,/T,=1), the
two-qubit entanglement lasts for (see dashed lines in Fig. 1)

75 = ToA/40. (8)
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FIG. 2. The duration 75 of the Bell-CHSH-inequality violation
(assuming B=m/4) for A/6=15 (solid line) and A/6=0 (dotted
line). The dashed line: 75/ To=In[T,/(475)]/4.

The duration 7 of the Bell-CHSH-inequality violation is cal-
culated using Eq. (5) as S,(75)=2. Solid and dotted lines in
Fig. 2 show numerical results for 75 (in units of 7,) as a
function of the ratio 7';/T, for low and high temperatures:
A/6=15 and 0. The curves are almost indistinguishable, that
means that 73 is practically independent of the temperature
for fixed T, and 7,. Notice that each curve consists of a
constant (horizontal) part and an increasing part, which cor-
respond to two terms in Eq. (5). It can be shown that at zero
temperature the horizontal part is realized at 7,/7T),
=In2/[4 In(4-242)]=1.1, while at high temperature (6
>A) it is realized at T,/T,=1. The horizontal part corre-
sponds to the first term in Eq. (5) dominating at 75: S,
=212 exp(-21/T,), so at sufficiently weak pure dephasing
we have 753/T,=In2/4=0.17 [see also Eq. (7)]. In the op-
posite case of strong pure dephasing (7;/T,> 1) the duration
75 is the solution of the equation 73/ T,=In[T,/(475)]/4
(dashed line in Fig. 2), so roughly 73/T,=In(T,/T,)/4 (dot-
dashed line in Fig. 2). Combining these results, we get a
crude estimate

15 =T, max{0.17,0.25 In(T,/T>)}. 9)

Figure 3 shows the ratio 75/ 75 of the survival durations of
entanglement and the Bell-CHSH-inequality violation. We
see that the ratio 75/ 7y increases with the decrease of tem-
perature and decrease of the pure dephasing contribution,

1 T1/T2 10 100

FIG. 3. The ratio 7%/ 75 for the maximally entangled initial state
and several values of the temperature 6.
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which are both the desired experimental regimes. (This rule
does not work in the experimentally irrelevant regime 6
> A and T, <T,.) Notice that the kinks on the curves corre-
spond to the change of the dominating term in Eq. (5). In
absence of pure dephasing (7,/T,=1/2) the low-temperature
result (A<<A) is 75/ 73~ (2/1In 2HA/ 0—1n(2y2+2)], while at
0> A the ratio is 75/ 73=2 In(y2+1)/In 2=2.5. In the limit
of strong pure dephasing (7,/T,> 1) the asymptotic result is
15/ T=2+(A/6)/In(T,/T,) (as we see, 7;>275 for any
parameters). In the experimentally relevant regime when
6/A~107" and T,/T,=1, the ratio can be obtained from
Egs. (8) and (9), giving a crude estimate 7g/7p
=(A/O)min{1.5,1/In(T,/T,)}.

For an experimental estimate let us choose parameters
typical for best present-day experiments with superconduct-
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ing phase qubits [7]: A/2@wh=6 GHz, 6=50 mK, T,
=450 ns, T,=300 ns. Then A/0=6, T,/T,=1.5, and we
obtain 7;=470 ns, 73=60 ns, and 75/ T5="7.7.

In conclusion, we have found that in the Hilbert-Schmidt
metric only 1.085% of entangled states violate the Bell-
CHSH inequality, thus explaining why entanglement can last
for a significantly longer time (75) than the Bell-CHSH-
inequality violation (7). Using the technique of Kraus op-
erators, we have considered local decoherence due to
dephasing and energy relaxation at finite temperature, and
for this model calculated 7, 73, and their ratio 7z/ 73.

This work was supported by NSA and DTO under ARO
Grant No. W911NF-04-1-0204. We thank Tim Ralph and
John Martinis for attracting our attention to the problem.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, 2000).

[2]1J. S. Bell, Physics 1, 195 (1964).

[3] J. F. Clauser et al., Phys. Rev. Lett. 23, 880 (1969).

[4] V. Capasso et al., Int. J. Theor. Phys. 7, 319 (1973); N. Gisin,
Phys. Lett. A 154, 201 (1991).

[5] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

[6] S. Popescu, Phys. Rev. Lett. 72, 797 (1994); S. Popescu, ibid.
74, 2619 (1995); N. Gisin, Phys. Lett. A 210, 151 (1996).

[7] M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero,
R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J.
M. Martinis, Science 313, 1423 (2006); M. Ansmann et al.,
Bull. Am. Phys. Soc. 52, 1.33.00005 (2007).

[8] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

[9] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 (1996).

[10] R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett. A
200, 340 (1995).

[11] F. Verstraete and M. M. Wolf, Phys. Rev. Lett. 89, 170401
(2002).

[12] P. Samuelsson, E. V. Sukhorukov, and M. Biittiker, Phys. Rev.
Lett. 91, 157002 (2003).

[13] C. W. J. Beenakker, C. Emary, M. Kindermann, and J. L. van
Velsen, Phys. Rev. Lett. 91, 147901 (2003).

[14] L. Jakébczyk and A. Jamréz, Phys. Lett. A 333, 35 (2004); L.
Jakébezyk and A. Jamréz, ibid. 318, 318 (2003).

[15] S.-B. Li and J.-B. Xu, Phys. Rev. A 72, 022332 (2005).

[16] A. Jamr6z, J. Phys. A 39, 7727 (2006).

[17] G. Burkard and D. Loss, Phys. Rev. Lett. 91, 087903 (2003).

[18] T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).

[19] D. Tolkunov, V. Privman, and P. K. Aravind, Phys. Rev. A 71,
060308(R) (2005).

[20] T. Yu and J. H. Eberly, Phys. Rev. Lett. 97, 140403 (2006).

[21] Z. Gedik, Solid State Commun. 138, 82 (2006).

[22] M. F. Santos, P. Milman, L. Davidovich, and N. Zagury, Phys.

Rev. A 73, 040305(R) (2006).

[23] L. F. Wei, Y.-X. Liu, M. J. Storcz, and F. Nori, Phys. Rev. A
73, 052307 (2006).

[24] K. Zyczkowski and H.-J. Sommers, J. Phys. A 34, 7111
(2001).

[25] Entanglement is checked by the fast method based on the sign
of the determinant of the partially transposed state [26] p, us-
ing the fact that for an entangled state p all eigenvalues of p
are nonzero, and exactly one of them is negative [27].

[26] A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki et
al., Phys. Lett. A 223, 1 (1996).

[27] A. Sanpera, R. Tarrach, and G. Vidal, Phys. Rev. A 58, 826
(1998).

[28] P. B. Slater, Phys. Rev. A 71, 052319 (2005).

[29] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Afom-
Photon Interactions (Wiley, New York, 1992), Chap. IV.

[30] A. G. Kofman and A. N. Korotkov, Phys. Rev. B 77, 104502
(2008).

[31] Notice that when 77 # 741’, the second term in Eq. (5) is maxi-
mized for a nonmaximally entangled state 8 # /4 though the
benefit is not significant if we need S, =2.2.

[32] The statement in Ref. [11] that any mixed state with S,
=2\2C>2 is maximally entangled, is incorrect (here maxi-
mum entanglement means that C cannot be increased by any
two-qubit unitary transformation). As a counterexample, con-
sider the states p=f]¥)}W¥|+(1-,)|00)00|, produced from the
initial state (2) due to zero-temperature energy relaxation (7,
=2T, =0, f=e™"T1). Any two such states with the same f but
different initial parameter 8 can obviously be connected by a
unitary transformation (involving only the subspace spanned
by |01) and |10)), while they have different concurrence C
given by Eq. (6). Finally, as follows from our analysis, there is
a finite range of parameters f and S, in which S+=2\5C; in
this range the concurrence can still be varied by unitary trans-
formations varying 3, contradicting the statement of Ref. [11].

052329-4



