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We analyze the performance of the resonator–zero-qubit (RezQu) architecture in which the qubits are
complemented by memory resonators and coupled via a resonator bus. Separating the stored information from the
rest of the processing circuit by at least two coupling steps and the zero qubit state results in a significant increase
in the on-to-off ratio and a reduction in the idling error. Assuming no decoherence, we calculate such idling error,
as well as the errors for the MOVE operation and tunneling measurement, and show that the RezQu architecture
can provide the high-fidelity performance required for medium-scale quantum information processing.
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I. INTRODUCTION

Superconducting circuits with Josephson junctions are
steadily gaining attention as promising candidates for the real-
ization of a quantum computer [1]. Over the last several years,
significant progress has been made in preparing, controlling,
and measuring the macroscopic quantum states of such circuits
[2–12]. However, the two major roadblocks—scalability and
decoherence—remain, impeding the development of a work-
able prototype. The resonator–zero-qubit (RezQu) protocol
presented here aims to address these limitations at a low-level
(hardware cell) architecture [13].

A RezQu device consists of a set of superconducting qubits
(e.g., phase qubits [14]), each of which is capacitively coupled
to its own memory resonator and also capacitively coupled
to a common resonator bus, as shown in Fig. 1 [7,15–17].
The bus is used for coupling operations between qubits,
while the memory resonators are used for information storage
when the logic qubits are idling. With the coupling capacitors
being fixed and relatively small, qubit coupling is adjusted by
varying the qubit frequency, which is brought in and out of
resonance with the two resonators. For a one-qubit operation,
quantum information is moved from the memory to the qubit,
where a microwave pulse is applied. A natural two-qubit
operation is the controlled-Z gate, for which one qubit state is
moved to the bus, while the other qubit frequency is tuned close
to resonance with the bus for a precise duration [6,18–20].

Most importantly, the information stored in resonators
is separated from the rest of the processing circuit by the
known qubit state |0〉 and at least two coupling steps, thus
reducing crosstalk error during idling. Also, the problem
of spectral crowding is essentially eliminated because the
two-step resonance between empty qubits is not harmful,
while the four-step coupling between memory resonators is
negligible. Therefore the resonator frequencies, which are set
by fabrication, can be close to each other, decreasing sensitivity
to phase errors in the clock. Thus the RezQu architecture
essentially solves the inherent on-to-off ratio problem of the
fixed capacitive coupling without using the more complicated
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scheme of a tunable coupling [8,21,22]. As an additional
benefit, information storage in resonators increases coherence
time compared to storage in the qubits. We note that the idea of
using resonators to couple qubits has been suggested by many
authors [23–32]. The use of resonators as quantum memories
has also been proposed previously [31,33–35]. However,
putting the two ideas together in a single architecture results
in new qualitative advantages, which have not been discussed.

In this paper we briefly consider the relation between the
logical and the physical qubit states and then analyze several
basic operations in the RezQu architecture. In particular,
for a truncated three-component memory-qubit-bus RezQu
device, we focus on the idling error, information transfer
(MOVE) between the qubit and its memory, and the tunneling
measurement. The analysis of the controlled-Z gate will
be presented elsewhere [36]. For simplicity, decoherence is
neglected.

II. LOGICAL VS PHYSICAL QUBITS

We begin by recalling an important difference between
logical and actual, physical qubits. The difference stems from
the fact that in the language of quantum circuit diagrams the
idling qubits are always presumed to be stationary [37], while
superconducting qubits evolve with a 4- to 10-GHz frequency
even in idling, which leads to accumulation of relative phases.
Also, the always-on coupling leads to fast small-amplitude
oscillations of the “bare”-state populations during off-resonant
idling. A natural way to avoid the latter problem is to define
logical multiqubit states to be the (dressed) eigenstates of the
whole system (see, e.g., [5,26,28,29,38,39] for discussion of
the dressed states). Then the only evolution in idling is the
phase accumulation for each logic state. However, there are
2N logic states for N qubits, and using 2N “local clocks”
(rotating frames) would require an exponential overhead to
calibrate the phases. The present-day experiments with two
or three qubits often use this unscalable way, but it will not
work for N � 10. A scalable way is to choose only N rotating
frames, which correspond to one-qubit logical states, and treat
the frequencies of multiqubit states only approximately, as
sums of the corresponding single-qubit frequencies. The use
of such nonexact rotating frames for multiqubit states leads
to what we call an idling error, which is analyzed in the next
section.
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FIG. 1. Schematic diagram of the RezQu architecture: m, mem-
ory resonators; q, qubits; b, bus. We assume frequencies of ∼7 GHz
for the memories and ∼6 GHz for the bus, and qubit frequencies are
varied between these values.

Note that it is sufficient to establish a correspondence
between logical and physical states only at some moments
between the gates. Moreover, this correspondence may be
different at different moments. At those moments, the bus
is empty, the 2N + 1 system components (N qubits, N

memories, and the bus) are well detuned from their neighbors,
and for each logical qubit it is unambiguously known whether
the corresponding quantum information is located in the
memory or in the qubit. Thus the eigenstates corresponding to
the logical states are well defined and the physical-to-logical
correspondence is naturally established by projecting onto
the 2N computational eigenstates, while occupations of other
eigenstates should be regarded as an error. In the simplest
modular construction of an algorithm we should not attempt
to correct the error of a given gate by the subsequent gates.
Then for the overall error we only need to characterize the
errors of individual gates, as well as the idling error.

One may think that defining logical states via the eigenstates
of the whole system may present a technical problem in an
algorithm design. However, this is not really a problem, for
the following reasons. First, we need the conversion into the
basis of eigenstates only at the start and end of a quantum gate,
while the design of a gate is modular and can be done using
any convenient basis. Second, in practice, we can truncate the
system to calculate the eigenstates approximately, making sure
that the error due to truncation is sufficiently small. Similar
truncation with a limited error is needed in practical gate
design.

As mentioned above, the physical-to-logical correspon-
dence rule can be different at every point between the gates.
For the correspondence based on eigenstates we are free to
choose N single-excitation phases arbitrarily. Despite this
freedom, for definiteness, it makes sense to relate all the
single-excitation phases to a particular fixed time moment in
an algorithm. Then a shift of the gate start time leads to easily
calculable phase shifts, which accumulate with frequencies
equal to the change in single-excitation frequencies before
and after the gate. Such shift is useful for the adjustment
of relative single-excitation phases [40]. Another way of
the single-excitation phase adjustment is by using “qubit
frequency excursions” [7]. The ease of these adjustments
significantly simplifies design of quantum gates, because
we essentially should not worry about the single-excitation
phases.

Note that the initial generation of high-fidelity single-
excitation eigenstates is much easier experimentally than the
generation of bare states. This is because the typical duration
of qubit excitation pulses is significantly longer than the
inverse detuning between the qubit and the resonators. We have
checked this advantage of using eigenstates versus bare states
numerically in a simple model with typical parameters [7]
of a RezQu device (the error decrease is about 2 orders
of magnitude). Similarly, the standard one-qubit operations
essentially operate with the eigenstates rather than with the
bare states.

III. IDLING ERROR

Before discussing the idling error in the RezQu ar-
chitecture, let us consider a simpler case of two directly
coupled qubits. Then in idling the wave function evolves
as |ψ(t)〉 = α00e

−iε00t |00〉 + α01e
−iε01t |01〉 + α10e

−iε10t |10〉 +
α11e

−iε11t |11〉, where we denote the logical (eigen)states
with an overline, their corresponding (eigen)energies by εij ,
and amplitudes at t = 0 by αij . However, for the desired
evolution |ψdesired(t)〉 the last term should be replaced with
α11e

−i(ε01+ε10−ε00)t |11〉; then only two rotating frames (clocks),
with frequencies ε01 − ε00 and ε10 − ε00, are needed. We see
that the phase difference accumulates with the frequency
�ZZ = (ε11 − ε01) − (ε10 − ε00), and therefore the idling error
E due to qubit coupling accumulates over a time t as

E = 1 − |〈ψdesired(t)|ψ(t)〉|2
� |α11|2(1 − |α11|2)(�ZZ t)2 � (�ZZ t)2, (1)

where we have assumed �ZZ t � 1. (The frequency �ZZ is
defined in the same way as in Ref. [39] for a two-qubit σ

(1)
Z σ

(2)
Z

interaction.) The error is state dependent, but in this paper we
always consider error estimates for the worst-case scenario.

In the RezQu architecture, the main contribution to the
idling error comes from interaction between a memory
resonator, in which quantum information is stored, and the
bus, which is constantly used for quantum gates between other
qubits. By analogy with the above case, for the truncated
memory-qubit-bus (mqb) system the idling error can be
estimated as

E � (�ZZ t)2, �ZZ = (ε101 − ε001) − (ε100 − ε000), (2)

where the eigenenergies correspond to the logical eigenstates
|101〉, |001〉, |100〉, |000〉, and in our |mqb〉 notation the
sequence of symbols represents the states of the memory
resonator, the qubit, and the bus. Note that the qubit here is
always in state |0〉, and �ZZ is essentially the difference in the
effective frequencies of the memory resonator in the presence
vs the absence of bus excitation.

To find �ZZ we use the rotating-wave approximation
(RWA); then the dynamics of the mqb system is described
by the Hamiltonian (we use h̄ = 1)

H (t) =
⎡
⎣0 0 0

0 ωq(t) 0
0 0 2ωq(t) − η

⎤
⎦ + ωma†

mam + ωba
†
bab

+ gm(a†
mσ−

q + amσ+
q ) + gb(σ−

q a
†
b + σ+

q ab),

+ gd (a†
mab + ama

†
b), (3)
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where the qubit frequency ωq may vary in time, while the qubit
anharmonicity η is assumed to be constant;

σ−
q =

⎡
⎢⎣

0 1 0

0 0
√

2

0 0 0

⎤
⎥⎦, σ+

q = (σ−
q )† (4)

are the qubit lowering and raising operators; ωm and ωb are
the memory and the bus frequencies (which are presumed to
be fixed); a

†
m, am, a

†
b, and ab are the creation and annihilation

operators for the memory and the bus photons; and gm and gb

are the memory-qubit and qubit-bus coupling constants. The
last term in Eq. (3) describes the direct (electrostatic) memory-
bus coupling; replacing a qubit in Fig. 1 with a lumped tank
circuit, it is found [41] to be

gd = 2gmgb/ωq. (5)

It is typically smaller than the effective memory-bus coupling
via the virtual excitation of the qubit because the detunings
|ωm − ωq | and |ωb − ωq | between the elements are much
smaller than their frequencies; because of that, we often neglect
gd . From the physical model it is easy to show that gm and
gb are proportional to ω

1/2
q and therefore change when the

qubit frequency is varied; however, for simplicity we assume
constant gm and gb.

Neglecting gd , in fourth order we find (see the Appendix),

�ZZ = −2g2
mg2

bη

	2
m	2

b

ωm + ωb − 2ωq

ωm + ωb − (2ωq − η)
, (6)

	m = ωm − ωq, 	b = ωq − ωb, (7)

which is very close to the exact value found by direct
diagonalization of the Hamiltonian (Fig. 2), and the effect of gd

is of a higher order and therefore very small (see the Appendix

ω π

Ω
π

π π

π π

ω π
ω π

η π

ω η ω ω

ω ω ω

FIG. 2. (Color online) Frequency �ZZ for a truncated memory-
qubit-bus system [the idling error is (�ZZt)2] for two values of
the coupling: gm/2π = gb/2π = 25 MHz (blue lines) and gm/2π =
gb/2π = 50 MHz (red lines). Solid lines show the results of exact
diagonalization of the RWA Hamiltonian, (3), with and without gd .
The effect of gd is not visible (smaller than the line thickness). Blue
and red dashed lines show the analytical result, (6).

and Fig. 2). Note that �ZZ ∝ η because in a linear system
�ZZ = 0, and nonlinearity comes from the qubit. Equation (6)
shows that an optimal choice of the qubit “parked” frequency is
ωq = (ωm + ωb)/2, midway between the memory and the bus
frequencies; then the idling error in this order goes to zero (this
happens because the contribution of |020〉 in |101〉 becomes
zero; see the Appendix). Note that in the RezQu architecture
the frequencies of the memory resonators are assumed to be
relatively close to each other (forming a “memory band” of
frequencies). Then the optimal parked frequencies of the qubits
are also close to each other. This is not a problem when all
qubits are in state |0〉; however, when a qubit is excited this
may lead to a significant resonant coupling with another qubit
via the bus. To avoid this “spectral crowding” effect, it is useful
to reserve two additional frequencies, situated sufficiently far
from the parked frequencies, at which a pair of qubits may
undergo local rotations (simultaneous rotations of two qubits
are often useful before and after two-qubit gates).

The idling error, (2), scales quadratically with time. This
is because we use a definition for which not the error itself
but its square root corresponds to a metric, and therefore for a
composition of quantum gates, in the worst-case scenario we
should sum square roots of the errors [37]. For the same reason,
the worst-case idling error scales quadratically, E ∝ N2, with
the number N of qubits in a RezQu device. In principle, an
average idling error may scale linearly with N and time (for
that we would need to define the memory “clock” frequency
using an average occupation of the bus); however, here we use
only the worst-case analysis.

It is convenient to replace the time dependence in the
idling error estimate (N�ZZ t)2 with the dependence on the
number of operations Nop in an algorithm. (The corresponding
quadratic dependence on Nop can also be interpreted as
the worst-case-scenario error for a composition of quantum
operations.) Assuming that each operation crudely takes time
top � g−1

m + g−1
b (this estimate comes from MOVE operations

discussed later and also from the controlled-Z gate) and ne-
glecting the second factor in Eq. (6) (i.e., assuming nonoptimal
parked qubit frequencies), we obtain the following estimate for
the worst-case idling error:

E � g3
mg3

bη
2N2N2

op

	4
m	4

b

max(gm,gb)

min(gm,gb)
, (8)

where 	m and 	b are typical detunings at idling. Using for an
estimate gm/2π = gb/2π = 25 MHz, η/2π = 200 MHz, and
	m/2π = 	b/2π = 500 MHz, we obtain E � 10−8N2N2

op.
To demonstrate the advantage of the RezQu architecture,

Eq. (8) may be compared with the corresponding result for
the conventional bus-based architecture (without additional
memories). Then the idling error is due to ZZ interaction be-
tween the qubit and the bus: the frequency of an idling qubit is
affected by the bus occupation due to logic operations between
other qubits. In this case �ZZ,conv = −2g2

bη/[	b(	b − η)],
which gives

Econv � g2
bη

2N2N2
op/	

4
b. (9)

Assuming a typical ratio g/	 � 0.1 between the coupling and
the detuning, we have a reduction in the idling error in the
RezQu architecture by at least 104 even before considering
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that �ZZ can be zeroed in this order. Using Eq. (9) we see
that a conventional architecture allows only a very modest
number of qubits and operations before the idling error
becomes significant. In principle, the problem can be solved
by a constantly running dynamical decoupling (which would
be quite nontrivial in a multiqubit device). The RezQu idea
eliminates the need for such dynamical decoupling.

All our estimates so far have been for the idling error
due to the memory-bus interaction. Now let us discuss
errors due to the four-step memory-memory interaction in
the RezQu architecture. The XX interaction between the
memory and another (kth) memory can be calculated [39]
as �XX = 2gmgm,kgbgb,k/[	m	m,k(ωm − ωb)], where the ad-
ditional subscript k indicates parameters for the kth section of
the device. The XX interaction does not produce a phase error
accumulating in idling but leads to the error E � (�XX/δm)2

every time the information is retrieved from memory, where δm

is the typical spacing between memory frequencies. Assuming
similar sections of the RezQu device with 	b � 	m ≡ 	 and
δm � 	/N , we obtain an error estimate E � (Ng2

mg2
b/	

4)2

per operation. Since the worst-case scaling with the number
of operations Nop is always ∝N2

op, we obtain the worst-case
estimate

E � N2N2
opg

4
mg4

b/	
8. (10)

This error is smaller than the idling error (8) if gm,b < η. For
gm = gb = 	/20 we find a very small error,E � 10−10N2N2

op,
which means that there is essentially no spectral crowding
problem for memories. Note that for a conventional bus-based
architecture the error estimate (10) is replaced with Econv �
N2N2

opg
4
b/	

4 and presents a difficult scaling problem due to
the spectral crowding.

Besides the XX interaction between the two memories,
there is also the ZZ interaction. Using the same approximate
derivation as in the Appendix [see Eq. (A7)] and assuming
	b � 	m ≡ 	, we find an estimate �ZZ ≈ −ηg4

mg4
b/	

8.
Then using E � (�ZZtop)2N2

opN
4 (the scaling N4 is because

each pair brings a contribution), with top � g−1
m + g−1

b , we
obtain the worst-case estimate

E � g7
mg7

bη
2N4N2

op

	16

max(gm,gb)

min(gm,gb)
. (11)

This error is smaller than the memory-bus idling error, (8), if
N < 	4/g2

mg2
b , which is always the case in practice.

IV. MOVE OPERATION

Any logic gate in the RezQu architecture requires moving
quantum information from one system element (memory,
qubit, or bus) to another. Therefore the MOVE operation is
the most frequent one. It is important to mention that the
one-way MOVE operation [41] is easier to design than the
SWAP (or iSWAP) operation because we are not interested
in the fidelity of the reverse transfer and can also assume
zero occupation of the neighboring element. For example,
for a perfect qubit → memory MOVE (iMOVE) operation in
the truncated mqb system, we search for a unitary, which
transforms |010〉 → −i|100〉 (note that in the RWA, |000〉 →
|000〉 always), but we are not interested in what happens to the
initial states |001〉 and |100〉. Moreover, we can allow for an

arbitrary phase, |010〉 → −ie−iϕ |100〉, because this phase can
be compensated either by shifting of the operation start time
within one period of the initial memory-qubit detuning [40]
or by “qubit frequency excursion” with proper integral [7].
Therefore, we need to satisfy only two (complex) equations to
design the unitary UMOVE for this MOVE operation,

〈010|UMOVE|010〉 = 0, 〈001|UMOVE|010〉 = 0. (12)

Experimentally the qubit → memory MOVE operation is done
[7,15,16,40] by tuning the qubit in resonance (with some
overshoot) with the memory resonator approximately for a
duration π/2gm. Equation (12) means that any reasonable
shape of the ωq(t) tune/detune pulse with four adjustable
parameters can be used for a perfect MOVE operation in
the truncated mqb system. Actually, as discussed later, the
use of only two adjustable parameters is sufficient to obtain
an exponentially small error in the quasiadiabatic regime.
Such a two-parameter construction is most convenient for
practical purposes, but formally it is imperfect (nonzero error).
So we first discuss the perfect (zero-error) four-parameter
construction.

We have designed the qubit → memory MOVE pulses ωq(t)
for the truncated mqb device both analytically (in first order)
and numerically. The initial and final frequencies of the
qubit are allowed to be different. In the analytical design
we do calculations in the bare basis, |ψ(t)〉 = α(t)|100〉 +
β(t)|010〉 + γ (t)|001〉, but define the comoving frame as

α̃ = α eiωmt , β̃ = β ei
∫ t

0 ωq (t ′)dt ′ , γ̃ = γ eiωbt . (13)

In this representation the only interesting initial state |010〉 of
the qubit → memory MOVE operation is (in first order)

α̃(0) = −gm/	m(0), β̃(0) = 1, γ̃ (0) = gb/	b(0), (14)

where 	m = ωm − ωq and 	b = ωq − ωb are the detunings.
The desired (target) final state at time tf is −ie−iϕ |100〉, i.e.,

α̃(tf) = −ie−iϕ, γ̃ (tf) = 0,

β̃(tf) = −ie−iϕgm	−1
m (tf) e−i

∫ tf
0 	m(t ′)dt ′ . (15)

Note that even though the phase ϕ is arbitrary, the relative phase
between α̃(tf) and β̃(tf) is fixed by the absence of the relative
phase between α(tf) and β(tf). We see that the MOVE operation
should eliminate the initial “tail” γ̃ (0) on the bus (this needs
two real parameters in the pulse design) and transfer most of
the excitation to the memory with the correct magnitude and
relative phase of β̃(tf) (two more real parameters).

Similarly to the experimental pulse design [7,15,16,40], we
assume that the shape of the ωq(t) pulse consists of a front
ramp, a rear ramp, and a flat part in between them (Fig. 3
illustrates a piecewise-linear construction of the pulse). As
shown below, using two parameters for the front ramp shape,
we can ensure elimination of the “tail” γ̃ (tf); we can choose
a rather arbitrary rear ramp, and using two parameters for the
flat part (its frequency overshoot and duration), we can provide
proper β̃(tf).

Let us start with the “tail” γ̃ . As follows from the
Schrödinger equation with Hamiltonian (3),

γ̃ (tf) = γ̃ (0) − igb

∫ tf

0
dt β̃(t) e−i

∫ t

0 	b(t ′)dt ′ . (16)
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FIG. 3. (Color online) Illustration of a piecewise-linear
tune/detune pulse shape (qubit frequency as a function of time) for the
MOVE operation qubit → memory in a three-component mqb system.
The front ramp consists of two straight segments. The solid (blue)
line shows the result of a four-parameter numerical optimization in
which the slope of the first straight segment, the qubit frequency at
the end of the first straight segment, the duration t2 − t1 of the flat
part, and its overshoot D have been optimized. This gives E = 0
up to machine accuracy. The dashed (red) line shows the analytical
design based on Eqs. (17) and (22); in this case, E = 5 × 10−4.
System parameters: ωm/2π = 7 GHz, ωb/2π = 6 GHz, ωq (0)/2π =
6.7 GHz, ωq (tf )/2π = 6.5 GHz, and gm/2π = gb/2π = 25 MHz.
The slopes of the second front segment and of the final ramp have
been fixed at 500 MHz/ns.

Let us denote the end of the front ramp t1 and the start of
the rear ramp t2 (see Fig. 3). For 0 < t < t1 in Eq. (16) we
can replace β̃(t) with β̃(0) = 1 because the qubit occupation
cannot change much during a short ramp. For t1 < t < t2 we
can use integration by parts using 	b(t) ≈ ωm − ωb, with
β̃(t) changing approximately from 1 to 0. Finally, there is
a negligible (second order in gb) contribution to the integral
for t2 < t < tf because β̃(t) is already small (first order in gb).
Thus for the desired pulse shape, in first order we obtain

0 = γ̃ (tf)

gb

= 1

	b(0)
− i

∫ t1

0
e−iAt

0dt − e−iAt1
0

ωm − ωb

, (17)

At ′′
t ′ ≡

∫ t ′′

t ′
	b(t) dt. (18)

As we see, the required elimination of the tail γ̃ on the bus gives
two equations (real and imaginary parts) for the front ramp
shape. This can be done by using practically any shape with
two adjustable parameters. Note that condition (17) essentially
means that in order to have a correct (zero) tail on the bus at
final time tf , this tail at time t1 should be the same as the tail
for the comoving eigenstate of the qubit-bus system.

Now let us design the flat part of the pulse, which should
give us the proper ratio β̃(tf)/α̃(tf) from Eq. (15). After
designing the front ramp we know α̃ and β̃ at the start of

the flat part t1: in first order, β̃(t1) = 1 and

α̃(t1)

β̃(t1)
= −gm

	m(0)
− igm

∫ t1

0
eiBt

0dt, Bt ′′
t ′ ≡

∫ t ′′

t ′
	m(t) dt.

(19)

Similarly, for an arbitrarily chosen rear ramp shape we know
the desired α̃ and β̃ at the end of the flat part t2: in first order,
α̃(t2) = α̃(tf) = −ie−iϕ and

β̃(t2)

α̃(t2)
= gm

	m(tf)
e−iBtf

0 + igme−iBtf
0

∫ tf

t2

eiBtf
t dt. (20)

During the flat part of the pulse we can use the two-level
approximation with coupling gm and, essentially, connect the
two points on the Bloch sphere corresponding to Eqs. (19)
and (20) by a “Rabi” pulse. These points are close to the
north and south poles, so the pulse is close to the ideal
π pulse; we assume a small constant overshoot 	m ≡ −D

with |D/gm| � 1 (Fig. 3) and duration t2 − t1 = π/ωR − τ

with |τ | � π/ωR , where ωR ≡ √
4g2

m + D2. Then using the
leading-order relation for an almost-perfect π pulse,

β̃(t2)

α̃(t2)
= α̃(t1)

β̃(t1)
+ D

2gm

+ igmτ,
α̃(t2)

β̃(t1)
= −ie−iπD/4gm,

(21)

we obtain the needed pulse parameters D and τ as

D

2g2
m

+ iτ = 1

	m(0)
+ e−iBtf

0

	m(tf)

+ i

∫ t1

0
eiBt

0dt + ie−iBtf
0

∫ tf

t2

eiBtf
t dt (22)

and also find the resulting phase ϕ = πD/4gm.
We have checked numerically the analytical pulse design

given by Eqs. (17) and (22). For example, for a piecewise-
linear pulse whose front ramp consists of two straight segments
(Fig. 3), the error

E = 1 − |〈100|UMOVE|010〉|2 (23)

for the analytically designed pulses is found to be below 10−3

for typical parameters with gm/2π = gb/2π = 25 MHz. As
expected, the numerical four-parameter optimization of this
pulse shape gives zero error (up to machine accuracy), and the
shape of this perfect pulse is close to the analytically designed
shape (see Fig. 3).

Experimental pulses for the MOVE operation [7,15,16]
are produced by a Gaussian filter and therefore have error-
function-shape ramps. We can use the same design idea for
such pulses: shaping the front ramp using two parameters (see
Fig. 4) takes care of the tail γ̃ (tf) on the bus, for the rear
ramp we use any convenient shape, and for the middle part we
vary the overshoot frequency and duration to ensure proper
population transfer between the qubit and the memory (for
such pulses it is natural to define the duration to be between
the inflection points of the error-function shapes). We have
checked numerically that these four parameters are sufficient
to achieve zero error (perfect transfer fidelity F = 1 − E) in
the truncated three-element system.

As a further simplification of the MOVE pulse design,
let us optimize only two middle-part parameters (overshoot
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ω

π

×

×

ω π ω π π π

ω π
σ

FIG. 4. (Color online) Implementation of the qubit → memory
MOVE operation in a three-component mqb system using a pulse with
error-function-shaped ramps (sum of two time-shifted error functions
for the front ramp). Four parameters of the pulse shape (upper panel)
are optimized: the time shift and amplitude ratio for the front-ramp
error functions, the duration of the middle part of the pulse, and the
overshoot magnitude. Error functions are produced by integrating
Gaussians with standard deviation σ = 1 ns; the beginning and end
of the pulse are at 3σ from the nearest error-function centers (shown
by vertical lines in the upper panel). The middle and lower panels
show the time dependence of the level populations in the bare-state
basis and comoving eigenbasis. The MOVE error, (23), is zero up to
machine accuracy.

and duration), without optimizing the front ramp shape. In
this case we cannot ensure the proper tail γ̃ (tf); however,
it is small by itself, and therefore the error is not large.
Moreover, for sufficiently slow pulses the tail is almost
correct automatically because of the adiabatic theorem. It is
important to note that the bus is well detuned, |	b/gb|  1,
and then the adiabaticity condition is |d	b/dt | � |	3

b/gb|,
which is well satisfied even by rather fast pulses. To estimate
the corresponding error, we consider the two-level system
bus-memory during the front ramp and write the differential
equation for the variable y ≡ γ /β − gb/	b, which describes
deviation from the comoving eigenstate. Assuming |γ /β| � 1
and |ω̇qγ /β2| � 1, we obtain ẏ = i	by + gb	

−2
b ω̇q . The

tail error at the end of the front ramp is |y(t1)2| (note that
|β(t1)| ≈ 1), and it does not change significantly during the
rest of the pulse. If this is the major contribution to the MOVE

error, then

E =
∣∣∣∣
∫ t1

0

gb

	2
b(t)

ω̇q(t) exp
(−iAt

0

)
dt

∣∣∣∣
2

, (24)

where At
0 is defined in Eq. (18). Numerical optimization of

only the middle part of the pulse (overshoot and duration)
confirms that Eq. (24) is a good approximation for the MOVE

error in this case. Note that for an error-function ramp obtained
by integrating a Gaussian with the standard deviation (time
width) σ , the error, (24), decreases exponentially with σ (we

assume a sufficiently long ramp time t1) and is typically quite
small. For example, for 	b/2π changing from 0.5 to 1 GHz
and gb/2π = 50 MHz, the error is below 10−4 for σ > 0.5 ns
(for σ > 0.35 ns if gb/2π = 25 MHz).

So far we have only considered the MOVE operation
qubit → memory. The MOVE operation in the opposite di-
rection, memory → qubit, can be designed by using the
time-reversed pulse shape. The perfect MOVE operation still
requires optimizing four parameters (overshoot and duration
of the middle part and the two parameters for the rear ramp),
while using only the two parameters for the middle part is
sufficient for a high-fidelity MOVE operation.

In designing the MOVE operations between the qubit and
the memory, we assumed no quantum information on the
bus. The presence of an excitation on the bus makes the
previously designed perfect MOVE operation imperfect. We
checked numerically that the corresponding error for typical
parameters is about 10−4, i.e., quite small. Moreover, a typical
RezQu algorithm never needs a MOVE operation between
the qubit and the memory with an occupied bus, so the
unaccounted MOVE operation errors due to truncation are
even much smaller. The analysis in this paper assumes the
RWA Hamiltonian, (3), which neglects terms ∝a±

mσ±
q and

∝a±
b σ±

q , which change the number of excitations. We have
checked numerically that the addition of these terms into the
Hamiltonian leads to negligibly small changes in the system
dynamics during the MOVE operations.

Designing MOVE operations between the qubit and the
bus is similar to designing MOVE operations between the
qubit and the memory, if we consider the truncated three-
element system. However, in reality, the situation is more
complicated because the bus is coupled with other qubits.
Our four-parameter argument in this case does not work, and
designing a perfect single-excitation MOVE operation would
require 2N + 2 parameters (for a truncated system with N

qubits, one memory, and the bus), which is impractical.
However, the occupation of additional qubits is essentially
the effect of the tails (if the discussed below problem of
level crossing is avoided). Therefore, the desired tails can be
obtained automatically by using sufficiently adiabatic ramps
in the same way as discussed above (for a MOVE operation
qubit → bus the front ramp will be important for the tails from
both sides, i.e., on the memory and other qubits). In analyzing
the dynamics of the tails at other qubits, it is useful to think
in terms of eigenstates of a truncated system, which includes
the bus and other qubits (while excluding the qubit involved
in the MOVE operation). Then the tail error is the occupation
of the eigenstates, mainly localized on other qubits. Since the
frequencies of the bus and other qubits do not change with
time, for the error calculation it is still possible to use Eq. (24),
in which 	b is replaced with ωq − ωq,k (for the tail on the
kth qubit), gb is replaced with gbgb,k/(ωq,k − ωb), and At

0

is replaced with
∫ t

0 [ωq(t ′) − ωq,k] dt ′, where the subscript k

labels an additional qubit. This gives the estimate

E =
∣∣∣∣∣
∫ t1

0

gbgb,k ω̇q(t)

	2
q,k(t) 	b,k

e−i
∫ t

0 	q,k(t ′) dt ′ dt

∣∣∣∣∣
2

(25)

of the error due to the tail on the kth qubit for the qubit → bus
MOVE operation, in which integration is within the front ramp,
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	b,k = ωq,k − ωb, and 	q,k(t) = ωq(t) − ωq,k . The formula
for the bus → qubit MOVE operation is similar, but the
integration should be within the rear ramp. The error, (25),
should be summed over additional N − 1 qubits (index k) and
therefore can be significantly larger than in our calculations for
a truncated mqb system; however, the error increase is partially
compensated by the smaller effective coupling gbgb,k/	b,k .
Crudely, we expect errors below 10−4 for smooth ramps of a
few nanoseconds’ duration and N < 102. We emphasize that
this simple solution of the tail problem is possible only when
we use eigenstates to represent the logical states.

Another problem which we did not encounter in the analysis
of the truncated system is the level crossing with other (empty)
qubits during the MOVE operation. A simple estimate of
the corresponding error is the following. Effective resonant
coupling between the moving qubit and another (kth qubit)
via the bus is gbgb,k/	b, where gb and gb,k are two qubit-bus
couplings and the detuning 	b is the same for both qubits at
the moment of level crossing. Then using the Landau-Zener
formula we can estimate the error (population of the other
qubit after crossing) as E � 2πg2

bg
2
b,k/(	2

b|ω̇q |), where |ω̇q |
is the rate of the qubit frequency change at the crossing. Our
numerical calculations show that this estimate works well,
though up to a factor of about 2 [when curvature of ωq(t)
at the point of crossing is significant]. Using this estimate
for gb/2π = gb,k/2π = 25 MHz, 	b/2π = 500 MHz, and
ω̇q/2π = 500 MHz/ns, we obtain the quite significant error
of about 10−4. A possible way to compensate this error is by
using interference of the Landau-Zener transitions [42] on the
qubit return transition. Another solution of the problem is to
park empty qubits outside the frequency range between the
bus and memories (above 7 GHz in our example). This would
make it impossible to cancel the idling error in Eq. (6) by
using “midway parking,” but the idling error is still small
even without this cancellation [see the estimate following
Eq. (8)]. Besides the qubit-qubit level crossings, there are also
level crossings between a moving qubit and other memories.
This is a higher-order (weaker) process because of three steps
between the qubit and memory. The effective coupling with kth
memory is then gbgb,kgm,k/(	b	m,k), and the level crossing
error estimate is E � 2πg2

bg
2
b,kg

2
m,k/(	2

b	
2
m,k|ω̇q |).

In this paper we do not analyze two-qubit gates. Our
preliminary numerical simulation of the controlled-Z gate has
shown the possibility of a high-fidelity gate design (with an
error of about 10−3, mainly due to level crossing). However,
we have not studied this gate in detail. A detailed analysis of
two-qubit gates in the RezQu architecture will be presented
elsewhere [36].

V. TUNNELING MEASUREMENT

Finally, let us discuss whether or not using the eigenstates
as the logical states presents a problem for measurement.
Naively, one may think about a projective measurement of
an individual qubit; in this case the logic state 1 would
be erroneously measured as 0 with a probability of about
(gm/	m)2 + (gb/	b)2 ∼ 10−2 because the eigenstate spreads
to the neighboring memory and bus. This would be a very
significant error, and the bare-state representation of logical
states would be advantageous. However, this is not actually the

case because any realistic measurement is not instantaneous
(not projective). In fact, if a measurement takes longer than
	−1

m,b, then the eigenbasis is better than the bare basis.
As a particular example let us analyze the tunneling

measurement of a phase qubit [14] (we expect a similar
result for the qubit measurement in the circuit quantum
electrodynamics (cQED) setup [26,31]). The bare states |0〉
and |1〉 of a phase qubit correspond to the two lowest energy
states in a quantum well, and the measurement is performed
by lowering the barrier separating the well from essentially
a continuum of states [14]. Then state |1〉 tunnels into the
continuum at a significant rate �, while the tunneling rate for
state |0〉 is negligible. The event of tunneling is registered by
a detector “click” (the detector is a SQUID, which senses the
change of magnetic flux produced by the tunneling). In the
ideal case, after waiting for a time t  �−1 the measurement
error is negligibly small (in real experiments the ratio of the two
tunneling rates is only ∼102, which produces an error of a few
percent; however, we neglect this error because, in principle,
it can be decreased by transferring the state |1〉 population to
a higher level before the tunneling and, also, because here we
are focusing on the effect of tails in the neighboring elements).

In the presence of the memory and bus coupled to the qubit,
the logic state 0 still cannot be misidentified, because the
tunneling is impossible without an excitation. However, the
logic state 1 can be misidentified as 0, when sometimes
the expected tunneling does not happen (because part of the
excitation is located in the memory and bus). Let us find
the probability of this error. For simplicity, we consider a
two-component model in which a phase qubit is coupled to
its memory resonator only, and restrict the state space to
the single-excitation subspace of this mq system. Then the
tunneling process can be described by the non-Hermitian
Hamiltonian (e.g., [43])

H =
[
ωm gm

gm ωq − i�/2

]
, (26)

and the error in measuring the logic state 1 (identifying it as 0
after measurement for time t) is its survival probability

E = |〈ψ(t)|ψ(t)〉|2, (27)

where the initial state is normalized, |〈ψ(0)|ψ(0)〉|2 = 1. Our
goal is to compare this error for cases when the initial state is
the bare state |ψ(0)〉 = |01〉 or the eigenstate |ψ(0)〉 = |01〉 (in
this mq notation the qubit state is shown at the second place,
and |01〉 is the eigenstate before the measurement, i.e., when
� = 0).

The solution |ψ(t)〉 of the time-dependent Schrödinger
equation, i(d/dt)|ψ(t)〉 = H |ψ(t)〉, is given by the linear
combination, |ψ(t)〉 = Cm|1̃0〉 e−iEmt + Cq |0̃1〉 e−iEq t . Here
the eigenstate notation with the tilde sign reminds us of
a nonzero �, the constants Cm,q depend on the initial
conditions, and Em,q ≡ Re(Em,q) − i�m,q/2 are the com-
plex eigenenergies, which include the corresponding de-
cay rates �m and �q of the eigenstates located mainly
on the memory and the qubit. Diagonalizing Hamiltonian
(26) and assuming weak coupling, gm � 	m, gm � �, we
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find

�m = g2
m�

	2
m + (�/2)2

� �, �q = � − �m ≈ �. (28)

For measurement during a sufficiently long time t  �,
only the |1̃0〉 term in |ψ(t)〉 survives, and correspondingly, the
error, (27), is E = |Cm|2e−�mt , where Cm = 〈1̃0|ψ(0)〉. Thus
we obtain

Eeigen

Ebare
= �2

4	2
m

, Ebare = e−�mtg2
m

	2
m + (�/2)2

, (29)

for the measurement errors starting either with the eigenstate
or with the bare state. Even though both errors decrease with
the measurement time t as e−�mt , the rate �m is small [see
Eq. (28)], so for a realistically long measurement we can use
e−�mt ≈ 1.

Equation (29) shows that from the measurement point of
view it is advantageous to use the eigenstates to represent
the logical states rather than the bare states if � < 2	m. For a
typical value 	m/2π = 0.5 GHz, this requires �−1 > 0.16 ns,
which is always the case.

Figure 5 shows the state dynamics during the tunneling
measurement in the bare basis |ψ(t)〉 = α(t) |10〉 + β(t) |01〉,
starting either with the eigenstate |01〉 or with the bare
state |01〉. The oscillations correspond to the beating fre-
quency 	m/2π = 0.5 GHz. We see that, similarly to the
above-analyzed dynamics in the eigenbasis, |β(t)|2 becomes
exponentially small after t  �−1, while |α(t)|2 essentially

ω π
ω π

π

Γ

α

β

β
α

FIG. 5. (Color online) Time dependence of the squared ampli-
tudes |α|2 and |β|2 of the mq state |ψ(t)〉 = α(t) |10〉 + β(t) |01〉,
decaying in the process of tunneling measurement. Blue curves
correspond to the system initially prepared in the bare state |ψ(0)〉 =
|01〉, while for red curves the initial state is the eigenstate |ψ(0)〉 =
|01〉. For t  �−1 the measurement error, (27), is mainly the residual
occupation |α(t)|2 of the memory resonator (solid curves). For the
depicted system parameters, |αeigen(t)|2/|αbare(t)|2 ≈ 0.025 at t � 10
ns; i.e., the error of the eigenstate measurement is 40 times smaller
than the error of the bare-state measurement.

saturates (decaying at a much lower rate �m). Then for
the assumed tunneling rate � = 1 ns−1 the ratio of errors
Eeigen/Ebare ≈ |αeigen(t)|2/|αbare(t)|2 (with the subscript denot-
ing the initial state) saturates at approximately the value 0.025
given by Eq. (29).

We emphasize that even though we have only considered the
tunneling measurement, the result, (29), for the measurement
error is expected to remain crudely valid for the majority of
realistic (i.e., “weak”) measurements with a time scale �−1. In
particular, for the cQED setup we expect that the role of � is
played (up to a factor) by the ensemble dephasing rate due to
measurement.

VI. CONCLUSION

In summary, we have discussed the main ideas of the RezQu
architecture and analyzed several error mechanisms, excluding
analysis of two-qubit gates. The main advantage of the RezQu
architecture is the strong (>104 times) reduction in the idling
error compared to the conventional bus-based architecture and,
also, the effective solution to most of the problems related to
spectral crowding. In the absence of decoherence, this makes
possible a simple scaling of a RezQu device to ∼30 qubits
without the need for dynamical decoupling. For further scaling
the next architectural level of communication between RezQu
devices seems to be needed.

We have shown that, instead of using bare states, it is much
better to use eigenstates to represent logical states. In this case
there is essentially no dynamics in idling (except for the phase
errors), which greatly simplifies the modular construction of
a quantum algorithm. The logical encoding by eigenstates
is also advantageous for single-qubit state generation and
measurement. We have presented a simple design for the MOVE

operation, which is the most frequent operation in the RezQu
architecture. We have shown that a four-parameter optimiza-
tion is sufficient for designing a perfect MOVE operation in
a truncated three-component system. Moreover, optimization
of only two experimentally obvious parameters is sufficient
for high-fidelity MOVE operations (with errors less than 10−4).
While we have not analyzed two-qubit gates, we expect that
their design with a similar high fidelity is also possible. Overall,
we believe that the RezQu architecture offers a very significant
advantage compared to the previously proposed architectures
for superconducting qubits, and we believe that this is the
practical way to progress toward a medium-scale quantum
computing device.
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APPENDIX: DERIVATION OF �ZZ

In this Appendix we derive Eq. (6) for �ZZ = ε101 + ε000 −
ε100 − ε001 in the truncated mqb system. We assume that the
couplings gm and gb are of the same order, gm ∼ gb ∼ g, and
do calculations in fourth order in g.
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The RWA Hamiltonian, (3), leads to the formation of
three subspaces, which do not interact with each other: the
ground state |000〉 = |000〉 (with zero energy, ε000 = 0), the
single-excitation subspace {|100〉,|010〉,|001〉}, and the two-
excitation subspace {|101〉,|110〉,|011〉,|200〉,|020〉,|002〉}. It
is rather easy to find eigenenergies in the single-excitation
subspace; neglecting the direct coupling gd , in fourth order in
g we obtain

ε100 = ωm + g2
m

	m

− g4
m

	2
m

+ g2
mg2

b

	2
m(ωm − ωb)

, (A1)

ε001 = ωb − g2
b

	b

− g4
b

	2
b

− g2
mg2

b

	2
b(ωm − ωb)

. (A2)

To find ε101, we write the eigenstate |101〉 as a superposition
of all elements of the two-excitation subspace,

|101〉 = [|101〉 + α110|110〉 + α011|011〉 + α200|200〉
+α020|020〉 + α002|002〉] /Norm, (A3)

with unimportant normalization. Then the Schrödinger equa-
tion H |101〉 = ε101|101〉 (again neglecting gd ) gives six
equations:

(ωm + ωb) + α110gb + α011gm = ε101,

gb + α110(ωm + ωq) + (α200 + α020)gm

√
2 = α110ε101,

gm + α011(ωq + ωb) + (α020 + α002)gb

√
2 = α011ε101,

(A4)
α110gm

√
2 + α2002ωm = α200ε101,

α110gm

√
2 + α011gb

√
2 + α020(2ωq − η) = α020ε101,

α011gb

√
2 + α0022ωb = α002ε101.

From the first three of them we obtain

ε101 = ωm + ωb + g2
m + (α020 + α002)gmgb

√
2

ε101 − ωq − ωb

+ g2
b + (a200 + α020)gmgb

√
2

ε101 − ωm − ωq

, (A5)

which gives ε101 in fourth order in g if we use second-order ε101

in the denominators (which is obtained from the same equation
using zeroth-order ε101) and second-order amplitudes α200,
α020, α002. These amplitudes can be found from the last three
equations (A4) using the first-order values α110 = −gb/	b,

α011 = gm/	m:

α200 = gmgb

√
2

	b(ωm − ωb)
, α002 = gmgb

√
2

	m(ωm − ωb)
(A6)

α020 = −gmgb

√
2

	m	b

ωm + ωb − 2ωq

ωm + ωb − (2ωq − η)
.

Finally, substituting Eq. (A6) into Eq. (A5), and using
Eqs. (A1) and (A2), we obtain Eq. (6) for �ZZ in fourth order.

The above has been the formal derivation of Eq. (6). Let us
also obtain it approximately. Since in a linear system �ZZ = 0
(excitations do not interact with each other), a nonzero value
can come only from the qubit nonlinearity η. Assuming small
η, we can use the first-order perturbation theory in η to find
the energy shift of |101〉 due to the contribution from |020〉
(occupation of the qubit second level):

�ZZ = δε101 = −η |α020|2. (A7)

To find α020 we start with the first-order (in g)
eigenstate |101〉 = |101〉 − (gb/	b) |110〉 + (gm/	m) |011〉
and then obtain the next-order estimate α020 =√

2gmgb[1/	b − 1/	m]/(2ωq − η − ωm − ωb) [which
coincides with Eq. (A6)]. If this estimate is substituted into
Eq. (A7), then for �ZZ we obtain Eq. (6) with the squared
second fraction. However, if in the above formula for α020,
we neglect η (as we should for first-order perturbation in η),
then we obtain Eq. (6) with the second fraction replaced by 1.
One may say that the average between these two results for
small η reproduces Eq. (6); however, it is more appropriate to
say that this approximation (first order in η) can accurately
reproduce only the first fraction in Eq. (6), while the second
fraction is beyond the accuracy of the approximation.

A slightly different derivation reproduces Eq. (6) exactly.
Instead of using the first-order approximation in η [Eq. (A7)],
let us find the change of ε101 due to its repulsion from
ε020. Since the effective interaction is geff = √

2gmgb[1/	b −
1/	m] (see the above estimate of α020), the repulsion is δε101 =
−g2

eff/(2ωq − η − ωm − ωb). The difference in this repulsion
with vs without nonlinearity η gives �ZZ = −g2

eff[(2ωq −
η − ωm − ωb)−1 − (2ωq − ωm − ωb)−1], which reproduces
Eq. (6).

These simple derivations do not change if we take into
account the direct interaction gd in Hamiltonian (3), which
is of second order, gd ∼ g2, because of Eq. (5). Therefore,
the fourth-order result, (6), for �ZZ should not change either.
The rigorous fourth-order calculation shows that ε100 + ε001 in-
creases by 2gdgmgb/	m	b due to gd , but ε101 increases by the
same amount, so these contributions to �ZZ cancel each other.
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