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We analyze simple quantum error detection and quantum error correction protocols relevant to current
experiments with superconducting qubits. We show that for qubits with energy relaxation the repetitive N -qubit
codes cannot be used for quantum error correction, but can be used for quantum error detection. In the latter
case it is sufficient to use only two qubits for the encoding. In the analysis we demonstrate a useful technique
of unraveling the qubit energy relaxation into “relaxation” and “no relaxation” scenarios. Also, we propose
and numerically analyze several two-qubit algorithms for quantum error detection and correction, which can be
readily realized at the present-day level of the phase qubit technology.
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I. INTRODUCTION

Quantum error correction [1] (QEC) is an unavoidable
procedure in a practical quantum computer [2,3]. The standard
QEC [1,2] includes encoding a logical qubit in several physical
qubits, measuring the error syndrome using ancillary qubits,
and then applying a correction operation, which depends on
the measurement result. (A promising variation of this idea
are the so-called surface codes [4].) Unfortunately, QEC is
very difficult experimentally [5–15], and some simplifications
are often used. Let us mention three of them, all of which
have been introduced in Ref. [5]. First, instead of using
additional qubits for the error syndrome, in a “compact”
scheme the same physical qubits can be used for the encoding
and error syndrome measurement; this is done by decoding
the encoded state after a possible error occurs. Second, since a
single-shot measurement of a qubit state is often difficult, the
standard QEC can be replaced by measurement-free QEC,
in which the measurement and correction are substituted
by a quantum controlled operation (e.g., the Toffoli gate).
Third, a favorable type of error (against which the code
protects) is often simulated by applying a certain unitary
rotation, with the rotation angle corresponding to the error
strength.

Measurement-free QEC experiments in nuclear magnetic
resonance (NMR) systems [5–8] have been performed for over
a decade, but only with ensembles of quantum systems [16].
Using trapped ions, a three-qubit QEC experiment with actual
measurement was realized [9], and recently a measurement-
free QEC procedure with several error-correction cycles
was demonstrated [10]. In linear optics systems, the QEC
experiments include two-qubit protection against “accidental”
measurement [11], continuous-variable adaptation of the nine-
qubit Shor’s code [12], continuous-variable erasure-correcting
code [13], and eight-photon topological error correction
[14]. A three-qubit measurement-free QEC protocol has
been recently demonstrated with superconducting “transmon”
qubits [15].

With the rapid progress in experiments with superconduct-
ing qubits [17,18], QEC with actual measurements is becoming
feasible in these systems in the reasonably near future. The
subject of this paper is the analysis of several simple error cor-
rection and detection protocols relevant to future experiments
with superconducting qubits, mainly superconducting phase

qubits [19]. (Some results of this paper have been reported
earlier [20].)

In the past, pure dephasing was by far the dominant source
of decoherence in superconducting qubits, and QEC protecting
against pure dephasing would be most important. An example
of such a procedure was considered theoretically in Ref. [21].
The idea was to use the standard three-qubit repetitive code,
which protects from bit flips (i.e., X rotations). By using
additional Hadamard gates for each physical qubit, the X

rotations are converted into Z rotations, and therefore the same
code can be used to protect against pure dephasing.

In recent years, pure dephasing in superconducting qubits
was significantly reduced by various technological advances
[17,18], and now energy relaxation is becoming most im-
portant. In particular, when quantum information is stored
in a superconducting resonator [22,23], pure dephasing is
negligible in comparison with energy relaxation. This is why
in the first part of this paper (Sec. II) we focus on the
operation of repetitive N -qubit quantum codes in the presence
of energy relaxation. Repetitive codes are chosen because
of their relative simplicity in the encoding and decoding
(unfortunately, the standard five-qubit or seven-qubit stabilizer
codes [1,2,24] are not feasible for superconducting qubits
in the near future). To reduce the number of qubits in a
procedure we use the standard compact scheme [5,21], in
which the ancilla qubits used for encoding are also used for
the error syndrome measurement. We assume that the energy
relaxation happens at zero temperature, which is essentially the
case for superconducting phase qubits, since the typical qubit
frequency is ∼6 GHz, and therefore the energy h̄ω � 0.3 K is
much larger than the experimental temperature of ∼50 mK.

Even though energy relaxation may look similar to a bit
flip, it actually can be thought of as a combination of two
quantum errors: bit flip and bit-phase flip (which correspond to
X rotation and Y rotation). This is the reason why, as we show
later explicitly, repetitive codes do not work for QEC against
energy relaxation. However, these codes can be efficiently used
for quantum error detection (QED). In QED we detect that
an error happened but cannot restore the undamaged quantum
state (in particular, the QED idea was implemented in Ref. [25]
for phase errors in liquid-state NMR and has been recently
investigated in Ref. [13] for detecting photon erasures). Even
though QED is of much more limited use than QEC, it is still an
interesting procedure, and experimentally can be considered
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as a first step towards full QEC. We show that for QED against
energy relaxation it is sufficient to use two-qubit encoding and
that there is not much benefit to use more qubits, unless a
somewhat more sophisticated procedure is used.

Our analysis in Sec. II is based on unraveling the qubit
energy relaxation into the “relaxation” and “no relaxation”
scenarios. This unraveling is quite different (and more difficult)
than, for example, unraveling of pure dephasing into the “phase
flip” and “no phase flip” scenarios. The main reason for the
difference is that the unraveled states for the energy relaxation
are related to the initial state in a nonunitary way.

In Sec. III we focus on simple two-qubit QEC and QED
protocols, somewhat similar to those in Ref. [25], which can
be readily implemented using the present-day technology of
phase qubits [23]. The design of these algorithms is based on
the controlled-Z (CZ) operation as the entangling gate; this
is because the CZ gate is relatively easy to implement and
is one of two main two-qubit gates (together with

√
iSWAP)

used in recent experiments with phase qubits [23,26]. Realistic
experimental parameters are used in the numerical simulation
of the protocols. In the first protocol and its variations, we
assume that as in most of the previous experiments [5–15]
the errors are intentionally induced by particular operations
pretended to be unknown. The algorithms can mainly be used
for QED; however, when the type of particular error is known
(which is the case for intentional errors in an experiment), the
algorithms can also be used for QEC (constrained QEC). We
also analyze numerically the operation of a protocol in which
the errors during a storage period are due to actual energy
relaxation of two qubits (assuming storage in resonators of
a RezQu-architecture device [23,27] with phase qubits). This
protocol can only be used in the QED mode. The main result of
the simulations is that the analyzed protocols can be realized
at the present-day level of phase qubit technology. (Such an
experiment would be an important step towards a really useful
QEC.) Section IV is a conclusion. Some mathematical details
of the analysis are discussed in the Appendix.

II. REPETITIVE CODING FOR ENERGY RELAXATION

In this section we analyze the operation of repetitive
N -qubit encoding in the presence of (Markovian) zero-
temperature energy relaxation. The procedure is shown in
Fig. 1. The goal is to preserve an arbitrary initial state,

|ψin〉 = α|0〉 + β|1〉, (1)

of the main (upper) qubit, where |0〉 is the ground state and |1〉
is the excited state. In this paper we consider only preservation

in

0N 1 X

T1
i

X

FIG. 1. N -qubit repetitive coding algorithm with one control
qubit initially containing the quantum information. The controlled-X
block represents CNOT gates from the main qubit to each ancilla qubit
individually. T

(i)
1 represents energy relaxation of the ith qubit (i = 1

for the main qubit, i � 2 for ancilla qubits).

of the initial state (“memory” operation), so in discussing the
fidelity of a procedure we always imply comparison with
the ideal memory operation. (We do not consider any logic
operations on the encoded qubit, as is usually done in the
fault-tolerant quantum computation [2]. Actually, the quantum
codes we consider are too simple for that.)

The encoding in Fig. 1 is performed with N − 1 controlled-
NOT (CNOT) gates, acting on N − 1 ancilla qubits, which
all start in the state |0〉. This produces the N -qubit wave
function α|0N 〉 + β|1N 〉, where the notation |xN 〉 represents
the product-state of N qubits, all being in the state x. After
the encoding, all qubits are subjected to decoherence due to
zero-temperature energy relaxation with relaxation time T

(i)
1

for the ith qubit, i = 1,2, . . . ,N . We mostly consider the case
when the decoherence is the same for all qubits, T

(i)
1 = T1.

After the decoherence during time t , the logic state is decoded
by using N − 1 CNOT gates in the same way as was done for
the encoding, and all N − 1 ancilla qubits are measured in the
computational basis. In the absence of decoherence (t = 0) the
state after decoding is (α|0〉 + β|1〉) |0N−1〉, so that the initial
state of the main qubit is restored and the measurement result
for all ancillas is 0. The decoherence disturbs the final state,
which probabilistically changes the measurement results and
the corresponding final states of the main qubit.

Even when the measurement result is all N − 1 zeros (for
which we will use the bold-font notation 0), the state of the
main qubit is not exactly |ψin〉; however, we will see that it is
close to |ψin〉. A measurement result different from 0 indicates
an error. There are three ways to handle this situation. First,
the measurement result can be simply ignored; in this case
there is obviously no benefit from using the encoding-decoding
procedure. Second, we can reject such cases and keep only
realizations with the measurement result 0; we refer to this
selective procedure as QED. Third, we can apply a quantum
operation to the main qubit to make its state closer to |ψin〉.
This operation will depend on the measurement result, and the
procedure is then QEC.

For simplicity, in this section we neglect decoherence
(and other imperfections) during encoding, decoding, and
measurement; it will be taken into account in the next section
when we discuss realistic experiments with phase qubits. To
characterize the efficiency of a procedure either the quantum
process tomography (QPT) fidelity Fχ or the average state
fidelity Fav can be used. The QPT fidelity is usually defined
as [2,28] Fχ = Tr(χdesiredχ ), where χ is the process matrix and
χdesired in our case corresponds to the ideal quantum memory
operation, that is, no evolution of the logic qubit. The average
state fidelity is [2,28] Fav = ∫

Tr(ρfinU0|ψin〉〈ψin|U †
0 ) d|ψin〉,

where U0 = 1 is the desired unitary operator, ρfin(|ψin〉〈ψin|)
is the actual mapping from the initial state to the final
density matrix ρfin, and the normalized integral is over all
pure initial states |ψin〉 using the Haar measure. For a trace-
preserving operation Fav = (Fχd + 1)/(d + 1), where d = 2
is the dimension of our Hilbert space [28]. This relation holds
for QEC and/or when the measurement result is ignored.
However, for the QED procedure there is a problem [29] in
defining the QPT fidelity Fχ because the procedure is selective;
then the quantum operation for normalized states is not linear
and the corresponding (trace-preserving) matrix χ cannot be
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defined rigorously. In this case we define Fχ via the average
state fidelity,

Fχ = (3Fav − 1)/2, (2)

as for a trace-preserving operation.

A. Single-qubit relaxation

Before calculating the fidelity of the QEC and QED
procedures, let us calculate the quantum memory fidelity of
a single qubit, without any encoding. We also consider first
this simple case to demonstrate a technique of unraveling the
evolution due to energy relaxation, which is later used for
N -qubit encoding.

After time t an initial state |ψin〉 = α|0〉 + β|1〉 becomes a
density matrix (here the upper row and left column correspond
to the excited state |1〉)

ρfin =
( |β|2e−t/T1 α∗βe−t/2T1

αβ∗e−t/2T1 |α|2 + |β|2(1 − et/T1 )

)
, (3)

which can be represented using the Kraus operators,

ρfin = ArρinA
†
r + AnρinA

†
n, (4)

Ar =
(

0 0√
p 0

)
, An =

(√
1 − p 0

0 1

)
, (5)

where p = 1 − e−t/T1 , ρin = |ψin〉〈ψin|, and the Kraus opera-
tors satisfy the completeness relation A

†
r Ar + A

†
nAn = 1. This

representation has an obvious interpretation as two scenarios
of the evolution. The first term in Eq. (4) corresponds to
qubit relaxation into the ground state |0〉 with probability
Pr = |β|2p. The second term is the no-relaxation scenario,
which occurs with the remaining probability Pn = |α|2 +
|β|2(1 − p) = 1 − Pr and transforms the qubit into the state

|ψn〉 = An|ψin〉√
Pn

= α|0〉 + β
√

1 − p |1〉√
Pn

. (6)

The nonunitary evolution |ψin〉 → |ψn〉 is essentially the same
as for a partial collapse due to a null-result measurement in
the experiment of Ref. [30].

Now let us find the averaged state fidelity Fav =
Tr(ρf|ψin〉〈ψin|) using unraveling into the relaxation and no-
relaxation scenarios. With probability Pr the state fidelity is
Fst,r = |〈0|ψin〉|2 = |α|2, and with probability Pn the state
fidelity is Fst,n = |〈ψn|ψin〉|2 = (|α|2 + √

1 − p|β|2)2/Pn.
Therefore, for an initial state |ψin〉 the state fidelity is

Fst = Fst,rPr + Fst,nPn (7a)

= |α|2|β|2p + |α|4 + (1 − p)|β|4
+ 2|α|2|β|2

√
1 − p, (7b)

and the average fidelity Fav = Fst can be calculated by
averaging |α|4, |β|4, and |α|2|β|2 over the Bloch sphere. These
averages (including some others for completeness and later
use) are

|α|4 = |β|4 =
∫ π

0

(1 + cos θ )2

4

sin θ

2
dθ = 1

3
, (8)

|α|2|β|2 =
∫ π

0

(1 + cos θ )(1 − cos θ )

4

sin θ

2
dθ = 1

6
, (9)

|α|2 = |β|2 = 1

2
, |α|6 = |β|6 = 1

4
, (10)

|α|2|β|4 = |α|4|β|2 = 1

12
, |α|4|β|4 = 1

30
, (11)

1/(A + B|β|2) = (1/B) ln(1 + B/A), (12)

|β|2/(A + B|β|2) = (1/B) − (A/B2) ln(1 + B/A), (13)

|β|4/(A + B|β|2) = 1

2B
− A

B2
+ A2

B3
ln(1 + B/A), (14)

|α|4
A + B|β|2 = −3

2B
− A

B2
+ (A + B)2

B3
ln(1 + B/A), (15)

|α|2|β|2
A + B|β|2 = 1

2B
+ A

B2
− A(A + B)

B3
ln(1 + B/A), (16)

where A and B are constants, and we used integration over the
Bloch-sphere polar angle θ , so that |α|2 = (1 + cos θ )/2 and
|β|2 = (1 − cos θ )/2.

Applying the averages (8) and (9) to Eq. (7b), we obtain
the average state fidelity [31]

Fav = 2

3
+

√
1 − p

3
− p

6
. (17)

Actually, there is an easier way to obtain this result. Instead
of averaging Fst over the Bloch sphere, it is sufficient [28,32]
(see also Appendix) to calculate the average only over six
initial states: |0〉, |1〉, (|0〉 ± |1〉)/√2, and (|0〉 ± i|1〉)/√2.
However, in our further analysis this trick does not always
help, so we prefer the full integration over the Bloch sphere.
Using Eq. (2) it is easy to convert Eq. (17) into the QPT fidelity:
Fχ = (1 + √

1 − p − p/2)/2. Note that for small p

Fav ≈ 1 − p

3
, Fχ ≈ 1 − p

2
, p ≈ t

T1

 1. (18)

The average state fidelity (17) is averaged over the two
scenarios. Let us now discuss the average state fidelity in each
scenario separately, having in mind a gedanken experiment in
which an emitted photon or phonon is always captured and
recorded, thus allowing us to distinguish the two scenarios. If
the relaxation has happened, then Fst,r = |α|2 and averaging
this over the Bloch sphere we obtain

Fav,r = |α|2 = 1/2. (19)

Similarly, for the no-relaxation scenario Fav,n =
(|α|2 + √

1 − p|β|2)2/[|α|2 + (1 − p)|β|2], which can
be calculated using Eqs. (14)–(16):

Fav,n = 1

2
+

√
1 − p(2 − p) − 2(1 − p)

p2

+ (1 − p)(2
√

1 − p − 2 + p)

p3
ln(1 − p). (20)

For p 
 1 this gives Fav,n ≈ 1 − p2/24, showing a slow,
quadratic in time decrease of fidelity in the no-relaxation
scenario in contrast to the linear decrease (18) of the fidelity
averaged over both scenarios. Therefore, our gedanken exper-
iment could be used for QED: If no relaxation is recorded, we
know that the initial state is well-preserved at short times.
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Note that we have averaged the state fidelities Fst,r and
Fst,n over the Bloch sphere with uniform weight, as in the
standard definition [2,28] of the averaged state fidelity. Another
meaningful averaging is using weights proportional to the
probabilities of the corresponding scenarios. [This would
correspond to an equal number of experimental runs for each
point of a uniform mesh on the Bloch sphere, as opposed to
an equal number of “successful” (i.e., selected) runs for the
previous definition.] Thus defined average fidelities are

F̃av,r = |α|2Pr/Pr = 1/3, (21)

F̃av,n = (|α|2 +
√

1 − p|β|2)2/Pn = 2 − p + √
1 − p

3 − 3p/2
,

(22)

where Pr = p/2 and Pn = 1 − p/2 are the averaged probabil-
ities of the two scenarios. The advantage of this definition is a
natural formula for the non-selected average fidelity:

Fav = F̃av,rPr + F̃av,nPn (23)

[see Eq. (7a)]. In this paper when discussing selected scenarios
(as for QED) we will use both ways to average over the
Bloch sphere. Note that F̃av,n ≈ 1 − p2/24 for p 
 1, which
is the same as for Fav,n (F̃av,n and Fav,n are practically
indistinguishable at p � 1/2), indicating that the difference
between the two definitions is not very significant in the cases
that are of most interest for this paper.

B. Two-qubit encoding

Let us use the procedure of Fig. 1 with only one ancilla
qubit. The encoded state is then α|00〉 + β|11〉. The state
evolution due to energy relaxation can be unraveled into four
scenarios: no relaxation, relaxation in either the first (main)
or second (ancilla) qubit, and relaxation in both qubits. The
corresponding wave functions and probabilities after time t of
energy relaxation are⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α|00〉 + β
√

1 − p1
√

1 − p2|11〉√
Pnn

,

prob. Pnn = |α|2 + |β|2 (1 − p1)(1 − p2),

|01〉, prob. Prn = |β|2 p1(1 − p2),

|10〉, prob. Pnr = |β|2 (1 − p1)p2,

|00〉, prob. Prr = |β|2 p1p2,

(24)

where

p1 = 1 − e−t/T
(1)

1 , p2 = 1 − e−t/T
(2)

1 (25)

are the single-qubit probabilities of relaxation from the excited
state |1〉. This simple unraveling is possible because the energy
relaxation occurs only in component |11〉 of the superposition,
and in this component the qubits are unentangled. This is why
the probabilities of the scenarios are the simple products of
individual probabilities. The validity of Eq. (24) can also be
checked by considering particular time moments at which the
relaxation events happen and integrating over these moments;
this is a more direct but more cumbersome way.

After the decoding procedure consisting of one CNOT

operation, the two-qubit state is a product state in all four

scenarios:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α|0〉 + β
√

1 − p1
√

1 − p2|1〉√
Pnn

⊗ |0〉, prob. Pnn,

|01〉, prob. Prn,

|11〉, prob. Pnr,

|00〉, prob. Prr,

(26)

with a definite result of the ancilla qubit measurement in each
scenario. The state of the main qubit is different from the
initial state |ψin〉 in all four scenarios, and the corresponding
state fidelities are [|α|2 + |β|2√1 − p1

√
1 − p2]2/Pnn, |α|2,

|β|2, and |α|2.
As discussed above, we consider three ways to proceed:

ignore the measurement result, select only result 0, or try
to correct the main qubit state. If the measurement result is
ignored, then all four scenarios are added up and the average
fidelity is

F ign
av = [|α|2 + |β|2

√
1 − p1

√
1 − p2]2

+ |α|2Prn + |β|2Pnr + |α|2Prr, (27)

where the averaging is over the Bloch sphere. Using the
formulas for the probabilities from Eq. (24) and the averages
|α|2, |β|2, |α|4, |β|4, and |α|2|β|2 from Eqs. (8)–(10), we obtain

F ign
av = 2

3
+

√
(1 − p1)(1 − p2)

3
− p1

6
. (28)

For small p1,2 (at short time t) it is F
ign
av ≈ 1 − p1/3 − p2/6,

and it is obviously worse than the case without encoding and
decoding of the main qubit [see Eqs. (17) and (18)]. Note that
Eq. (28) can also be obtained by averaging the state fidelity
only over the six initial states (see the Appendix).

In QED we consider ancilla measurement result 1 as an error
and select only the cases when the measurement gives 0. This
selects scenarios with either no relaxation or two relaxation
events [see the first and last lines of Eq. (26)]. The averaged
(with uniform weight) state fidelity in this case is

F qed
av = [|α|2 + |β|2√1 − p1

√
1 − p2]2 + |α|2Prr

Pnn + Prr
(29)

(the fraction is averaged over the Bloch sphere), which can be
calculated using Eqs. (14)–(16):

F qed
av = 1

2
+ s − 1

B
+ p1 + p2 − 2 + 2s

B2

+ (1 + B)2 + s2 − (1 + B)(2s + p1p2)

B3
ln(1 + B),

(30)

where B = 2p1p2 − p1 − p2 and s = √
1 − p1

√
1 − p2. For

the small-error case (at short time t) this gives

F qed
av ≈ 1 − (

p2
1 + p2

2

)/
24 − 5p1p2/12, p1,2 
 1. (31)

If we use the averaging over the Bloch sphere with weight
proportional to the probability Pnn + Prr of the measurement
result 0, then

F̃ qed
av = [|α|2 + |β|2√1 − p1

√
1 − p2]2 + |α|2Prr

Pnn + Prr
(32)
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FIG. 2. Average state preservation fidelities for the two-qubit
encoding (compared with no encoding), as functions of the one-qubit
energy relaxation probability p = 1 − e−t/T1 (same for both qubits,
p1 = p2 = p). The solid lines show the QED fidelities F

qed
av and F̃

qed
av

given by Eqs. (30) and (33). (F qed
av assumes averaging over the Bloch

sphere with uniform weight, while for F̃
qed
av the weight is proportional

to the probability of the “no error” measurement result 0.) The dashed
line shows the QEC fidelity F

qec
av , which coincides with F

ign
av , for which

the measurement result is ignored [Eqs. (28) and (34)]. The dotted line
shows the one-qubit fidelity F

1q
av without encoding [Eq. (17)]. QEC

performs worse than no encoding, while QED provides a significant
improvement for p � 0.3.

(the numerator and denominator are averaged separately),
which gives

F̃ qed
av = 2 − p1 − p2 + 3

2p1p2 + √
1 − p1

√
1 − p2

3[1 + p1p2 − (p1 + p2)/2]
. (33)

[Note that instead of using Eqs. (8)–(10), the six-point
averaging trick can be used separately for the numerator and
denominator of Eq. (32); see the Appendix.] At short times
this gives F̃

qed
av ≈ 1 − (p2

1 + p2
2)/24 − 5p1p2/12, the same as

for F
qed
av [see Eq. (31)].

Figure 2 shows the QED fidelity defined in both ways, F qed
av

and F̃
qed
av , as functions of the one-qubit relaxation probability,

assuming similar qubits, p1 = p2 = p. For p � 0.3 both
fidelities are significantly higher than the fidelity F

1q
av for an

unencoded single qubit [given by Eq. (17)], which itself is
higher than the fidelity F ign

av when the ancilla measurement
result is ignored [Eq. (28)].

Now let us discuss whether the state of the main qubit
can be made closer to |ψin〉 using the measurement result
information, as in QEC. If the measurement result is 0, then
the qubit state is described by the first and last lines of Eq. (26).
It is rather obvious that in this case no unitary operation can
improve further the average fidelity [for QEC we are interested
in averaging with the weight proportional to probability; see
Eq. (23)]. This statement is rigorously proven in the Appendix.
So, no correction should be applied for measurement result
0. (Actually, a nonunitary operation due to partial collapse
can increase the fidelity in this case [29,30,33,34], but we
consider only unitary operations, as it should be in the usual
QEC.) When the measurement result is 1, the main qubit
is in the state |0〉 with probability Prn/(Prn + Pnr) or in the
state |1〉 with remaining probability Pnr/(Prn + Pnr) [see Eq.
(26)]. In the case p1 = p2 this is the fully mixed state, and
any unitary operation does not change it. Thus, a meaningful

error correction is impossible, and therefore F
qec
av = F

ign
av (see

Fig. 2).
Actually, if p2 > p1, then a slight improvement of fidelity

is possible by applying the π pulse (exchanging states |0〉
and |1〉) when the measurement result is 1. This makes the
resulting state closer to |1〉 than to |0〉, and correspondingly on
average closer to |ψin〉, because the probability of measuring 1
increases with |ψin〉 being closer to |1〉. The optimality of this
procedure for measurement result 1 is proven in the Appendix.
It is easy to calculate the fidelity change due to the π pulse
(the easiest way is to average over the six initial states and
to work with un-normalized states; see the Appendix). The
resulting optimal QEC fidelity for the two-qubit encoding of
Fig. 1 is

F qec
av = 2

3
+

√
(1 − p1)(1 − p2)

3
− min(p1,p2)

6
. (34)

C. N-qubit encoding

We now extend our discussion of the protocol of Fig. 1,
including N − 1 ancilla qubits. The encoded state is then
α|0N 〉 + β|1N 〉. The state evolution can be unraveled into 2N

scenarios depending on which qubits relax. However, there
are 2N−1 measurement results, and each of them corresponds
to two scenarios. If the main qubit does not relax, then the
measurement result directly shows which ancilla qubits relax
(i.e., result 1 indicates the relaxation event), while if the main
qubit relaxes, then the relaxation scenario is shown by the
complement of the measurement result (i.e., result 0 indicates
relaxation).

The measurement result 0 (all zeros) indicates that the main
qubit is either in the state

|ψnone〉 = 1√
Pnone

⎛
⎝α|0〉 + β|1〉

N∏
j=1

√
1 − pj

⎞
⎠ , (35)

where Pnone = |α|2 + |β|2∏N
j=1(1 − pj ) is the probability that

no qubits relax, or in the state |0〉 if all qubits relax, with the
corresponding probability Pall = |β|2∏N

j=1pj . For any other
measurement result the main qubit is either in state |0〉 or
|1〉, with easily calculable probabilities of the scenarios. For
simplicity, we assume pj = p below.

As in the previous subsection, we consider three possible
ways to proceed: ignore the measurement result, select only
cases with measurement result 0 (QED), or try to improve the
fidelity when an error is detected (QEC). If the measurement
result is ignored, the average fidelity (calculated in a similar
way as above) is

F ign
av = 2

3
+ (1 − p)N/2

3
− p

6
; (36)

it obviously decreases with increasing number of ancilla
qubits.

In QED we select only cases with measurement result 0.
Then the state fidelity is

F
qed
st = [|α|2 + |β|2(1 − p)N/2]2 + |α|2Pall

Pnone + Pall
, (37)
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and averaging it over the Bloch sphere with uniform weight
we obtain

F qed
av = −3 + S + (1 − p)N

2B
+ −1 + S − (1 − p)N

B2

+ (1 + B)2 + (1 − p)N − S(1 + B)

B3
ln(1 + B), (38)

where B = −1 + (1 − p)N + pN and S = 2(1 − p)N/2 +
pN . For N = 2 this equation corresponds to Eq. (30). The
small-error approximation for N � 3 is

F qed
av ≈ 1 − N2p2/24, p 
 1. (39)

It is interesting to note that this approximation does not
work for N = 2, for which F

qed
av ≈ 1 − p2/2, as follows from

Eq. (31). The reason is that Pall scales as pN , and therefore for
N � 3 Eq. (39) does not have a quadratic contribution from
the scenario when all qubits relax; the infidelity comes only
from the difference between |ψnone〉 and |ψin〉. In contrast, for
N = 2 the fidelity F

qed
av is further decreased by p2/3 due to

relaxation of both qubits.
From Eqs. (39) and (31) we see that the best QED fidelity

in the small-error case (p 
 1) is achieved by the three-qubit
encoding, N = 3; then 1 − F

qed
av ≈ (3/8) p2. However, this is

only the factor 4/3 better (smaller) than for N = 2. Therefore,
from the experimental point of view the two-qubit encoding
(which is easier to realize than the three-qubit encoding) seems
to be most natural.

If we use the averaging of the QED state fidelity (37)
with weights proportional to the probability Pnone + Pall of
the measurement result 0, then we essentially need to average
the numerator and denominator of Eq. (37) separately, thus
obtaining

F̃ qed
av = 2

3

1 + (1 − p)N + (1 − p)N/2 + 1
2pN

1 + (1 − p)N + pN
. (40)

In the small-error case (p 
 1) for N � 3 this gives F̃
qed
N ≈

1 − N2p2/24, the same as Eq. (39) for F
qed
N .

Figure 3(a) shows the QED fidelities F
qed
av and F̃

qed
av for

N = 2, 3, and 4. We see that the difference between F
qed
av and

F̃
qed
av becomes larger with increasing N , but the difference is

small at small p. Note that the QED fidelity for the two-qubit
encoding becomes better than for the three-qubit encoding for
p � 0.3.

Now let us discuss the possibility of QEC protocols,
which use unitary correcting operations depending on the
measurement result. If the result is 0, then the un-normalized
density matrix of the main qubit is Pnone|ψnone〉〈ψnone| +
Pall|0〉〈0|. As proven in the Appendix, no unitary operation
can increase the fidelity in this case (in contrast to nonunitary
partial-collapse operations [29,30,33,34]). For all other mea-
surement results, the main qubit is in the incoherent mixture
of the states |0〉 and |1〉; the un-normalized density matrix
is P0,m|0〉〈0| + P1,m|1〉〈1|, where the corresponding prob-
abilities are P1,m = |β|2(1 − p)

∏
i=2,N f (mi) and P0,m =

|β|2p ∏
i=2,N f (1 − mi), where f (1) = p, f (0) = 1 − p, and

mi is the measurement result for the ith ancilla qubit.
As shown in the Appendix, the maximum fidelity is then
achieved by applying the π pulse (exchanging |0〉 and |1〉)
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FIG. 3. (a) The QED fidelities F̃
qed
av (solid lines) and F

qed
av (dashed

lines) for the encoding using N = 2, 3, and 4 physical qubits, as
functions of the single-qubit energy relaxation probability p. The
dotted line shows the fidelity F

1q
av for an unencoded qubit. (b) The

optimal QEC fidelity F
qec
av (solid lines) and the fidelity F

ign
av when

the measurement result is ignored (dashed lines) for N = 2, 3, and 4.

if P1,m < P0,m and doing nothing if P1,m � P0,m. Calculating
the corresponding qubit state fidelity (compared with the
initial state), summing over the 2N−1 measurement results,
and averaging over the Bloch sphere, we obtain the QEC
fidelity

F qec
av = 1

2 + 1
3 (1 − p)N/2 + 1

6 (1 − p)N

+ 1
6 max[p − pN, (1 − p) − (1 − p)N ]. (41)

The QEC fidelity as well as the fidelity F
ign
av for ignoring the

measurement result are shown in Fig. 3(b) for N = 2, 3, and
4. The curves for F

qec
av and F

ign
av coincide at p � 1/2, because

in this case the optimal correction is no correction. We see that
for any N the QEC fidelity is smaller than the no-encoding
fidelity F

1q
av , so the error correction by a repetitive code does

not protect against energy relaxation.

D. Discussion

Our results show that the repetitive codes do not work for
QEC protection against energy relaxation. This is because
energy relaxation is very different from a bit flip (or phase
flip or bit-phase flip), for which repetitive codes work well.
In the language of quantum stabilizer codes [2] the event of
energy relaxation corresponds to the “sum” of two errors: bit
flip (X operation) and bit-phase flip (Y operation); see the
Kraus operator Ar in Eq. (5). So, a stabilizer code should
be able to protect against both of these errors to protect
against energy relaxation events. [Actually, a weaker error
due to the “no relaxation” Kraus operator Ar in Eq. (5) also
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requires protection against phase-flip (Z operation) errors.]
For example, the standard five-qubit and seven-qubit QEC
codes [1,2,24] protect against all three types of errors (X,Y,Z)
and therefore can protect against energy relaxation.

Using the approach of the stabilizer codes and the quantum
Hamming bound [2], let us calculate the minimum number
of qubits N to protect against X and Y errors. The Hilbert
space of the dimension 2N can be divided into 2N−1 orthogonal
two-dimensional subspaces (“copies” of the qubit space); these
subspaces should be able to distinguish the cases with various
errors and no error. Since the number of possible errors is 2N ,
we have an inequality 2N−1 � 1 + 2N . From this inequality
we find N � 5 (the same minimum as for all three types of
quantum errors). Notice, however, that an approximate QEC
for energy relaxation is possible for N = 4 [35] (see also [36]).
This code breaks the above limitation because the relaxation
event is treated as one error, not as a “sum” of X and Y (the
drawback though is a slightly probabilistic operation). In any
case, the QEC codes protecting against energy relaxation are
much more complicated than the repetitive codes.

Even though the repetitive codes are not good for QEC
protection against energy relaxation, we have shown that they
can be well used for QED. Moreover, only two-qubit encoding
is sufficient for that. An interesting question is whether it is
beneficial to do many cycles of QED, correspondingly decreas-
ing the time of each cycle and therefore the error probability
p in each cycle (such division into shorter cycles is beneficial
for QEC [1,2]). The simple answer is that such division into
shorter cycles does not help much for the protocol of Fig. 1. The
reason is that even when no relaxation events happen, the qubit
state changes [see Eq. (35)] because the absence of relaxation
preferentially indicates state |0〉 and plays the same role as the
partial collapse [30]. Rewriting Eq. (35) in a non-normalized
way as |ψ̃none〉 = α|0〉 + β|1〉∏N

j=1 exp(−t/2T1,j ), we see
that division into several QED cycles does not change the
final wave function |ψ̃none〉 as long as the total time t is the
same. Therefore, since for N � 3 this evolution is the main
reason for imperfect QED fidelity at p 
 1 (see discussion
in the previous subsection), there is not much benefit of
using the QED cycles. Nevertheless, some improvement of
the QED fidelity will be due to a decrease of the probability
Pall that all qubits relax. Since this probability scales as pN ≈
(t/T1)N , the division into M cycles is expected to decrease the
corresponding contribution to the procedure infidelity by the
factor MN−1. This improvement will be most significant for
N = 2: It will essentially change the approximation F

qed
av ≈

1 − p2/2 given by Eq. (31) into F
qed
av ≈ 1 − p2/6 given by

Eq. (39) for N = 2.
A more important improvement of the QED fidelity can be

achieved if the no-relaxation evolution (35) of |ψnone〉 is com-
pensated. One possible way is to apply a partial measurement
[29,30,33] to the main qubit after the procedure, essentially
eliminating the evolution (35) for the price of a further decrease
of the selection probability (probability of success). Another,
easier way is to apply π pulses, exchanging states |0〉 and
|1〉, between (after) the QED cycles (these π rotations can be
around any axis in the equatorial plane of the Bloch sphere).
Then for an even number of equal-duration QED cycles, the
no-relaxation evolution (35) will be compensated exactly (as

in the uncollapsing procedure [29,33,34,37]), and the QED
infidelity 1 − F qed will be due only to the contribution from
Pall. (The use of π pulses resembles dynamical decoupling
of the “bang-bang” type [38]; however, the resemblance is
accidental, since dynamical decoupling cannot protect against
the energy relaxation [39].)

For an estimate of the corresponding QED fidelity, let us
consider the procedure with total duration t � T1, divided
into M cycles of duration t/M each (M is even). In each
cycle p ≈ t/MT1 
 1, and if we assume Nt/MT1 
 1,
then |ψnone〉 ≈ |ψin〉 in Eq. (35). The probability that the
N -qubit relaxation (which remains undetected) has occurred
in the first cycle is Pall = |β|2pN , and similar probability for
the second cycle (after π pulse) is |α|2pN . Therefore, in a
selected QED realization (with all measurement results 0) the
probability to have an undetected relaxation event is (M/2)pN ,
independent of the initial state (we assume this probability to
be small, then we can neglect the double events). If such an
undetected relaxation event happens, then the average fidelity
is F̃av = |α|2|β|2/|α|2 = 1/3. The QED fidelity then can be
calculated as 1 − (1 − 1/3)(M/2)pN , which gives

F qed
av ≈ F̃ qed

av ≈ 1 − M(t/MT1)N/3. (42)

(If the above assumption Nt/MT1 
 1 is violated, then the
factor 1/3 changes, but the scaling remains the same.) We
see that for this procedure the division into a larger number
of cycles M is beneficial, as well as using more qubits (N )
for the encoding. Note that our QED procedure does not
prevent the relaxation events from happening, so the average
probability of observing the “no error” result 0 in all M cycles
is approximately exp(−tN/2T1).

III. TWO-QUBIT ERROR DETECTION AND
CORRECTION FOR PHASE QUBITS

In this section we propose and analyze the operation of
two-qubit error detection and correction protocols designed
for experimental implementation with the current technology
of superconducting phase qubits. We discuss several similar
protocols (including the QED protocol for energy relaxation);
for all of them the goal is to preserve an arbitrary initial state
|ψin〉 = α|0〉 + β|1〉 of a qubit.

The protocols we consider are somewhat similar to the
repetitive coding of Fig. 1 with only one ancilla qubit (N = 2).
However, instead of CNOT gates we use the two-qubit CZ gates,
because they are easier to implement [26,40] and are the main
entangling gates in the current architecture (so-called RezQu or
quantum von Neumann architecture) of phase qubits [23,27].
(Another natural two-qubit gate is

√
iSWAP; however, the

design using
√

iSWAP is not as efficient as with CZ.) The
CNOT gate can be realized with CZ and two Hadamard gates;
however, we avoid Hadamard gates and instead use qubit
rotations about the Y axis, which are easier to implement.
An important goal in designing the algorithms is to make them
as short as possible (in real time), to minimize deteriorating
effects of decoherence during encoding and decoding.

The first procedure (which we will mostly consider) is
shown in Fig. 4; it is designed to preserve the state |ψin〉 of
the upper (main) qubit. Encoding is performed by preparing
the lower (ancilla) qubit in the state (|0〉 + |1〉)/√2 by starting
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FIG. 4. Two-qubit experimental protocol for realizing QED and
QEC. Notations E1 and E2 represent the four detectable error
rotations: RX

1 (2θ ), RY
1 (2θ ), RY

2 (2θ ), and RZ
2 (2θ ). Notations Y/2 and

−Y/2 represent RY (π/2) and RY (−π/2), respectively.

with the ground state |0〉 and using the Y rotation over the
angle π/2 (denoted as Y/2), and then applying the CZ gate
between the two qubits. This produces the entangled two-qubit
wave function

[α|0〉 ⊗ (|0〉 + |1〉) + β|1〉 ⊗ (|0〉 − |1〉)]/
√

2, (43)

where the leftmost entry represents the main qubit. After
encoding, the decoherence process is simulated by applying
a unitary rotation to one of the qubits. For this encoding we
consider a set of four possible rotations: RX

1 (2θ ), RY
1 (2θ ),

RY
2 (2θ ), and RZ

2 (2θ ), where the subscript indicates the qubit
number (1 for the main qubit), the superscript is the rotation
axis on the Bloch sphere, and the argument 2θ is the rotation
angle on the Bloch sphere (the corresponding rotation angle in
the wave-function language is θ ).

After the error rotation has been applied, the resultant state
is decoded by inverting the encoding operation, and the ancilla
qubit is measured in the computational basis. In the absence of
error rotation, the state after decoding is (α|0〉 + β|1〉) ⊗ |0〉,
so that the initial state of the main qubit is restored and the
measurement result for the ancilla qubit is 0. The error rotation
disturbs the final state, which probabilistically changes the
measurement result to 1 and also changes the final state of the
main qubit.

A. Analysis of the ideal case

Let us start with analyzing the effect of the error rotation
RX

1 (2θ ) (X rotation of the main qubit). It transforms the
encoded state (43) into the state

[α(cos θ |0〉 − i sin θ |1〉) ⊗ (|0〉 + |1〉)
+β(−i sin θ |0〉 + cos θ |1〉) ⊗ (|0〉 − |1〉)]/

√
2, (44)

which after decoding (but before measurement) becomes

cos θ |ψin〉|0〉 + i sin θ X|ψin〉|1〉, (45)

where X is the Pauli-X-matrix transformation [2]. It is clear
that we obtain ancilla measurement result 0 with probability
cos2 θ , and then the state of the main qubit is restored to
|ψin〉, or obtain result 1 with probability sin2 θ , which leaves
the main qubit in the state X|ψin〉. [In this section we use
the standard quantum computing notations [2], in which the
Pauli matrices act on column vectors with the upper element
corresponding to the state |0〉. Note that for one-qubit wave
functions RX(π ) = −iX.]

In QED we select only result 0, and this gives the perfect
state preservation fidelity, F

qed
st = 1, for any initial state. We

can also use the approach of QEC and apply the X gate [i.e.,
RX(π )] to the main qubit when the error result 1 is measured.
This produces the initial state |ψin〉 for both measurement

results with perfect fidelity, F qec
st = 1. Therefore, the QED and

QEC fidelities averaged over the Bloch sphere are also perfect,

F qed
av = F qec

av = 1. (46)

Notice, however, that for QEC we had to know that an error is
due to the X rotation applied to the first qubit. This is different
from “real” error correction, in which we do not know the type
of error, but is acceptable for a demonstration experiment.

Let us also calculate the storage fidelity if the measurement
result is ignored (or, equivalently, the ancilla qubit is not
measured). From Eq. (45) we obtain the state fidelity for the
main qubit F

ign
st = cos2 θ + sin2 θ 〈ψin|X|ψin〉2, which after

averaging over the Bloch sphere becomes

F ign
av = cos2 θ + (sin2 θ )/3. (47)

Note that if the rotation RX(2θ ) is applied to a qubit without
encoding, then the average fidelity is still given by Eq. (47),
so the encoding with ignored measurement result (or no
measurement) does not affect the average preservation fidelity
(moreover, it does not affect the state fidelity for any initial
state).

Now let us analyze in a similar way the case when the error
is introduced by the Y rotation of the main qubit, RY

1 (2θ ). Then
the two-qubit state before the measurement is

cos θ |ψin〉|0〉 + i sin θ Y |ψin〉|1〉, (48)

so that the measurement result 0 still restores the initial state
|ψin〉 of the main qubit, while for the measurement result 1
the state of the main qubit is Y |ψin〉, thus requiring the Y -gate
correction [i.e., RY (π ) = −iY ]. The QED and QEC fidelities
are still perfect [Eq. (46)], while the fidelity with ignored
result is still given by Eq. (47). Note that the correcting Y gate
is different from the correcting X gate in the previous case,
so we need to know the type of the error to apply the proper
correction (in a demonstration experiment the error rotation is
applied intentionally, so its type is obviously known).

Now let us consider the error due to the Y rotation of the
ancilla qubit, RY

2 (2θ ). Then the state before the measurement
is

cos θ |ψin〉|0〉 + sin θZ|ψin〉|1〉, (49)

and therefore in the case of measurement result 1 the Z-gate
correction is needed to restore |ψin〉, while for the measurement
result 0 no correction is needed. Equations (46) and (47) are
still valid.

Finally, for the Z rotation of the ancilla qubit, RZ
2 (2θ ), the

state before the measurement is

|ψin〉(cos θ |0〉 + i sin θ |1〉). (50)

The final state of the main qubit is insensitive to this rotation,
and therefore no correction is needed for both measurement
results. In this case Eq. (46) is still valid, while Eq. (47) is
replaced by F

ign
av = 1.

We have discussed the effect of four error rotations: RX
1 (2θ ),

RY
1 (2θ ), RY

2 (2θ ), and RZ
2 (2θ ). The two remaining rotations,

RZ
1 (2θ ) and RX

2 (2θ ), gradually change the final state of the
main qubit (both produce its Z rotations) but always produce
final state |0〉 of the ancilla qubit. Therefore, these errors are
undetectable and are excluded from our set of error rotations.
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As discussed above, for QEC we need to know which one
out of four error types has been applied. In contrast, for QED
we do not need to know the error type; for all of them the
measurement result 0 indicates the perfect state of the main
qubit. Moreover, for QED these types of error rotations can
be applied simultaneously, as long as the rotation angles are
relatively small, to make negligible the second-order terms
(which in the QEC and QED language correspond to double
errors).

It is most natural to view the analyzed procedure as a
QED protocol. However, we would like to emphasize that its
interpretation as a (constrained) QEC protocol is also possible:
the proper correction is possible when we know which error
process is applied. (In the existing QEC experiments the types
of allowed errors are almost always limited; in our protocol the
number of allowed types is further reduced to one out of four.)
Most importantly, our simple two-qubit protocol demonstrates
the main “miracle” of QEC, that continuous quantum errors
can be transformed into discrete errors and then corrected.

B. Realization using phase qubits

So far we considered the ideal case when there is no physical
decoherence of qubits, and the loss of fidelity is only due to
intentional rotations of the qubit states. In this subsection we
discuss a more realistic experimental situation, with added
decoherence during the protocol. We have in mind the present-
day technology of superconducting phase qubits [19,23,26].

Note that the phase qubit technology provides a high-
fidelity measurement (about 95% [19], so we consider it perfect
in the simulations); however, it takes a significant time to read
out the measurement result (longer than the qubit decoherence
time). While this is not a problem for the QED, the QEC at
present cannot be done in real time. Nevertheless, there is
a simple way to go around this difficulty in an experiment.
The resulting state of the main qubit is measured by using
the quantum state tomography (QST), so the experiment is
necessarily repeated many times. It is easy to separate the
QST data for ancilla measurement results 0 and 1. In this way
two different density matrices of the main qubit are obtained
for ancilla measurements 0 and 1. For the result 1 it is then easy
to calculate the density matrix after the correcting operation
(if it were applied in real time). Finally, adding the two density
matrices (with weights equal to the probabilities of ancilla
measurement results), the qubit density matrix for the QEC
procedure is obtained.

In phase qubits [19,23,26] the main sources of decoherence
are single-qubit energy relaxation (with T1 on the order of
0.5 μs) and pure dephasing (with a comparable or a little
shorter dephasing time Tϕ). The decoherence is somewhat re-
duced in the RezQu architecture [23,27], in which the quantum
information is often transferred between the phase qubits and
resonators (resonators have much longer T1 and practically no
pure dephasing). We have simulated the procedure of Fig. 4 in a
simplified way, which does not explicitly reproduce the RezQu
implementation of the protocol, but still uses a reasonable
account of realistic decoherence.

For simplicity for each qubit we assume T1 = T2 (so
that the pure dephasing time is Tϕ = 2T1). We assume that
single-qubit rotations [including RY (±π/2) of ancilla qubit,

preparation of the main qubit, and error rotations] take 10 ns
each, CZ gates take 40 ns each, and there are 5-ns spacings
between the operations. Then the whole protocol of Fig. 4
(ending before measurement of ancilla qubit and tomography
of the main qubit) takes 135 ns. We calculate the evolution
of the two-qubit density matrix by breaking the procedure
into small time steps and applying energy relaxation and
pure dephasing to each qubit (for simplicity the CZ gate is
simulated as a gradual accumulation of the phase, as would be
for the dispersive gate). We start with six initial states of the
main qubit [|0〉, |1〉, (|0〉 ± |1〉)/√2, (|0〉 ± i|1〉)/√2, labeled
by index j = 1, . . . ,6 below], and from the final two-qubit
density matrices we calculate reduced un-normalized one-
qubit density matrices ρ0,j and ρ1,j , corresponding to ancilla
measurement results 0 and 1 (the probabilities of these results
are then Trρ0,j and Trρ1,j ). The averaged preservation fidelity
with ignored measurement results is then (see the Appendix)
F

ign
av = (1/6)

∑
j Tr[(ρ0,j + ρ1,j )ρ in

j ], where ρ in
j = |ψj 〉〈ψj |

is the unchanged initial state. The averaged (weighted) QED
fidelity is then F̃

qed
av = ∑

j Tr(ρ0,j ρ
ideal
j )/

∑
j Trρ0,j , and the

QEC fidelity is F
qec
av = (1/6)

∑
j Tr[(ρ0,j + ρcorr

1,j )ρ in
j ], where

the corrected density matrix ρcorr
1,j is obtained from ρ1,j by

applying the ideal correcting operations (X,Y,Z,I ) discussed
in the previous subsection.

Figure 5 shows the average fidelities F̃
qed
av (solid lines),

F
qec
av (dotted lines), and F

ign
av (dashed lines), as functions of the

rotation angle 2θ (in units of π ) for the intentional X rotation
of the main qubit, RX

1 (2θ ). The three sets of lines are for three
values of T1 = T2: 300, 500, and 700 ns. Note that we present
the average fidelities Fav, but they can be easily converted into
the process matrix fidelities Fχ via Eq. (2). Also note that the
range from 1/3 to 1 for Fav (used for the vertical axis in Fig. 5)
corresponds to the range from 0 to 1 for Fχ .

From Fig. 5 we see that even for T1 = T2 = 300 ns the
QED fidelity is significantly higher than the fidelity with
ignored measurement result (recall that the procedure duration
is 135 ns). The difference between F̃

qed
av and F

ign
av becomes

larger for longer decoherence time (500 and 700 ns). The
QEC fidelity is below the QED fidelity (and even below F

ign
av )

for small θ , but becomes above F̃
qed
av and F

ign
av at large θ .
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FIG. 5. Numerical results for the average QED fidelity F̃
qed
av (solid

lines), the QEC fidelity F
qec
av (dottes lines), and the fidelity F

ign
av with

ignored ancilla measurement results (dashed lines), as functions of
the angle 2θ of intentional X rotation of the main qubit, RX

1 (2θ ). The
simulated protocol of Fig. 4 has a duration of 135 ns. We assume the
qubits with T1 = T2 = 300, 500, and 700 ns.
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FIG. 6. Same as in Fig. 5, but for four types of intentional qubit
state rotations: RX

1 (2θ ), RY
1 (2θ ), RY

2 (2θ ), and RZ
2 (2θ ). The qubits

with T1 = T2 = 500 ns are assumed. Results for rotations RX
1 (2θ )

and RY
1 (2θ ) practically coincide.

It is interesting to notice that F
ign
av at 2θ ≈ π is much

closer to the ideal value 1/3 [see Eq. (47)] than to the ideal
value 1 at 2θ ≈ 0. This property can be understood using the
equivalent language of the process fidelity Fχ = Tr(χdesiredχ )
[see Eq. (2)]. Since the desired operation is the absence of
evolution, Fχ = χII in the standard notations for the one-qubit
4 × 4 matrix χ [2,10,23,26]; note that χII + χXX + χYY +
χZZ = 1. Ideally χII = 1 for 2θ = 0 and χXX = 1 for 2θ = π .
Since decoherence spreads these ideal unity values to the three
other diagonal elements of χ , we would expect that F

ign
χ at

2θ = π should be (very crudely) three times less than 1 − F
ign
χ

at 2θ = 0. This roughly corresponds to what we see in Fig. 5.
Figure 5 shows the results only for the X rotation of the main

qubit, RX
1 (2θ ). The results for all four considered rotations,

RX
1 (2θ ), RY

1 (2θ ), RY
2 (2θ ), and RZ

2 (2θ ), are shown in Fig. 6
for T1 = T2 = 500 ns. The results for X and Y rotation of the
main qubit are practically indistinguishable from each other.
The QED and QEC fidelities for Y rotation of the ancilla qubit
are very close to the corresponding fidelities for the rotation of
the main qubit. For Z rotation of the ancilla qubit the operation
with ignored measurement coincides with the QEC operation
(because no correction is applied for measurement result 1),
and the QED fidelity F̃

qed
av is higher than F

ign
av = F

qec
av only

at 2θ � π/2, and only by a small amount. Obviously, the
rotation RZ

2 (2θ ) is not good for demonstrating an advantage
of this encoding, in contrast to other rotations.

Overall, from Figs. 5 and 6 we see that the current tech-
nology of phase qubits is good enough for demonstrating the
operation of the considered two-qubit QED and QEC protocol.
In an experiment, the larger value of the QED fidelity in
comparison with the case of ignored measurement result is the
demonstration that the QED procedure is beneficial. Similarly,
the (constrained) QEC operation can also be demonstrated
(though with the caveat discussed in the previous subsection).

C. Related protocols

The protocol of Fig. 4 can be easily modified to change
the set of four detectable and correctable error operations. For
example, if we desire protection from Y and Z rotations of
both qubits [i.e., RY

1 (2θ ), RZ
1 (2θ ), RY

2 (2θ ), and RZ
2 (2θ )], we

can add ±π/2 Y rotations of the main qubit before and after

in

0 Y 2

Y 2 E1

E2

Y 2

Y 2

a

in

0 Y 2 Y 2

T1

T1 Y 2 Y 2

b

FIG. 7. Modified two-qubit QED and QEC algorithms. The
protocol shown in (a) detects and corrects errors due to rotations
RY

1 , RZ
1 , RY

2 , and RZ
2 ; it can be used to protect from natural pure

dephasing of the qubits. The protocol in (b) is designed for error
rotations RX

1 , RY
1 , RX

2 , and RY
2 . Therefore, it can be used as a QED

procedure for errors due to energy relaxation of both qubits (stored
in resonators).

the error rotations [see Fig. 7(a)]. Such encoding also protects
from natural pure dephasing of both qubits.

For protection from X and Y rotations of both qubits [i.e.,
RX

1 (2θ ), RY
1 (2θ ), RX

2 (2θ ), and RY
2 (2θ )], we can add ∓π/2 Y

rotations of the ancilla qubit before and after the errors [see
Fig. 7(b)]. Such encoding can be used in the QED mode for the
energy relaxation of both qubits. (This procedure essentially
realizes the idea of Fig. 1 for two qubits; the only difference
is the encoding α|00〉 − β|11〉 instead of encoding α|00〉 +
β|11〉 considered in Sec. II B.)

In the RezQu architecture based on phase qubits [23,27],
the protocol of Fig. 7(b) can be efficiently used for storing
the information in the resonators. We have simulated the
operation of this protocol, assuming that the encoding and
decoding is done with the phase qubits having relaxation
times T1 = T2, while in between encoding and decoding the
information is moved to resonators for a relatively long storage.
The procedure (without the storage time) is slightly longer
than what was considered in the previous subsection: 155 ns
instead of 135 ns (we still do not simulate explicitly the
move operations between the qubits and resonators). Solid
lines in Fig. 8 show the corresponding QED fidelities F̃

qed
av

as functions of the single-qubit energy relaxation probability

p
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300ns

Fav
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Fav
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FIG. 8. Average QED fidelity F̃
qed
av (solid lines) for the two-qubit

protocol of Fig. 7(b), as a function of the single-qubit energy relax-
ation probability p = 1 − exp(−tstorage/T resonator

1 ) during information
storage in resonators. Dashed lines show average fidelity F

ign
av when

the measurement result is ignored. The encoding and decoding is
done with phase qubits having significantly shorter relaxation times
T1 = T2 (300, 500, and 700 ns); the assumed duration of the procedure
(excluding storage time) is 155 ns.
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p = 1 − exp(−tstorage/T resonator
1 ) during the storage (in exper-

iment [23] T resonator
1  T1, though our results do not need this

assumption). The QEC operation is impossible in this case
(for real energy relaxation in resonators); however, as seen
from Fig. 8, the QED operation can be reliably demonstrated
experimentally.

IV. CONCLUSION

In Sec. II we have analyzed the performance of N -qubit
repetitive quantum codes in the presence of energy relaxation.
As expected, these codes are not usable for QEC. However,
they can be used for QED. The best QED performance for
weak energy relaxation is provided by the three-qubit repetitive
encoding [see Eq. (39) and Fig. 3(a)], while the two-qubit
encoding is sufficient and gives only slightly lower fidelity
[see Eq. (31)]. We have found that the main contribution to the
QED infidelity for N � 3 comes from the nonunitary change
of the quantum state in the case when no relaxation happens.
Therefore, the QED infidelity can be strongly decreased if
the QED algorithm is complemented with partial quantum
measurement or, alternatively, if the protocol is divided into
the even number of cycles and complemented with π pulses in
between (this resembles dynamical decoupling, though only
superficially). In this case the fidelity improves with dividing
the total duration into a larger number of cycles and using
more qubits for the encoding [see Eq. (42)].

Note that the QED fidelity cannot be introduced in the
usual way [as Fχ = Tr(χdesiredχ )] via the process χ matrix.
In the analysis we have used the state fidelity, averaged
over the Bloch sphere, with the usual conversion into Fχ

via Eq. (2). For the state fidelity averaged with the weight
proportional to the selection probability (denoted F̃

qed
av ) the

usual trick of averaging over the six initial states can be used
(see the Appendix), while for the state fidelity averaged with
uniform weight (denoted F

qed
av ) we had to average over the

Bloch sphere explicitly, using Eqs. (8)–(16). In the analysis
we used unraveling of the decoherence evolution into the
“error scenarios,” which is, in general, similar to the standard
approach used in the QEC, but is different in the way that each
scenario describes a nonunitary process.

In Sec. III we have considered simple two-qubit protocols
of quantum error detection and correction, suitable for present-
day experiments with superconducting phase qubits [23]. In the
protocol of Fig. 4 the errors are simulated by intentional unitary
rotations of the qubit states (two types of rotations for each
qubit). In this case not only the QED, but also the (constrained)
QEC operation is possible if we know the applied type of error
rotation. Most importantly, this experiment would demonstrate
the QEC “miracle” of converting continuous quantum errors
into discrete errors, which are then correctable. The numerical
simulations (Figs. 5 and 6) with account of decoherence
during the protocol show that the experimental QED and
QEC fidelities are expected to be significantly higher than the
fidelity with ignored result of the ancilla qubit measurement.
Therefore, the QED and QEC benefits can be demonstrated
experimentally.

A slightly different protocol, shown in Fig. 7(b), can be used
as a QED procedure for errors due to natural energy relaxation

of qubits stored in resonators of a RezQu-architecture device
[23,27] based on phase qubits. The numerical simulations
(Fig. 8) show that such an experiment can also be realized
with the present-day technology, demonstrating the benefits of
encoding a logical qubit in several (two in this case) physical
qubits. While the measurement-free QEC experiment has been
recently realized with superconducting transmon qubits [15],
the experiments proposed and analyzed in this paper would be
the first measurement-based QED and QEC protocols realized
with superconducting qubits. Even though these experiments
would still be only kind of a proof-of-principle demonstration,
they would be an important step towards a really useful QEC.
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APPENDIX

In this Appendix we prove that no additional unitary
operation can improve the fidelity of the protocol discussed
in Sec. II (for two-qubit or N -qubit encoding) in the case of
“no error” measurement result (0 or 0). We also prove that
for a measurement result which indicates an error, the optimal
correction is either identity or the π pulse, exchanging |0〉 and
|1〉. Along the way we also discuss the trick [28,32] of using
only six initial states for averaging the state fidelity over the
Bloch sphere.

Let us first consider an arbitrary (not necessarily trace-
preserving) linear one-qubit quantum operation, which trans-
forms initial states |1〉, |0〉, |±〉 ≡ (|0〉 ± |1〉)/√2, |± i〉 ≡
(|0〉 ± i|1〉)/√2 into the density matrices ρ0, ρ1, ρ±, ρ±i .
The center of the Bloch sphere (|0〉〈0| + |1〉〈1|)/2 = I/2 is
transformed into ρc. Because of the linearity, only four linearly
independent initial states are sufficient to define the operation.
So, for an initial state with the Bloch sphere coordinates
{x,y,z},

ρin = (I + xX + yY + zZ)/2, (A1)

where {X,Y,Z} are the Pauli matrices (x = 1 corresponds to
|+〉, y = 1 corresponds to |+i〉, z = 1 corresponds to |0〉), the
final state is

ρfin = ρc + x(ρ+ − ρc) + y(ρ+i − ρc) + z(ρ0 − ρc). (A2)

To compare this operation with a unitary U , we calculate the
state fidelity Tr(ρfinρ

U
fin) (the superscript U in a notation means

that it relates to the unitary U ),

Fst = Tr
{
[ρc + x(ρ+ − ρc) + y(ρ+i − ρc) + z(ρ0 − ρc)]

×[
ρU

c +x
(
ρU

+ − ρU
c

)+y
(
ρU

+i − ρU
c

) + z
(
ρU

0 − ρU
c

)]}
.

(A3)

Note that ρU
c = I/2, since a unitary operation does not

change the Bloch sphere center. In averaging Fst over the
Bloch sphere we average over the coordinates {x,y,z} and
use the obvious relations x = y = z = xy = xz = yz = 0,
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x2 = y2 = z2 = 1/3, this obtaining

F = 1
2 Trρc + 1

3 Tr
[
(ρ+ − ρc)

(
ρU

+ − ρU
c

) + (ρ+i − ρc)

× (
ρU

+i − ρU
c

) + (ρ0 − ρc)
(
ρU

0 − ρU
c

)]
. (A4)

Note that in general we deal here with non-normalized
density matrices, in contrast to the formalism used in Sec. II.
Therefore, compared with notations of Sec. II, F = Fav =
F̃av only for a trace-preserving operation, while for a non-
trace-preserving operation F = F̃avP , where P is the average
probability of selection [see Eq. (23)], and there is no direct
relation between F and Fav.

Using Eq. (A4) it is easy to see why averaging over the
Bloch sphere is equivalent to averaging over only six initial
states: |0〉, |1〉, |±〉, and |±i〉. The state fidelity F+ for the
initial state |+〉 is given by Eq. (A3) with x = 1 and y =
z = 0. The state fidelity F− for the initial state |−〉 is similar,
but x = −1. It is easy to obtain the sum, F+ + F− = Trρc +
2Tr[(ρ+ − ρc)(ρU

+ − ρU
+ )], which resembles the first two terms

in Eq. (A4). Similarly finding the sums F+i + F−i and F0 +
F1, we obtain [28,32]

F = (F0 + F1 + F+ + F− + F+i + F−i)/6. (A5)

Note that this relation remains valid for non-trace-preserving
operations (when we are working with a linear operation and
non-normalized states). The same six-point-averaging relation
is valid for the average probability of selection P , because
P = Trρfin and therefore P = Trρc (even two-point averaging
is sufficient for P , when we choose two opposite points on
the Bloch sphere). Therefore the six-point-averaging trick is
useful for finding F̃av = F/P .

Now let us discuss why an additional unitary cannot
improve the QEC protocols of Sec. II when the “no error” mea-
surement result 0 (or 0) is obtained. The final state in this case
is an incoherent mixture of the results of two linear operations:

α|0〉+β|1〉 → α|0〉 + kβ|1〉, α|0〉 + β|1〉 → k̃β|0〉, (A6)

where the real positive constants k and k̃ should obviously
satisfy inequality k2 + k̃2 � 1. For this operation it is easy to
find explicitly

ρc = (1 + k̃2 + k2)I/4 + (1 + k̃2 − k2)Z/4, (A7)

ρ+ = ρc + kX/2, ρ+i = ρc + kY/2, ρ0 = (Z + I )/2.

(A8)

Then using Eq. (A4) we obtain

F = 1

4
(1 + k2 + k̃2) + 1

6
Tr

[
kX

(
ρU

+ − ρU
c

)

+ kY
(
ρU

+i − ρU
c

) + 1 − k̃2 + k2

2
Z

(
ρU

0 − ρU
c

)]
. (A9)

(Note that comparing the operation with U we assume the
correction operation U †.) Optimizing each term under the
trace over the unitary U separately, we see that the first term
is maximized by unitaries, which transform |+〉 → |+〉; the
maximum for the second term is achieved when |+i〉 → |+i〉,
and the maximum for the third term is achieved when
|0〉 → |0〉 (note that k � 0 and 1 − k̃2 + k2 � 0). Since
the no-evolution operation satisfies all these conditions, it
provides the maximum fidelity,

Ubest = I, F = 1 + k + k2 + k̃2/2

3
. (A10)

Note that the average probability of the process (A6) is
P = (1 + k2 + k̃2)/2, so F̃av = (2/3)(1 + k + k2 + k̃2)/(1 +
k2 + k̃2). In particular, this is an alternative way of deriving
Eq. (33) by using k = √

1 − p1
√

1 − p2 and k̃ = √
p1p2.

Now let us discuss what is the optimal unitary correction
operation after obtaining the measurement result 1 in two-
qubit encoding or any result except 0 in N -qubit encoding.
Then the resulting state is an incoherent mixture of two linear
operations:

α|0〉 + β|1〉 → kβ|1〉, α|0〉 + β|1〉 → k̃β|0〉. (A11)

Finding explicitly the resulting density matrices

ρ0 = 0, ρc = ρ+ = ρ+i = k̃2

2
|0〉〈0| + k2

2
|1〉〈1|, (A12)

we obtain from Eq. (A4)

F = k2 + k̃2

4
+ k2 − k̃2

12
Tr

[
Z

(
ρU

0 − ρU
c

)]
. (A13)

Therefore, if k � k̃, then the maximum fidelity F max = (2k2 +
k̃2)/6 is achieved for any unitary U , which does not change
|0〉 (same for the correcting operation U †). However, if k � k̃,
then the optimal U transforms |0〉 → |1〉 (same for U †) and
F max = (k2 + 2k̃2)/6.
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