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A possible building block for a scalable quantum computer has recently been demonstrated [Mariantoni
et al., Science 334, 61 (2011)]. This architecture consists of superconducting qubits capacitively coupled both to
individual memory resonators as well as a common bus. In this work we study a natural primitive entangling gate
for this and related resonator-based architectures, which consists of a controlled-σ z (CZ) operation between a
qubit and the bus. The CZ gate is implemented with the aid of the noncomputational qubit |2〉 state [Strauch et al.,
Phys. Rev. Lett. 91, 167005 (2003)]. Assuming phase or transmon qubits with 300 MHz anharmonicity, we show
that by using only low frequency qubit-bias control it is possible to implement the qubit-bus CZ gate with 99.9%
(99.99%) fidelity in about 17 ns (23 ns) with a realistic two-parameter pulse profile, plus two auxiliary z rotations.
The fidelity measure we refer to here is a state-averaged intrinsic process fidelity, which does not include any
effects of noise or decoherence. These results apply to a multiqubit device that includes strongly coupled memory
resonators. We investigate the performance of the qubit-bus CZ gate as a function of qubit anharmonicity, identify
the dominant intrinsic error mechanism and derive an associated fidelity estimator, quantify the pulse shape
sensitivity and precision requirements, simulate qubit-qubit CZ gates that are mediated by the bus resonator,
and also attempt a global optimization of system parameters including resonator frequencies and couplings. Our
results are relevant for a wide range of superconducting hardware designs that incorporate resonators and suggest
that it should be possible to demonstrate a 99.9% CZ gate with existing transmon qubits, which would constitute
an important step towards the development of an error-corrected superconducting quantum computer.
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I. QUANTUM VON NEUMANN ARCHITECTURE

Reaching the fidelity threshold for fault-tolerant quantum
computation with superconducting electrical circuits [1–3]
will probably require improvement in three areas: qubit
coherence, readout, and qubit-qubit coupling tunability. For-
tunately, the coherence times of superconducting transmon
qubits [4,5] have increased dramatically, exceeding 10 μs in
the three-dimensional version [6,7]. Fast, threshold-fidelity
nondestructive measurement has not yet been demonstrated,
but is being actively pursued [8–12]. Some method for turning
off the interaction between device elements—beyond simple
frequency detuning—is also desirable for high-fidelity opera-
tions. A variety of tunable coupling circuits have been demon-
strated [13–19], but these considerably increase the complexity
of the hardware and it is not clear whether they will be
practical for large-scale implementation. The coupling can also
be controlled by the application of microwave pulses [20–32].

An alternative approach has been introduced by Mariantoni
et al. [33] and theoretically analyzed in Ref. [34]. In this
quantum von Neumann (QVN) architecture, superconducting
qubits are capacitively coupled both to individual memory
resonators as well as a common bus, as illustrated in Fig. 1.
The crossed boxes in Fig. 1 represent the phase qubits [35]
employed by Mariantoni et al. [33], however, other qubit
designs such as the transmon may be used here as well. The key
feature of this architecture is that information (data) is stored in
memory resonators that are isolated by two detuned coupling
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steps from the bus. Qubits are used to transfer information
to and from the bus or entangle with it, and to implement
single-qubit operations, but are otherwise kept in their ground
states. No more than one qubit (attached to the same bus) is
to be occupied at any time. Such an approach significantly
improves the effective on-off ratio without introducing the
added complexity of nonlinear tunable coupling circuitry. The
spectral crowding problem of the usual qubit-bus architecture
is greatly reduced because the four-step coupling between
memory resonators is negligible. And an added benefit of
the QVN approach is that the longer coherence times of the
memory elements reduce the overall decoherence rate of the
device. (In Ref. [34], the architecture we consider is referred
to as the resonator-zero-qubit architecture, but here we will
follow the QVN terminology of [33].)

The QVN architecture of Mariantoni et al. [33] is not, by
itself, capable of large-scale, fault-tolerant quantum computa-
tion, nor is it known how multiple QVN devices might be
integrated into a scalable design. The problem of design-
ing scalable, fault-tolerant architectures for superconducting
qubits is of great interest and importance [36,37], but is still in
its infancy. We expect the gate design approach discussed here
to be applicable to future architecture designs incorporating
qubits coupled to resonators, and perhaps beyond.

Along with high-fidelity single-qubit rotations [38,39],
quantum computing with the QVN processor requires two
additional types of operations. The first is state transfer
between the different physical components, which has to
be performed frequently during a computation. The simplest
case of state transfer is between a qubit and its associated
memory (or the reverse). This case is investigated in Ref. [34],
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FIG. 1. Layout of the four-qubit QVN processor. The qi represent
superconducting qubits capacitively coupled to memory resonators
mi as well as a resonator bus b.

where two important observations are made: First, in contrast
with the usual SWAP or ISWAP operations, which must be
able to simultaneously transfer quantum information in two
directions, only unidirectional state transfers are required in
the QVN system. This is because adjacent qubits and res-
onators are—by agreement—never simultaneously populated.
Second, the phase of a transferred |1〉 state is immaterial, as
it can always be adjusted by future qubit z rotations [40,41].
These two simplifications allow the resulting state transfer
operation, called a MOVE gate, to be carried out with extremely
high intrinsic fidelity—perfectly for a truncated model—with
a simple four-parameter pulse profile. By intrinsic fidelity we
mean the process fidelity (defined below) in the absence of
noise or decoherence. The need for four control parameters
immediately follows from the requirement that after a MOVE

gate, the probability amplitudes must vanish on two device
components, the component (q or m) the state is leaving, and
the bus b. Each zero imposes two real parameters, and no
other probability amplitudes acquire weight (in the truncated
model). Fixing the phase of the MOVE gate, if desired, requires
one additional control parameter in the form of a local z

rotational angle.
State transfer between a qubit and the bus (or the reverse)

can be analyzed in the same way, although in this case
more pulse-shape parameters are required. In an n-qubit QVN
processor (consisting of n qubits, n memory resonators, and
the bus), zero-amplitude conditions must be enforced on the
additional n − 1 qubits, leading to a total of 2(n + 1) pulse
parameters, plus one z rotation angle. This makes quasiexact
state transfer to and from the bus a considerably more
challenging operation. Simpler three-parameter approximate
transfers, however, can still be implemented with very high
fidelity, even when the coupling is strong (see below).

Quantum computing with the QVN system also requires
a universal SU(4) entangling gate, the most natural being a
controlled-σ z (CZ) operation between a qubit and the bus.
The CZ gate investigated here makes essential use of the
noncomputational qubit |2〉 state and was first proposed by
Strauch and coworkers [42]. The Strauch gate has been
investigated by many authors and has been demonstrated in
several systems [43–48].

The present paper extends previous work by considering
device parameters and pulse shapes appropriate for the QVN
system, and by optimizing the CZ fidelity in a multiqubit
device. We are especially interested in whether the absence of

an active tunable coupler results in any significant limitation
on the obtainable fidelity, given a reasonable amount of
qubit coherence, and whether very high intrinsic fidelities
can be reached with a simple and experimentally realistic
(filtered rectangular) pulse shape. We also study how the
gate performance rapidly improves with increasing qubit
anharmonicity, show that the dominant intrinsic error is caused
by a nonadiabatic excitation of the bus |2〉 state that occurs
during the switching of the qubit frequency, derive a fidelity
estimator based on that mechanism, analyze pulse shape errors,
and simulate qubit-qubit CZ gates mediated by the bus. Finally,
we address the interesting problem of system optimization, by
using gate and idling error estimates to deduce optimal values
of resonator frequencies and couplings.

II. SUMMARY OF RESULTS

We find that very high intrinsic fidelites—in the range of
99.9% to 99.99% and with corresponding total gate times
in the range of 17–23 ns—can indeed be obtained with a
four-parameter gate. Two control parameters are pulse-shape
parameters and two are auxiliary local z rotation angles. We
emphasize that only low-frequency pulses are required, and
that the number of control parameters does not depend on
the number of qubits in the QVN device. The results quoted
above assume four phase or transmon qubits with 300 MHz
anharmonicity; other values of anharmonicity are considered
below. The CZ gate referred to here is between qubit q1 and
the bus (see Fig. 1), not between a pair of qubits as is usually
considered.

The two-parameter low frequency pulse profile we use
throughout this work is

ε(t) = ωoff + ωon − ωoff

2

[
Erf

(
t − 1

2 tramp√
2σ

)

− Erf

(
t − tgate + 1

2 tramp√
2σ

)]
, (1)

an example of which is shown in Fig. 2. Here ε is the qubit
frequency, ωoff and ωon are the frequencies off and near
resonance (with the bus), and the pulse switching time is
determined by σ , the standard deviation of the Gaussians
inside (1). The value of tramp determines how the pulse
is truncated at t = 0 and tgate as explained in Sec. III F;
throughout this work we assume that

tramp = 4
√

2σ. (2)

The relation (2) allows the switching time to be alternatively
characterized by tramp, which, as Fig. 2 illustrates, is a measure
of the width of the ramps. The variable tgate is the total
execution time of the gate excluding z rotations. The two
control parameters, ωon and

ton ≡ tgate − tramp, (3)

are determined by the numerical optimization procedure
described in Sec. III G. From (3) we infer that ton is the time
interval between the midpoints of the ramps, or the full width at
half maximum (FWHM) of the pulse. We note that the optimal
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FIG. 2. Two-parameter CZ pulse profile (1) for the case of
ωon/2π = 6.8 GHz, ωoff/2π = 7.5 GHz, tramp = 7 ns, σ = 1.24 ns,
and ton = 10 ns. The total gate time excluding auxiliary z rotations is
tgate = 17 ns. The example shown is representative of a 99.9% fidelity
gate for a qubit with 300 MHz anharmonicity.

values of ton are somewhat longer than the value,

t sudden
on ≡ π√

2gb

, (4)

that applies in the sudden, σ → 0 limit. In addition to ωon

and ton, two auxiliary local z rotations—on the qubit and
resonator—are used to implement the CZ gate. As we explain
below, adjusting the two control parameters ωon and ton zeros
the population left in the noncomputational qubit |2〉 state
after the gate and (along with the auxiliary z rotations) sets the
controlled phase equal to −1. The pulse shape (1) describes a
rectangular current or voltage pulse sent to the qubit frequency
bias through a Gaussian filter of width σ , and is believed to be
an accurate (although not exact) representation of the actual
profile seen by the qubits in Ref. [33].

Our main results are given in Table I. Here η is the qubit
anharmonicity. The 200-MHz results apply to the phase qubits
of Ref. [33], while the larger anharmonicities might be relevant
for future implementations with transmons. The bus couplings
gb are determined by the “g optimization” procedure described

in Sec. V, which leads to the simple formula,
gb

η
= 0.15, (5)

for the (approximately) optimal bus coupling. Let QVNn refer
to a quantum von Neumann processor with n qubits coupled
to n memory resonators and a bus; the Hamiltonian for such a
device is discussed in Sec. III A. As indicated in Table I, the
memory resonators are always strongly coupled to allow for
fast (less than 5 ns) MOVE operations in and out of memory. CZ

fidelities well above 99.99% are also obtainable (see Sec. III J).
Table I shows that the time required for a qubit-bus CZ gate
with fixed intrinsic fidelity is inversely proportional to the qubit
anharmonicity, namely,

t
(99.9%)
gate ≈ 5.2

η/2π
and t

(99.99%)
gate ≈ 6.7

η/2π
. (6)

These expressions indicate that CZ gates with very high intrin-
sic fidelity can be implemented in about 20 ns with existing
superconducting qubits, a conclusion which applies not only
to QVNn but also to a wide range of similar resonator-based
architectures. The intrinsic gate (or process) fidelity Fave is
the squared overlap of ideal and realized final states, averaged
over initial states (see Sec. III E). By intrinsic we mean that
noise and decoherence are not included in the gate simulation.
The fidelity estimate is developed in Sec. III H. The results
given in Table I apply specifically to the n = 4 processor, but
similar results are expected for other (not too large) values of n.
Two strategies are critical for obtaining this high performance:
separating two control parameters in the form of auxiliary local
z rotations, and defining the computational states in terms of
interacting system eigenfunctions. These strategies were used
in Ref. [34] and are discussed in more detail below. The gate
fidelities achievable with a transmon-based QVN device are in
line with that required for fault-tolerant quantum computation
with topological stabilizer codes [49–51]. Qubit anharmonicity
is an important resource that will help us achieve that goal.

The CZ gate of Table I is between qubit q1 and the bus in
the QVN4 device, and begins (typically) with a superposition
of qubit-bus eigenstates, with the other qubits and all memory
resonators in their ground states. In Sec. IV we also comment
on several extensions and variations of this basic qubit-bus CZ

gate: To begin with, the same gate but with qubit q4 (which has
a different memory frequency) is considered in Sec. IV A. In
Sec. IV B we simulate a CZ gate between two qubits in QVN4,

TABLE I. Optimal state-averaged process fidelity Fave for the Strauch CZ gate between qubit q1 and the bus, in the QVN4 processor of Fig. 1.
No decoherence or noise is included here. Specifications for 99.9% and 99.99% gates are provided for three values of qubit anharmonicity
η. The parameters tramp and σ characterize the pulse switching time, and tgate is the total gate time excluding auxiliary z rotations. F|11〉 is the
minimum fidelity. Data after vertical line give the nonadiabatic switching error and minimum fidelity estimates; these quantities are defined
and discussed in Sec. III H.

η/2π gb/2π gm/2π t sudden
on tramp σ ton tgate Fave F|11〉 |A|2 psw F

(est)
|11〉

200 MHz 30 MHz 100 MHz 11.8 ns 11 ns 1.94 ns 15.8 ns 26.8 ns 99.901% 99.613% 2.1 × 10−2 1.5 × 10−3 99.692%
16 ns 2.83 ns 18.3 ns 34.3 ns 99.992% 99.975% 2.8 × 10−3 2.0 × 10−4 99.960%

300 MHz 45 MHz 100 MHz 7.9 ns 7 ns 1.24 ns 9.9 ns 16.9 ns 99.928% 99.714% 1.7 × 10−2 1.2 × 10−3 99.761%
11 ns 1.94 ns 11.8 ns 22.8 ns 99.995% 99.979% 9.9 × 10−4 7.2 × 10−5 99.986%

400 MHz 60 MHz 100 MHz 5.9 ns 5 ns 0.88 ns 7.0 ns 12.0 ns 99.950% 99.804% 1.4 × 10−2 1.0 × 10−3 99.799%
7 ns 1.24 ns 7.8 ns 14.8 ns 99.991% 99.966% 2.1 × 10−3 1.5 × 10−4 99.970%
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starting in the idling configuration where the qubits are empty
and all data is stored in memory. In this case the qubit-bus
CZ gate of Table I is supplemented with MOVE gates to effect
a CZ between qubits. And in Sec. IV C we discuss the CZ

implemented between a pair of directly coupled anharmonic
qubits, instead of a qubit and resonator. This is the system
originally considered by Strauch et al. [42].

III. CZ GATE DESIGN

In this section we discuss the qubit-bus CZ gate design
problem.

A. QVN model

The QVNn processor consists of n superconducting qubits
[1–3] capacitively coupled [42,52,53] to n memory resonators
and to a common bus resonator. Here we assume parameters
appropriate either for phase qubits [35] or transmon qubits

[4,5] with tunable transition frequencies. We write the qubit
angular frequencies as εi , with i = 1, · · · ,n. These are the
only controllable parameters in the QVN Hamiltonian (in
contrast with Refs. [20–32] we do not make use of microwave
pulses). The memory frequencies are written as ωmi , and the
bus frequency is ωb. The (bare) frequencies of all resonators
are assumed here to be fixed.

Because we are interested in very high fidelities, a realistic
model is required. However, we have shown (in unpublished
work) that the CZ performance is extremely robust with respect
to the model details, so we only report results for a simplified
Hamiltonian; the approximations used are discussed below.
For the qubit-bus CZ simulations, the Hilbert space is truncated
to allow for up to three excitations. The CZ gate naively involves
no more than two excitations, so to properly account for
leakage we include up to three. Therefore, four-level qubits
and resonators (which include the |3〉 states) are required in
the model. The QVN Hamiltonian is

H =
n∑

i=1

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

0 0 0 0

0 εi 0 0

0 0 2εi − η 0

0 0 0 3εi − η′

⎞
⎟⎟⎟⎠

qi

+

⎛
⎜⎜⎜⎝

0 0 0 0

0 ωmi 0 0

0 0 2ωmi 0

0 0 0 3ωmi

⎞
⎟⎟⎟⎠

mi

+ gm Yqi ⊗ Ymi + gb Yqi ⊗ Yb

⎤
⎥⎥⎥⎥⎦

+

⎛
⎜⎜⎜⎝

0 0 0 0

0 ωb 0 0

0 0 2ωb 0

0 0 0 3ωb

⎞
⎟⎟⎟⎠

b

, (7)

excluding single-qubit terms for microwave pulses that are
not used in this work. Here η and η′ are qubit anharmonic
detuning frequencies, gm and gb are the qubit-memory and
qubit-bus interaction strengths, and

Y ≡

⎛
⎜⎜⎜⎝

0 −i 0 0

i 0 −√
2i 0

0
√

2i 0 −√
3i

0 0
√

3i 0

⎞
⎟⎟⎟⎠. (8)

The matrices in (7) act nontrivially in the spaces indicated by
their subscripts, and as the identity otherwise. The matrix Y

results from a harmonic oscillator approximation for the qubit
eigenfunctions. Factors of h̄ are suppressed throughout this
paper.

The main approximations leading to (7) are the neglect of
the ε dependence of the interaction strengths gm and gb, and the
neglect of a small direct coupling between the memories and
bus [54]. We have verified that including these does not change
the main conclusions of this work. The ε dependence of the
anharmonicities η and η′, and small anharmonic corrections to
the interaction terms in (7), are also neglected.

The parameter values we use in our simulations are
provided in Table II. We assume η′ = 3η, which is appropriate
for qubic anharmonicity. As discussed in Sec. V, the value of
the bus coupling gb is chosen to give the shortest CZ gate time
(for a range of fidelities). The choice of resonator frequencies
is also discussed in Sec. V. We simulate n = 4 qubits. The
fidelities quoted in this paper are numerically exact for the
model (7); the rotating-wave approximation is not used.

TABLE II. Device parameters used in this work.

Quantity Value

Empty qubit parking frequency ωpark/2π 10.0 GHz
Memory resonator m1 frequency ωm1/2π 8.3 GHz
Memory resonator m2 frequency ωm2/2π 8.2 GHz
Memory resonator m3 frequency ωm3/2π 8.1 GHz
Memory resonator m4 frequency ωm4/2π 8.0 GHz
Initial detuned qubit frequency ωoff/2π 7.5 GHz
Bus resonator frequency ωb/2π 6.5 GHz
Qubit-memory coupling strength gm/2π 100 MHz
Qubit-bus coupling strength gb/2π 30−60 MHz
Qubit anharmonicity η/2π 200−400 MHz
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Although the CZ and MOVE gates considered here do not
involve microwave pulses, the single-qubit gates are assumed
to be implemented with microwaves in the usual manner at the
qubit frequency ωoff . This frequency is also used to define an
experimental “rotating” reference frame or local clock for each
qubit: All qubit frequencies are defined relative to ωoff [33].
This is discussed below in Sec. III C.

B. Strauch CZ gate

In this section we give a detailed description of the CZ gate
introduced by Strauch et al. [42]. In particular, we explain the
specific roles played by the two pulse-shape parameters ton

and ωon, and by the two auxiliary z rotation angles γ1 and γ2.
To accomplish this we introduce several approximations that
allow for an analytic treatment of the CZ gate dynamics.

First, we consider a truncated model consisting of a single
superconducting qubit with frequency ε and anharmonic
detuning η, capacitively coupled to a bus resonator with
frequency ωb,

H =

⎛
⎜⎝

0 0 0

0 ε 0

0 0 2ε − η

⎞
⎟⎠

q

+

⎛
⎜⎝

0 0 0

0 ωb 0

0 0 2ωb

⎞
⎟⎠

b

+ gb Yq ⊗ Yb.

(9)

In this case Y reduces to

Y =

⎛
⎜⎝

0 −i 0

i 0 −√
2i

0
√

2i 0

⎞
⎟⎠. (10)

This Hamiltonian is written in the basis of bare eigenstates,
which are the system eigenfunctions when the qubit and
resonator are uncoupled. We write these bare states as |qb〉,
with q,b ∈ {0,1,2}. The energies of the interacting eigenstates,
which we write with an overline as |qb〉, are plotted in Fig. 3 as
a function of ε/2π for the case of ωb/2π = 6.5 GHz, η/2π =
300 MHz, and gb/2π = 45 MHz. The interacting eigenstates
are labeled such that |qb〉 is perturbatively connected to |qb〉
when ε 
 ωb.

Second, we assume a short switching time and ignore the
dynamical phases acquired during the ramps. As we will see
below, this approximation is valid when gb � η, so that the
switching can be made sudden with respect to the coupling gb,
but still adiabatic with respect to the anharmonicity η.

The CZ gate of Strauch et al. [42], adapted to the qubit-
resonator system, works by using the anticrossing of the
|11〉 channel with the auxiliary state |20〉. In terms of the
pulse parameters defined in (1), the qubit-resonator state is
prepared at a qubit frequency ε = ωoff , and the frequency is
then switched to ε = ωon for a FWHM time duration ton. In
the simplified model considered in this section,

ωon = ωb + η, (11)

and

ton = π√
2gb

. (12)

Equation (11) gives the qubit frequency for which the bare state
|11〉 is degenerate with |20〉, and is at a frequency η above the

FIG. 3. (Color online) Energies of eigenstates |qb〉 of a single
qubit q coupled to a resonator bus b. Here ωb/2π = 6.5 GHz, η/2π =
300 MHz, and gb/2π = 45 MHz. The time dependence of the qubit
frequency during a CZ gate (solid black curve) is indicated at the top
of the figure.

usual resonance condition. Equation (12) is the sudden-limit
value defined in (4) and derived below. The qubit frequency
is then returned to the detuned value ωoff . The complete pulse
profile is also shown in Fig. 3 (solid black curve) for the case
of ωon/2π = 6.8 GHz and ωoff/2π = 7.5 GHz.

Let’s follow the evolution resulting from an initial (normal-
ized) qubit-resonator state,

a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉. (13)

Because the |00〉 channel is very well separated from the
others, the |00〉 component will only acquire a dynamical phase
factor,

e−iE00tgate , (14)

where E00 is the energy of the
∣∣00

〉
eigenstate. Without loss of

generality we can shift the entire spectrum so that E00 = 0 [as
in (9)] and the phase factor (14) becomes unity. This freedom
results from the fact that any unitary gate operation only needs
to be defined up to an overall multiplicative phase factor. With
this phase convention the CZ gate acts as the identity on this
component, so we have the map,

|00〉 → |00〉. (15)

The |01〉 component will mostly return to |01〉, also with an
acquired phase, but a small component will be left in |10〉
due to the nonadiabatic excitation of that channel, which
is only separated in energy from |01〉 by about η when
ε = ωb + η. The |10〉 component similarly suffers from a
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small noniadabatic coupling to |01〉. As we will explain below,
these nonadiabatic errors are exponentially suppressed when
the functional form of ε(t) is properly designed. Then we have

|01〉 → e−iα
√

1 − E1 |01〉 + e−iα′√
E1 |10〉, (16)

and

|10〉 → e−iβ
√

1 − E1 |10〉 + e−iβ ′√
E1 |01〉, (17)

where E1 is a small nonadiabatic population error (below we
refer to E1 as a switching error). In the E1 → 0 limit, α and β

are dynamical phases given by

α =
∫ tgate

0
E01 dt ≈

(
ωb − g2

b

η

)
ton, (18)

β =
∫ tgate

0
E10 dt ≈

(
ωb + η + g2

b

η

)
ton, (19)

where the second approximate quantities neglect phase accu-
mulation during the ramps and use perturbative expressions
for the energies E01 and E10 when ε = ωb + η. The expres-
sions (16) and (17) neglect an extremely small leakage out of
the {|01〉,|10〉} subspace. Neglecting this leakage, the evolution
in the {|01〉,|10〉} subspace is unitary, leading to the phase
condition,

ei(α−β ′) + ei(α′−β) = 0. (20)

Using (20) to eliminate β ′ leads to

|01〉 → e−iα
√

1 − E1 |01〉 + e−i(β+φ)
√
E1 |10〉, (21)

|10〉 → e−iβ
√

1 − E1 |10〉 − e−i(α−φ)
√
E1 |01〉, (22)

where φ ≡ α′ − β. The evolution of the eigenstates |01〉
and |10〉 is therefore characterized by the cross-excitation
probability E1 and three phase angles α, β, and φ.

Now we consider the |11〉 component. The |11〉 channel
couples strongly with the |20〉 channel, as well as weakly with
|02〉. The simplest way to understand the dynamics of the |11〉
component is to use two different representations to describe
these two effects. We will describe strong interaction with
|20〉 in the bare basis and the weak, nonadiabatic coupling
with |02〉 in the eigenstate basis. Suppose we begin with the
qubit strongly detuned from the bus, so that |11〉 ≈ |11〉 (the
detuned interacting eigenstate is well approximated by the bare
|11〉 state). Then we quickly switch ε from ωoff to ωb + η. By
“quickly” we mean that we strongly mix with the |20〉 channel.
The interaction with |02〉 is always weak, even in the sudden
limit. This asymmetric excitation is possible because |20〉 is
protected (separated in energy from |11〉) by an energy gap
2
√

2gb, whereas |02〉 is protected by a much larger gap of
η − √

2gb (this expression accounts for level repulsion from
|20〉, and we have assumed that gb � η). We can informally
say that the desired switching is nonadiabatic with respect to
the energy scale gb, but is adiabatic with respect to η [42].

Focusing first on the strong coupling to |20〉, the suddenly
switched |11〉 state is no longer an eigenstate when ε = ωon,
as the relevant eigenfunctions at this setting are

|11〉 = |11〉 − |20〉√
2

and |20〉 = |11〉 + |20〉√
2

. (23)

The nonstationary state

|11〉 = |11〉 + |20〉√
2

(24)

therefore rotates in the {|11〉,|20〉} subspace, and after a time
duration t becomes

|ψ〉 = e−iE11t

[ |11〉 + e−i�Et |20〉√
2

]
(25)

= e−iE11t

[(
1 + e−i�Et

2

)
|11〉 −

(
1 − e−i�Et

2

)
|20〉

]
, (26)

where

�E ≡ E20 − E11 = 2
√

2gb. (27)

Holding ε fixed at ωb + η for a FWHM time (12), correspond-
ing to a 2π rotation, (26) becomes

|ψ〉 = e−iE11ton |11〉. (28)

When ε = ωb + η, the energy of eigenstate |11〉 is

E11 = 2ωb + η −
√

2gb. (29)

After detuning quickly we therefore obtain

|11〉 → − exp

[
−i

(
π

2ωb + η√
2gb

)]
|11〉, (30)

or, using expressions (18) and (19),

|11〉 → −e−i(α+β) |11〉. (31)

The two phase angles α and β can be canceled by the
application of independent auxiliary single-qubit z rotations,

Rz(γ ) ≡ exp[−i(γ /2)σ z], (32)

to the qubit and bus. Qubit z rotations are implemented
by frequency excursions, whereras resonator z rotations are
implemented in software (they are compiled into future
qubit rotations). Following the pulse sequence that leads
to (15), (21), (22), and (31), with the operation,

Rz(γ1) ⊗ Rz(γ2), (33)

where

γ1 = −β and γ2 = −α, (34)

leads to the map,

|00〉 → |00〉, (35)

|01〉 →
√

1 − E1 |01〉 + e−iφ
√
E1 |10〉, (36)

|10〉 →
√

1 − E1 |10〉 − eiφ
√
E1 |01〉, (37)

|11〉 → −|11〉, (38)

apart from a global phase factor. The use of auxiliary z rotations
is discussed further Sec. III D.

The minus sign in (38) is the key to the Strauch CZ gate.
However, as mentioned above, the analysis leading to (38)
neglected a weak nonadiabatic excitation of the |02〉 channel
caused by the switching of ε. Including this effect in (38) leads
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to the modification,

|11〉 → −
√

1 − E2 |11〉
+ phase factor ×

√
E2 |02〉, (39)

where E2 is another switching error. Both E1 and E2 vanish
exponentially with σ (or tramp), and for the regimes studied
in this work E2 is the dominant source of intrinsic gate
fidelity loss. We note that the analysis leading to (39) assumed
implementation of the ideal values [(11) and (12)] of ωon and
ton. Errors in these two control parameters, which we refer to
as pulse shape errors and study in Sec. III I, lead instead to

|11〉 → −eiδ
√

1 − E2 − Eθ |11〉
+ phase factor ×

√
E2 |02〉

+ phase factor ×
√
Eθ |20〉, (40)

where the controlled-phase error angle δ and rotation error Eθ

depend on the errors in ωon and ton, respectively.
Finally, it is also interesting to consider the fully adiabatic

limit of the Strauch CZ gate. By this we mean that the switching
is adiabatic with respect to both gb and η. For the gate time to
be competitive with the nonadiabatic gate of Table I, a larger
coupling gb is required, which might lead to significant higher-
order and cross-coupling errors in a multiqubit device, but in
the fully adiabatic limit only one pulse control parameter—
either ωon or ton—needs to be optimized (two z rotations are
still required). This is because adiabaticity now assures that the
|11〉 population is preserved (apart from exponentially small
switching errors), taking over the role previously played by ton,
and a single pulse shape parameter is sufficient to specify the
controlled phase. A highly adiabatic CZ gate was demonstrated
in Ref. [43].

There are a few important differences between the Strauch
CZ gate applied to a pair of directly coupled qubits (as in
Ref. [42]) and to the qubit-bus system considered here. These
differences result from the harmonic spectrum of the resonator
in the latter case and are discussed below in Sec. IV C.

C. Eigenstate basis

The Hamiltonian (7) is written in the usual bare basis of un-
coupled system eigenstates, but information processing itself
is best performed in the basis of interacting eigenfunctions of
Hidle, where Hidle is given by (7) with the qubits in a dispersive
idling configuration [34]. This choice of computational basis
assures that idling states suffer no population change in the
decoherence-free limit, and evolve in phase in a way that can
be almost exactly compensated for by an appropriate choice of
only n rotating frames or local clocks, one for each qubit [34].
Here we briefly review this important concept.

In principle, any complete orthonormal basis of the physical
Hilbert space that can be appropriately prepared, unitarily
transformed, and measured—essentially, any basis where
one can implement the DiVincenzo criteria [55]—is a valid
basis on which to run a quantum computation. Defining the
computational states to be interacting system eigenfunctions
gives them the simplifying property that the time evolution
can be decomposed into a sequence of gates, between
which (almost) no evolution occurs. In other words, idling
between gates generates the identity operation. This property,

which is implicitly assumed in the standard circuit model of
quantum computation, could be realized in an architecture
where the Hamiltonian H can be completely switched off
between gates. However, it is not possible to set H = 0 in
the QVN architecture; nor can H itself be made negligibly
small between gates. Therefore, nonstationary states such
as uncoupled-qubit eigenstates accumulate errors (including
population oscillations) between gates unless a correction
protocol such as dynamical decoupling [56] is used. By
defining computational states in terms of interacting system
eigenfunctions {|ψ〉} at some predefined dispersive idling
configuration (qubit frequencies), the only evolution occurring
during an idle from time t1 to t2 is a pure phase evolution,

|ψ(t1)〉 → |ψ(t2)〉 = e−iE (t2−t1)|ψ(t1)〉, (41)

where E is the exact energy eigenvalue (and we neglect
decoherence). Furthermore, it is possible to compensate
for—or effectively remove—the pure phase evolution in (41)
by applying phase shifts (after the idle period) to each
eigenfunction to cancel the e−iE(t2−t1) phase factors; doing so
would result in the ideal between-gate evolution

|ψ(t1)〉 → |ψ(t2)〉 = |ψ(t1)〉. (42)

The idling dynamics (42) is evidently equivalent to setting
H = 0 between gates. We will discuss below how the com-
pensating phase shifts are actually implemented in practice.

This use of interacting system eigenfunctions and compen-
sating phase shifts as described above provides a computa-
tional basis that evolves ideally between gates, but such an
approach is not scalable; for example, there are 22n+1 such
computational states in QVNn. In Ref. [34] an approximate
but scalable implementation of this approach was introduced.
The idea is that the exact energy E of a computational state
in QVNn is, to an extremely good approximation, the sum of
uncoupled qubit and resonator frequencies, i.e., essentially
noninteracting. This is not simply a consequence of the
dispersive regime energies (eigenvalues of Hidle), which have
non-negligible interaction corrections, but because only a
special subset of the eigenfunctions are used for information
processing: In the QVNn system we only make use of Hidle

eigenfunctions in which there are no more than n excitations
present, and such that two directly coupled elements—qubits
or resonators—are not simultaneously occupied (except during
the CZ gate). For example, when the data is stored in memory,
the residual memory-memory coupling is fourth order in the
qubit-resonator coupling g (for simplicity we assume here that
gb = gm). This leads to an eighth-order conditional frequency
shift (order g16 idling error) [34]. Next, suppose an excitation
is transferred from memory to a qubit via a MOVE gate. Now
the dominant frequency shift is sixth order. And when an
excitation is in the bus the largest shift is fourth order [34]. The
largest idling error (associated with the phase compensation)
is therefore eighth order in g and can be made negligible with
proper system design.

The compensating phase shifts could be implemented
through additional local z rotations, one for each qubit and
resonator. However, these phase shifts evolve in time with very
high (>1 GHz) frequency, and it is therefore experimentally
more practical to introduce a local clock or rotating frame for
each qubit and resonator. This is achieved by introducing a
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fixed-frequency microwave line for each qubit and resonator,
and measuring each qubit and resonator phase relative to
the phase of its reference. By choosing the frequency of
the qubit (resonator) reference microwave equal to the idle
frequency (resonator frequency), the component frequencies
[and therefore the quantity E in (41)] are effectively zeroed,
and no more than 2n + 1 different reference frequencies
or local clocks are required. This procedure corresponds to
implementing the experiment in a multiqubit rotating frame.
And, in a further simplification, the local clocks (or rotating
frames) for the resonators are replaced by additional qubit
z rotations that are handled in software (i.e., combined with
future rotations). Therefore, in practice only n local clocks are
needed, one for each qubit.

Because the CZ gate simulations reported in Table I are
already supplemented with local z rotations, these local clocks
do not need to be included in those simulations; we simulate
the laboratory frame. However, they are included in the pulse-
shape error simulations reported after (94) and in the cz23

qubit-qubit gate simulation reported in Sec. IV B.
Having motivated the use of interacting system eigen-

functions for computational basis states, it is still necessary
to establish that such states can actually be prepared and
measured. Because we can assume the processor to initially
start in its interacting ground state—a computational basis
state—preparation of the other computational states can be
viewed as a series of π pulses and MOVE gates. We expect
that such operations on the interacting eigenfunctions can be
performed at least as accurately as when applied to bare states.
Eigenfunction readout is a more subtle (and model-dependent)
question, but the analysis of Ref. [34] suggests that interacting-
eigenfunction readout is actually better than bare-state readout
(in the model considered there).

We also note that the idling configuration and associated
eigenstate basis generally changes between consecutive gates
(an example is given below in Sec. IV B). In Table I, the
idling configuration has qubit q1 at ωoff and the others at
ωpark. Therefore, our entangling gate design is constrained
by the requirement that we start and end in eigenstates of this
particular Hidle.

The discussion above motivating the use of interacting
eigenstates is based on their nearly ideal idling dynamics. It
is still interesting, however, to consider whether the CZ gate
can be generated equally well in either (bare or interacting
eigenfunction) basis. We find that for the parameter regimes
considered here, it is not possible to achieve better than about
99% fidelity in the bare basis with the same two-parameter
pulse profile (it should be possible using more complex pulse
shapes). The residual error is consistent with the size of
the perturbative corrections to the bare states in the idling
configuration. This exercise emphasizes the importance of
performing quantum logic with the system eigenfunctions,
which have the built-in protection of adiabiticity against
unwanted transitions.

One might object to the use of interacting eigenfunctions
as a design tool, the exact calculation of which is not scalable.
However, approximate dispersive-regime eigenfunctions are
efficiently computable. A particularly simple way to do this is
to calculate the generator S of the diagonalizing transformation
V = e−iS by a power series in gb and gm. At the 99.99% fidelity

level, it is sufficient to calculate S to first order. Writing Hidle =
H0 + δH leads to the condition i[S,H0] + δH = 0, which is
immediately solvable in the bare basis |q1q2 · · · m1m2 · · · b〉.
Here qi,mi,b ∈ {0,1,2, . . . }. Other efficient eigenfunction
approximation schemes are also possible.

In this work we denote the exact or approximate Hidle

eigenfunction perturbatively connected to the bare state
|q1q2 · · · qnm1m2 · · · mnb〉 by

|q1q2 · · · qnm1m2 · · ·mnb〉, (43)

following the overline notation introduced above. Note
that (43) is not a tensor product of single-qubit and resonator
eigenstates as is usually the case.

D. Auxiliary z rotations and CZ equivalence class

The standard CZ gate in the bare two-qubit basis
{|00〉,|01〉,|10〉,|11〉} is

CZ ≡

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (44)

However, in the QVN processor, local z rotations can be
performed quickly and accurately, typically by brief qubit
frequency excursions. Thus, we will consider the limit where
SU(2) operations of the form exp[−i(θ/2)σ z] can be done on
the qubits and bus with negligible error and in a negligible
amount of time (fidelity loss resulting from errors in these
rotations are discussed in Sec. III I). We therefore want to
define our entangling gate modulo these z rotations. We will do
this by constructing a local-z equivalence class for an arbitrary
element (gate) in SU(4), and then specialize to the CZ gate.

We define two elements U and U ′ of SU(4) to be equivalent,
and write U ′ � U , if

U ′ = upost U upre, (45)

where

u(γ1,γ2) ≡ Rz(γ1) ⊗ Rz(γ2)

= ei(γ1+γ2)/2

⎛
⎜⎜⎜⎝

1 0 0 0

0 e−iγ2 0 0

0 0 e−iγ1 0

0 0 0 e−i(γ1+γ2)

⎞
⎟⎟⎟⎠, (46)

for some rotation angles γk . The local-z equivalence class {U}
corresponding to U is the set of elements upost U upre for all
upre,upost. For a given gate U , {U} typically occupies a four-
dimensional manifold, depending on four rotation angles. But
because (44) is diagonal, {CZ} instead forms a two-dimensional
sheet,

{cz} = phase factor ×

⎛
⎜⎜⎜⎝

1 0 0 0

0 e−iγ2 0 0

0 0 e−iγ1 0

0 0 0 −e−i(γ1+γ2)

⎞
⎟⎟⎟⎠.

(47)

The CZ gate (44) can be obtained by reaching any point in the
{CZ} plane and then performing auxiliary z rotations. And it is

022309-8



HIGH-FIDELITY CONTROLLED-σZ GATE FOR . . . PHYSICAL REVIEW A 87, 022309 (2013)

straightforward to confirm that [43]⎛
⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (48)

We note that bus rotations, which cannot be directly imple-
mented with microwave pulses or frequency excursions, are
compiled into future qubit rotations.

The discussion above assumed a pair of qubits or a qubit and
resonator, but it applies to a QVN processor in the interacting
eigenfunction basis (43) after a minor modification. In the bare
basis, the CZ gate is typically defined through its action (44) on
a pair of qubits (or a qubit and resonator). Then, action on a bare
computational basis state such as |q1q2 · · · qnm1m2 · · · mnb〉
follows from the tensor-product form of that bare state. In the
eigenstate basis the CZ gate must be defined through its action
on

|q1q2 · · · qnm1m2 · · · mnb〉, (49)

such as to reproduce the ideal action on the bare states to which
they are perturbatively connected. For example, the CZ gate on
qubit q1 and the bus acts ideally as

cz |0q2q3q4m1m2m3m40〉 = |0q2q3q4m1m2m3m40〉
cz |0q2q3q4m1m2m3m41〉 = |0q2q3q4m1m2m3m41〉
cz |1q2q3q4m1m2m3m40〉 = |1q2q3q4m1m2m3m40〉
cz |1q2q3q4m1m2m3m41〉 = − |1q2q3q4m1m2m3m41〉,

where qi,mi ∈ {0,1,2, . . . }.

E. Fidelity definitions

The gate or process fidelity measure we use in this work
is based on a state fidelity defined by the inner product of the
ideal and realized final (pure) states, squared. This leads to a
state-averaged fidelity given by [57,58]

Fave(U,Utarget) ≡ Tr(U †U ) + |Tr (U †
targetU )|2

20
, (50)

where U is the realized time-evolution operator in the inter-
acting eigenfunction basis after auxiliary z rotations, projected
into the relevant computational subspace, and Utarget = CZ

[see (44)]. Note that the projected U is not necessarily unitary
here, and that the first term in (50) characterizes the possible
leakage from the computational basis (nonunitarity) whereas
the second term is proportional to the square of the Hilbert-
Schmidt inner product of U with Utarget. Although U is not
assumed to be unitary, the expression (50) assumes a pure state
and is (obviously) not valid in the presence of decoherence.
[The formula (50) assumes that the Kraus representation for the
completely positive process is not necessarily trace preserving,
but it has only one term.] The form (50) also assumes an

average over a four-dimensional Hilbert space; in the N -
dimensional generalization the denominator is N + N2, which
is necessary (note numerator) to assure that Fave(Utarget,Utarget)
is unity.

It is also useful to calculate the minimum or worst-case
fidelity. The minimum fidelity of interest here is the state
fidelity minimized over initial computational states, for a
gate that has already been optimized (by maximizing Fave).
In Sec. III B we argued that the dominant intrinsic error
mechanism (for an optimal pulse) in the truncated qubit-
resonator model (9) is the nonadiabatic excitation of the
|02〉 channel, in which there are two photons left in the bus
resonator. Therefore, in the model (9), the minimum state
fidelity occurs for the initial eigenstate |11〉. In the QVN4

processor, this worst-case state is written [in the notation
of (43)] as

|100000001〉, (51)

where we have assumed a CZ gate between qubit q1 and the
bus. Numerical simulation of this gate in the QVN4 processor
confirms that the minimum CZ fidelity indeed occurs for the
initial state (51), and is due to leakage from the computational
subspace. We therefore define the minimum fidelity to be the
state fidelity for initial condition (51),

F|11〉 ≡ |〈100000001|U |100000001〉|2. (52)

Note that this expression is not sensitive to the value of
the controlled phase, and only accounts for leakage from
the computational subspace. Simulated values of F|11〉 for the
qubit-bus CZ gate are given in Table I, along with estimates of
this same quantity that are discussed below in Sec. III H.

F. Pulse shape

In the QVN Hamiltonian (7), the qubit frequencies εi are the
only available experimental controls. [There are also single-
qubit terms for microwave pulses that are not shown in (7) and
not used in this work.] During a CZ gate between a given qubit
and the resonator bus, the frequency of that qubit is varied
according to (1), where

Erf(t) ≡ 2√
π

∫ t

0
e−x2

dx, (53)

with the other qubits remaining at the parking frequency ωpark

(given in Table II).
Two quantities related to the pulse switching—σ and

tramp—appear in the pulse profile function (1). We do this
to emphasize that, in principle, two independent quantities
could be used to quantify the shape of the switching profile.
The first is the time duration (or width) of the switching,
characterized by the standard deviation σ . The second is the
trunction time of the pulse, measured from the center (half
maximum) of the frequency switch, which is equal to tramp/2.
However, in this work we always use the (somewhat arbitrary)
relation (2), which amounts to cutting off the pulse at 2

√
2

standard deviations from the switching midpoints.
If the pulse shape function (1) is used only when 0 �

t � tgate, and ε is set to ωoff otherwise, there will be small
pulse discontinuities at t = 0 and tgate, the size of which is
determined by the condition (2). Assuming tramp � tgate, we
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have

ε(0) = ε(tgate) ≈ ωoff + ωon − ωoff

2
[1 − Erf(2)], (54)

which differs from the asymptotic value ωoff by an amount,

ωon − ωoff

2
[1 − Erf(2)], (55)

where 1 − Erf(2) ≈ 0.5%. However, in an experiment these
discontinuities are usually smoothed over by additional pulse
shaping. Moreover, our simulations begin at t = 0 and end at
t = tgate, so the truncation only slightly affects the pulse shape:
The initial and final detuned qubit frequency is actually a few
MHz smaller than ωoff .

Having fixed the relation (2), there are then two measures
of the pulse switching time, σ and tramp, with tramp providing
a convenient measure of the time duration of the ramps. This
property can be seen in the pulse shape example of Fig. 2.

G. Gate optimization

We numerically optimize the two pulse-shape control
parameters ωon and ton, as well as the two auxiliary z rotation
angles, γ1 and γ2, to maximize the average gate fidelity (50).
All other pulse parameters (ωoff , σ , tramp) are fixed. The values
of ωoff and tramp are determined by the system optimization
analysis of Sec. V, and then σ is obtained through relation (2).
The roles played by the control parameters ωon and ton are
discussed above in Sec. III B.

The fidelity optimization procedure is carried out in two
stages: In the first stage we take ωon to be equal to its
approximate value [see (11)],

ωb + η, (56)

and optimize ton to get close to the two-dimensional equiv-
alence class {CZ} defined in (47). We do this by minimizing
a sum of two positive errors, one measuring the deviation of
the absolute values of the matrix elements of the evolution
operator U (projected into the q1-b subspace) from that of
the four-dimensional identity matrix, the other measuring the
deviation from the ideal relationship between the phases of
the diagonal elements indicated in (47). This first stage yields
an approximate value of ton, as well as approximate rotation
angles,

γ1 ≈ arg 〈10|U |10〉 − arg 〈00|U |00〉, (57)

γ2 ≈ arg 〈01|U |01〉 − arg 〈00|U |00〉. (58)

In the second stage of optimization, we use the approximate
values of ωon, ton, γ1, and γ2, obtained from the first stage, as
seeds for a full four-dimensional (ωon, ton, γ1, γ2) nonlinear
maximization of the average fidelity (50) between

u(γ1,γ2) × U, (59)

and the standard CZ gate (44). Here U is the projected evolution
operator and u ∈ SU(2) ⊗ SU(2) is defined in (46).

There are two obvious approaches to simulating the gate
evolution in the interacting eigenfunction basis (43). The first
is to use the appropriate Hidle eigenstates to transform the
target gate (44) to the bare basis, and perform the actual
simulation in the bare basis. However, this approach requires

that the subspace projection operators—which are naturally
defined in the eigenstate basis—also be transformed. The
second approach, which we follow here, is to transform the
QVN Hamiltonian (7) to the eigenstate basis and perform the
simulation in that basis.

H. Switching error and fidelity estimate

In this section we calculate the transition probability caused
by a change of the qubit frequency during a CZ pulse, MOVE

gate, or any other operation in the QVN system or related
superconducting architectures. The problem will be treated
quite generally and then applied to the Strauch CZ gate of
Table I, resulting in a simple fidelity estimator for that gate.
The quantities A, psw, and F

(est)
|11〉 appearing in Table I are

discussed in this section.
Imagine that we have prepared an initial interacting system

eigenfunction |a〉 prior to performing a CZ operation or other
gate that involves changing the frequency of one or more
qubits. We assume that the ideal (target) behavior during the
frequency switch or ramp itself is the identity map (times a
phase factor), and that the |a〉 channel does not cross any
others in the system. The population loss during the ramp will
therefore be exponentially suppressed if the switching time is
long enough.

In a multiqubit system there is typically a large number of
nonresonant channels coupled to |a〉 that can be excited by the
frequency switch. However, when the ramp fidelity is high and
the probabilities of the undesired transitions,

|a〉 → |b〉,|b′〉,|b′′〉, . . . , (60)

are small, they can be individually estimated perturbatively
(neglecting interference), thereby reducing the problem to a
sum of independent two-channel problems,

|a〉 −→ |b〉,
|a〉 −→ |b′〉,
|a〉 −→ |b′′〉,

...

(61)

each characterized by a time-dependent detuning � and a
coupling G. Without loss of generality we can shift the energy
of a given two-channel problem so that the bare final state
has zero energy. Each nonadiabatic transition can therefore be
described by a general two-channel model of the form,

H =
(

�(t) G

G 0

)
, (62)

in the bare basis spanned by {|a〉,|b〉}. The undesired final
state |b〉 has a fixed energy 0 and the energy of |a〉 varies in
time with detuning �. The coupling G is assumed to be a real,
positive constant.

The instantaneous eigenstates of (62) are

|a〉 = cos
χ

2
|a〉 + sin

χ

2
|b〉, (63)

|b〉 = cos
χ

2
|b〉 − sin

χ

2
|a〉, (64)
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where

χ ≡ arctan

(
2G

�

)
. (65)

The instantaneous energies are

Ea = �

2
+

√(
�

2

)2

+ G2, (66)

and

Eb = �

2
−

√(
�

2

)2

+ G2. (67)

The |b〉 channel is initially unoccupied at time t = 0, and we
are interested in the probability psw that the system, prepared
in |a〉, is found in |b〉 after changing the detuning � from one
value to another. We refer to this probability as the nonadiabatic
switching error, which we calculate by expanding the wave
function in the basis of instantaneous eigenstates (63) and (64),
as

|ψ〉 =
∑

m=a,b

ψm e−i
∫ t

0 Em dτ |m〉. (68)

This leads to
dψb

dt
= −e−i

∫ t

0 (Ea−Eb) dτ 〈b| ∂

∂�
|a〉 d�

dt
ψa, (69)

where

〈b| ∂

∂�
|a〉 = − G

�2
× 1

1 + (
2G
�

)2 . (70)

The nonadiabatic matrix element (70) has been written so that
the second term approaches unity in the G � � perturbative
limit.

At time t = 0, ψa = 1. An approximate expression for

psw ≡ |ψb(tfinal)|2 (71)

can be obtained from (69) by assuming that |ψb| � 1 through-
out the evolution, so that ψa ≈ 1 for all t . Then,

psw =
∣∣∣∣
∫

G�̇ e−i
∫ t

0 � dτ

�2
dt

∣∣∣∣
2

= 1

4

∣∣∣∣
∫

χ̇ e−i
∫ t

0 � dτ dt

∣∣∣∣
2

, (72)

where

� ≡ Ea − Eb =
√

�2 + 4G2 (73)

is the instantaneous splitting. We can simplify (72) further by
assuming G � �, which will be the case for the applications
considered below. In this perturbative limit we therefore obtain

psw =
∣∣∣∣
∫

G�̇

�2
e−i

∫ t

0 �dτ dt

∣∣∣∣
2

. (74)

We emphasize that the form (74) assumes that � does not pass
through zero, which would cause Landau-Zener tunneling and
invalidate the perturbative analysis.

In this work we are specifically interested in psw for a
single switch of the detuning from �on to �off (or the reverse)
according to the smooth, error-function based profile,

�(t) = �off + �on

2
+ �off − �on

2
Erf

(
t − 1

2 tramp√
2σ

)
, (75)

Δon

t

Δoff

0 tramp

Δ

FIG. 4. Detuning pulse profile (75) for a single frequency switch.

shown in Fig. 4. The standard deviation σ characterizes the
switching time of the pulse and tramp [related to σ through (2)]
specifies its truncation, as discussed in Sec. III F. We use this
switching profile for both CZ and MOVE gates. The switching
error for the single switch profile defined in (75) and shown in
Fig. 4 can be expressed as

psw =
(

G

�on

)2

|A|2, (76)

where

A(�on,�off,σ ) ≡ �on

∫ tramp

0

�̇

�2
e−i

∫ t

0 �dτ dt. (77)

The dimensionless quantity |A|2 is plotted in Fig. 5 for
five instances of �on and �off relevant to this work. We note
that psw evidently decreases as an exponential function of σ , as
expected for a nonadiabatic process. However, the dependence
of |A|2 on σ for large σ is somewhat intricate, a consequence
of the error-function ramp shape. For very large values of
σ—not shown in Fig. 5—the decay of |A|2 becomes slower
(the location of the crossover depends on the details of the pulse
truncation). Although an approximate analytic expression for
|A|2 can be derived for this large-σ limit, the formula is not
useful for the regimes of interest here.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

10
-4

10
-3

10
-2

10
-1

10
0

σ  (ns)

|A
|2

on=158MHz  off=1.0GHz
on=236MHz  off=1.0GHz
on=315MHz  off=1.0GHz
on=500MHz  off=1.5GHz
on=1.0GHz   off=1.8GHz

FIG. 5. (Color online) |A|2 versus switching time σ for indicated
values of �on and �off .
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We now turn to the application of the switching error
formula (76) to the CZ gate of Table I. As we have explained
above in Sec. III E, the initial condition in the QVN4 processor
with the minimum fidelity after a CZ gate (between qubit q1

and the bus) is the eigenstate (51). For a perfect CZ gate this
state would map to

−|100000001〉, (78)

but in practice we will find population in other channels as
well, the dominant error (for an optimal pulse) occurring
in |000000002〉, which has two excitations in the bus. This
dominant error mechanism involves only a single qubit and
resonator, and can be understood entirely within the truncated
model (9). In the language of that model, where the bare
states (interacting eigenstates) are written as |qb〉 (|qb〉), the
dominant fidelity loss of the |11〉 eigenstate is caused by
nonadiabatic leakage to |02〉. We call this leakage error E2.

It is possible to understand this dominant |11〉 → |02〉
leakage error in a further simplified two-channel model that
only includes the channels |11〉 and |02〉. Given the strong
interaction of the bare |11〉 state with |20〉, it is not at all
obvious that such a simplification is possible. However, during
most of the switching, the detuning between |11〉 and |20〉 is
much larger than their interaction strength

√
2gb, so they are

effectively decoupled. (And while the qubit sits at the ωon

frequency, the Hamiltonian is time independent.) Therefore
a two-channel description should be possible, although it
will slightly overestimate the excitation of |02〉. Numerical
investigation confirms that the |20〉 channel can indeed be
disregarded except for the level repulsion it produces on
the |11〉 state (see below), which is crucial for obtaining an
accurate fidelity estimate.

In the bare {|11〉,|02〉} basis, (9) reduces to

H =
(

ε
√

2gb√
2gb ωb

)
+ const. (79)

At the beginning of the CZ pulse of Table I, the qubit frequency
is 1.0 GHz above the bus. ε then decreases to ωon ≈ ωb + η

and returns to the detuned configuration in the manner of
Fig. 2. The total leakage to |02〉 can be estimated as twice—
because there are two switching events, which we assume to
contribute incoherently—the value of psw. Therefore the error
E2 introduced in (39) is given by

E2 = 2psw. (80)

To evaluate the switching error in this case, we use (76) with
the parameter values,

G =
√

2gb, (81)

�on = η −
√

2gb, (82)

�off = ωoff − ωb. (83)

The value of �on accounts for the level repulsion caused by
the neglected |20〉 state, which causes the |11〉 channel to shift
downwards towards |02〉; this large effect is evident in Fig. 3.
[We ignore here a smaller repulsion by |02〉, which would lead
to the addition of a small positive correction to (82).] �off/2π

is always 1.0 GHz for the gates listed in Table I. The required

|A|2 values are obtained from Fig. 5 and are provided in Table I
along with psw.

The minimum fidelity estimate,

F
(est)
|11〉 ≡ 1 − E2 = 1 − 2 psw, (84)

is also given in Table I and compared to simulated QVN4
values of Fave and F|11〉. We find that (84) is a reliable predictor
of the worst-case fidelity F|11〉 in QVN4, confirming that the
nonadiabatic switching error is the dominant fldelity loss
mechanism here. Although this error will always be present, it
can be exponentially suppressed by increasing the switching
time.

Finally, we briefly comment on the nonadiabatic switching
errors between the |01〉 and |10〉 eigenstates, which we have
argued to be subdominant to the excitation of |02〉, but which
naively are of the same order. There are two reasons why
the |01〉 and |10〉 switching errors are considerably smaller:
First, the matrix element coupling |01〉 and |10〉 is a factor of√

2 smaller than that between |11〉 and |02〉, and this factor
gets squared in (76). And the second—but quantatively more
important—reason is that while level repulsion considerably
enhances the |02〉 excitation [recall (82)], it (slightly) sup-
presses transitions between |01〉 and |10〉.

We can estimate the switching errors between the |01〉 and
|10〉 channels during a CZ gate by using (76) with parameters,

G = gb, (85)

�on = η + 2g2
b

η
, (86)

and with �off/2π = 1 GHz as before. The expression (86)
for �on accounts for the level repulsion between |01〉 and
|10〉, which suppresses the switching error, in contrast with
the strong enhancement indicated in (82). Considering, for
example, the 99.9% CZ gate of Table I designed for the η/2π =
300 MHz qubit, we find that |A|2 = 2.2 × 10−3 and

psw = 4.4 × 10−5. (87)

The total error in this case is E1 = 2psw. The estimate (87)
for the switching error between |01〉 and |10〉 is more than an
order-of-magnitude smaller than that between |11〉 and |02〉,
which is psw = 1.2 × 10−3 (see Table I).

I. Pulse shape errors

In Sec. III H we discussed the intrinsic error of the qubit-bus
CZ gate—assuming an optimal pulse shape—and identified its
dominant source as a nonadiabatic switching error E2. In this
section we discuss and quantify the fidelity loss caused by
pulse shape and auxiliary z rotation errors. By a pulse shape
error we mean that the correct functional form (1) is seen
by the qubit, but with values of the parameters ton and ωon

that deviate from the optimal values. It is possible to develop
simple analytic models for these error mechanisms (supported
by numerical simulation) by noting that when the fidelity is
very close to unity, the different error mechanisms present
contribute independently and can be calculated separately. We
then use these results to estimate the experimental pulse-
control precision required during the implementation of a
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given 99.9% or 99.99% CZ gate to keep any accompanying
pulse shape error less than the base 10−3 or 10−4 gate error.

The simplest situation to consider is that where the correct
values of ton and ωon are used, but where the local z rotation
angles γk (k = 1,2) applied experimentally deviate from their
optimal values by amounts ϕk � 1. We estimate the resulting
fidelity loss by imagining that we have achieved a perfect
CZ-class gate,

U =

⎛
⎜⎜⎜⎝

1 0 0 0

0 ei�2 0 0

0 0 ei�1 0

0 0 0 −ei(�1+�2)

⎞
⎟⎟⎟⎠, (88)

for some phase angles �k , but then apply z rotation angles,

γk = �k + ϕk, (89)

that have errors ϕk . From (50) we find that this leads to a
leading order error E ≡ 1 − Fave given by

E = ϕ2
1 + ϕ2

2

5
. (90)

Next we consider ton and ωon errors. An error in either
ton or ωon has two consequences: The first is to modify the
accumulated phases �k in (88), and the second is to cause
population and phase errors on the |11〉 channel. Therefore we
consider two types of pulse shape errors, the first where ton or
ωon is changed with no compensating changes in the auxiliary
z rotation angles, and the second where the γk are reoptimized.

In the first case, in which the error is clearly the largest, the
resulting error is dominated by the z rotation angle error itself,
which can be estimated from (90). Changing ton by an amount
δton, or ωon by an amount δωon, changes the accumulated phase
of the qubit (recall discussion of the qubit reference frame in
Secs. III A and III C) by

ϕ1 = (ωon − ωoff) δton + δωon ton, (91)

and that of the bus by

ϕ2 = 0. (92)

We note that δton and δωon can be positive or negative here,
and that the total gate time tgate is also (slightly) changed by
δton. The additional accumulated phase (91) can be regarded
as a rotation angle error because, by assumption, it is not
compensated by the applied z rotations (hence the notation).
The error angle ϕ2 is zero because of our choice of the local
clock (or reference frame) for a resonator. Therefore, an error
in either ton or ωon with no compensating adjustment of the
auxiliary z rotation angles leads to a leading-order fidelity loss
of

E = (ωoff − ωon)2

5
δt2

on + t2
on

5
δω2

on. (93)

For an order-of-magnitude estimate it is sufficient to approxi-
mate ωon here by ωb and ton by t sudden

on [see (4)], leading to the
simpler estimate,

E′ = (ωoff − ωb)2

5
δt2

on +
(
t sudden
on

)2

5
δω2

on. (94)

Considering the 99.9% CZ gate of Table I designed for the
η/2π = 300 MHz transmon, we estimate from (94) that a 10 ps
error in ton (or a 1 MHz error in ωon/2π ) would lead to a
fidelity loss of 7.9 × 10−4 (or 4.9 × 10−4), whereas numerical
simulation of the same error in QVN4, which includes all
subdominant processes, yields 4.5 × 10−4 (or 1.2 × 10−3).

Next we consider the case where there is an error in ton

or ωon, but the auxiliary z rotation angles are optimal. Here
the analysis closely follows that of Sec. III B, which is based
on the truncated qubit-resonator model (9). In this situation
the fidelity loss is dominated by deviations from the ideal
evolution,

cz |11〉 = −|11〉, (95)

of the |11〉 channel. Pulse shape errors will lead to both
population and phase errors on the right-hand side of (95).
We therefore parametrize the nonideal CZ gate by

U = phase factor ×

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −eiδ cos θ
2

⎞
⎟⎟⎟⎠. (96)

In (96) we have assumed perfect auxiliary z rotations and
have neglected the subdominant errors in the |00〉, |01〉, and
|10〉 channels. The population error has been written in terms
of a rotation angle error θ , which will be interpreted (see
below) as the deviation from 2π of the rotation angle in
the two-dimensional subspace spanned by |11〉 and |20〉. The
expression (96) does not include switching errors because we
are evaluating the effect of pulse-shape errors on an otherwise
perfect, large-σ CZ gate. The average fidelity lossE ≡ 1 − Fave

associated with (96) is, to leading order,

E = 3

20
δ2 + 1

16
θ2. (97)

What remains is to express the controlled phase error δ and
rotation error angle θ in terms of δton and δωon. This involves
only the two channels |11〉 and |20〉 of the qubit-resonator
model (9), and we will use the same small-σ approximation
used in Sec. III B for our analysis of the |11〉 channel dynamics.
In the {|11〉,|20〉} basis, (9) can be written as

H =
(

ε + ωb

√
2gb√

2gb 2ε − η

)
. (98)

The eigenstates of (98) are

|11〉 = cos
ζ

2
|11〉 − sin

ζ

2
|20〉, (99)

|20〉 = cos
ζ

2
|20〉 + sin

ζ

2
|11〉, (100)

where

ζ ≡ arctan

(
2
√

2gb

ε − ωon

)
, (101)

and the energies are

E11 = ε + ωb + ε − ωon

2
−

√(
ε − ωon

2

)2

+ (
√

2gb)2,

(102)
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E20 = ε + ωb + ε − ωon

2
+

√(
ε − ωon

2

)2

+ (
√

2gb)2.

(103)

Here we have used the expression (11) for ωon, which is
appropriate for the model (98).

The analysis below follows that of the |11〉 channel
evolution given Sec. III B, except here we introduce a timing
error δton and a tuning error δωon. Starting in the strongly
detuned configuration with ε − ωon 
 gb in the eigenstate
|11〉 ≈ |11〉, and quickly switching to ε = ωon + δωon, leaves
the system in the state,

|11〉 = cos
ζon

2
|11〉 + sin

ζon

2
|20〉. (104)

Here ζon ≡ arctan(2
√

2gb/δωon), and the eigenstates in (104)
are for ε = ωon + δωon. Note that (104) reduces to (24) in the
δωon → 0 limit. Evolution with ε fixed at ωon + δωon for a
time,

2π

E20 − E11
= π√

(δωon/2)2 + (
√

2gb)2
, (105)

would implement a 2π rotation in the {|11〉,|20〉} subspace,
returning to |11〉 with a phase shift that depends on δωon.
We intentionally introduce a ton pulse shape error and instead
evolve for a time,

t = π√
(δωon/2)2 + (

√
2gb)2

+ δton, (106)

after which we detune and find the final state,

−eiδ cos
θ

2
|11〉 + phase factor ×

√
Eθ |20〉

≈ −eiδ cos
θ

2
|11〉 + phase factor ×

√
Eθ |20〉, (107)

where

δ = −π δωon

2
√

2gb

, (108)

and

Eθ ≡ sin2 θ

2
= 2g2

b δt2
on. (109)

These expressions are valid to leading order in δωon or δton,
neglecting cross terms. Here Eθ is the probability of leakage
to |20〉 resulting from a ton error, which, as discussed above,
causes a rotation error of angle θ . An alternative estimate for
θ (and hence Eθ ) is

θ ≈ δton

ton
× 2π, (110)

which also gives (109) [after using the sudden limit result (4)
for ton]. Note that the leakage error Eθ is independent of δωon

(to this order), enabling the phase δ to be intentionally adjusted
by varying ωon only. Doing this generates (approximately)

TABLE III. CZ pulse shape precision requirements. The bounds
listed in the ton column assume that this is the only type of pulse
parameter inaccuracy present, with an (estimated) error given in the
first column, and that the auxiliary z rotation angles are reoptimized
and implemented perfectly. The ωon bounds are defined analogously.
The error E is defined in (97).

E ton precision ωon precision

10−3 160 ps 4 MHz
10−4 50 ps 1 MHz

gates of the form, ⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei(π+δ)

⎞
⎟⎟⎟⎠, (111)

for small δ, with alternative controlled phases [46]. Gates (ap-
proximately) of the form (111) with arbitrary—not necessarily
small—values of δ can be implemented by varying both ωon

and ton away from their optimal values.
Referring again to the 99.9% CZ gate of Table I designed for

the η/2π = 300 MHz transmon, we estimate from (97), (108),
and (109) that a 10 ps error in ton (or a 1 MHz error in ωon/2π )
with optimal z rotations would lead to a fidelity loss of about
4.0 × 10−6 (or 9.1 × 10−5), whereas numerical simulation of
the same error in QVN4, which includes all subdominant
processes, yields 3.0 × 10−6 (or 1.1 × 10−4).

Finally, it is interesting to use the above estimates to bound
the magnitude of the allowable ton and ωon errors, such that the
resulting pulse shape errors (97) are subdominant to the 10−3

or 10−4 base gate error. This is done in Table III. For example,
a 99.9% CZ gate from Table I with a ton error of 160 ps will
have an additional intrinsic error of 10−3 (and a total error
of about 2 × 10−3). Current experimental limitations on the
control of ton and ωon are considerably better than that required
to suppress pulse shape errors below the 10−4 level.

J. CZ gate with 99.999% fidelity

Higher fidelities are also possible with the pulse shape (1).
An example is provided in Table IV for the 300 MHz qubit.
For this design we did not perform a separate gb optimization
for this higher fidelity, but instead used the value from Table I
optimized for the lower fidelities.

IV. ADDITIONAL CZ GATES

A. CZ between bus and qubit q4

The main focus of this paper is the CZ gate between qubit
q1 and the bus in the QVN4 processor. Results for the other

TABLE IV. Optimal QVN4 gate fidelity for a Strauch CZ gate
between qubit q1 and the bus.

η/2π gb/2π gm/2π tramp σ tgate Fave

300 MHz 45 MHz 100 MHz 13 ns 2.30 ns 25.7 ns 99.999%
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qubits are very similar, with the worst case being q4, because
the detuning to memory during the gate is slightly smaller.
We find that the intrinsic fidelity of the 99.9% CZ gate for the
300 MHz qubit given in Table I changes from 99.928% to
99.925% if qubit q4 is used instead of q1.

B. CZ between two qubits in QVN4

In this section we explain how to perform a CZ gate between
two qubits—or more precisely, between two memories—in the
QVN architecture. Such an operation is not elementary, as it
can be composed of the qubit-bus CZ combined with MOVE

gates. (There are also proposals for the direct implementation
of a qubit-qubit CZ gate in a QVN device [47,59].) Figure 6
shows the experimental protocol for implementing the gate
cz23 between qubits q2 and q3, suppressing auxiliary z

rotations, and with all data starting and ending in memory.
This mode diagram shows the time dependence of all nine
device frequencies. The color indicates whether the qubit or
resonator would be in the ground state (blue or dark gray) or
possibly excited state (red or light gray) in the weakly coupled
limit. Modes are colored red if there is a finite occupation of
the |1〉 state (in the weakly coupled limit), for some choice
of initial conditions. All qubits are initially parked at the
strongly detuned frequency of 10 GHz. Horizontal lines 1–4
represent memories, and b is the bus. No red or red and
blue lines with first-order or second-order couplings cross (to
avoid Landau-Zener transitions), and no more than one qubit
is occupied at any time (to avoid second-order qubit-qubit
interactions mediated by the bus).

Beginning with the four memory registers in an arbitrary
(possibly entangled) state, the bus is loaded by a 5 ns MOVE

gate from m3 → q3 followed by a 10 ns MOVE to the bus.
These are approximate gate times (time estimates for these
gates are given in Sec. V and a concrete example is provided
below). Qubit q2 is then loaded and tuned to the frequency ωon

determined by optimization. This central portion of the gate
is close (but not exactly the same as) the qubit-bus CZ gate of
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FIG. 6. (Color online) QVN4 mode diagram for the cz23 gate.
Gaussian filtering of the pulse is not shown.
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FIG. 7. (Color online) CZ gate between q1 and bus. This diagram
describes the gate of Table I.

Table I, which, for the purposes of comparison, is shown in
Fig. 7.

We simulated the gate CZ23 shown in Fig. 6, using the
99.99% CZ of Table I for a 300 MHz qubit, and starting with
the memory register in the GHZ state,

|0000〉 + |1111〉√
2

. (112)

The MOVE gates also have fidelities around 99.99%. Note that
Hidle and the associated computational basis states (interacting
eigenfunctions of Hidle) are different at the beginning and end
of each MOVE gate. The total cz23 gate time is

tgate = 55 ns, (113)

and the final state fidelity (overlap squared) is

F = 99.94%. (114)

In addition to the 23 ns qubit-bus CZ gate, there are four MOVE

to or from memory operations, each taking about 3.5 ns, and
two MOVE to or from bus gates, each taking about 9 ns. There
are also local z rotations (not shown) between each gate.

A few remarks about the encouraging result (114) are
in order: The seven elementary gates making up the CZ23

operation are optimized individually to an error of about
10−4, and then combined without any additional optimization
of the composite pulse sequence or control parameters,
respecting the modularity required by scalable, gate-based
quantum computation. And the total intrinsic error E ≡
1 − F = 6 × 10−4 implied by (114) is consistent with a
linear (incoherent) accumulation of errors with a number of
elementary steps Einc

∼= 7 × 10−4, but is not consistent with a
quadratic (coherent) accumulation Ecoh

∼= 72 × 10−4.

C. Beyond QVN: CZ gate between directly coupled
superconducting qubits

The main focus of this work is the CZ gate between a directly
coupled qubit and resonator in a multiqubit QVN device. How-
ever, many of our results—especially the error analysis—will
also be relevant for hardware designs incorporating pairs of
directly coupled superconducting qubits, the system originally
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considered by Strauch et al. [42]. Here we summarize the
principal differences between the qubit-bus CZ gate of Sec. III
and the directly coupled qubit-qubit gate. For the latter case we
assume qubits with anharmonic detunings η1 and η2 [defined
as in (7)] and a purely transverse (off-diagonal) capacitive
coupling with interaction strength g.

The first difference concerns a frequency asymmetry of
the qubit-bus gate. Recall from Sec. III B that the CZ gate
is implemented by decreasing the qubit frequency ε from a
value far above ωb to (approximately)

ε = ωb + η, (115)

where η > 0 is the qubit anharmonicity. By contrast, the qubit-
qubit CZ gate can be implemented either by decreasing the
frequency ε1 of qubit 1 from a value far above that of a second
qubit with a (fixed) frequency ε2, until

ε1 = ε2 + η1, (116)

which is directly analogous to (115), or from below by
increasing to

ε1 = ε2 − η2. (117)

The conditions (116) and (117) specify the crossings of the
bare |11〉 state with |20〉 and |02〉, respectively (in the basis
|q1q2〉). The frequency asymmetry of the qubit-bus gate is a
consequence of the harmonic spectrum of the bus and can be
understood from Fig. 3, which shows that when |11〉 reaches
the |02〉 crossing from below, |01〉 and |10〉 also become
degenerate [as expected from (117) when η2 → 0]. This would
result in unwanted phase shifts of the |01〉 and |10〉 channels,
as well as large switching errors between them.

The second major difference between the qubit-bus and
qubit-qubit gates is that the additional anharmonicity in
the latter case further suppresses the nonadiabatic switching
errors and leads to better gate performance. This can be
understood from the analysis of Sec. III H, noting that in
the qubit-qubit case, adiabaticity of the |11〉 channel is
protected by an energy gap of size η1 + η2 − √

2g, where
g is the qubit-qubit interaction strength. Let’s estimate the
|11〉 → |02〉 switching error E2 for a qubit-qubit CZ gate at
the upper frequency (116), with η1 = η2 = 2π × 300 MHz,
g = 2π × 45 MHz, and tramp = 7 ns. In this application we
use formula (76) with parameter values,

G =
√

2g, (118)

�on = η1 + η2 −
√

2g, (119)

�off = 2π × 1 GHz. (120)

We note from (119) that the anharmonicity suppressing the
|11〉 → |02〉 switching error is effectively doubled in the qubit-
qubit system. With these parameters we obtain |A|2 = 5.8 ×
10−6 and psw = 8.2 × 10−8.

Although the |11〉 → |02〉 switching error is greatly re-
duced in the qubit-qubit CZ gate, the actual gate fidelity does
not fully benefit from this reduction. This is because the
dominant intrinsic error in the qubit-qubit gate is the switching
error E1 between |01〉 and |10〉, or the reverse, which is
subdominant in the qubit-bus case (see Sec. III H). In fact,
the |01〉 ↔ |10〉 switching error estimate (87) also applies

to the qubit-qubit system (with η1 = η2 = 2π × 300 MHz,
g = 2π × 45 MHz, and tramp = 7 ns), resulting in an estimated
minumim fidelity of

F (est)
min ≡ 1 − E1 = 1 − 2 psw = 99.991%. (121)

V. SYSTEM OPTIMIZATION

In this section we discuss an approach for choosing
optimal QVNn device parameters. This is a complex global
optimization problem that we will solve in a simple but
approximate way, emphasizing the main ideas of the procedure
instead of its most precise implementation.

First we consider resonator frequencies. The QVNn

processor includes n memory resonators, with frequencies
ωm1,ωm2, . . . . These need to be mutually detuned (to lift
degeneracies), and for simplicity we space them by 100 MHz (a
smaller value could be used). The band of memory frequencies
itself needs to be well detuned from the bus to keep the idle
error (to be discussed below) in check.

Because the qubit frequency during a qubit-bus CZ gate
must approach the bus frequency from above (Sec. IV C), the
bus frequency must be below the memory band. The choice
of bus frequency therefore determines the lowest transition
frequency that needs to be accessible by a qubit. Specifically,
the qubits will need to tune 500 MHz or so below the bus
(see Fig. 6). However, the minimum transition frequency
may be constrained by qubit design (in addition to other
considerations). In the tunable-EJ transmon, for example,
this minimum frequency depends on the qubit anharmonicity
η. Here we will choose a minimum qubit frequency and
corresponding bus frequency appropriate for a 300 MHz
transmon. This leads to our choice of 6.5 GHz for the bus
frequency. Optimal resonator frequencies for smaller η are
unchanged, whereas for larger η they need to be rigidly shifted
upward in frequency. In particular, system frequencies for a
400 MHz transmon will be shifted upward in frequency by
about 2 GHz. Apart from this large but simple change, we
expect the system optimization results, such as gb values, to
be valid for the 400 MHz case as well.

The frequency ωoff can be viewed as defining a boundary
between MOVE and CZ gates, or between consecutive MOVE

gates (see Fig. 6, for example). It is also natural to perform
single-qubit operations with microwave pulses at the qubit
frequency ωoff . If ωoff is too low, the error of the (approximate
two-parameter) MOVE to or from memory gate becomes
significant (this is determined by the qubit-bus detuning
because the dominant error is nonadiabatic leakage to the
bus), whereas if ωoff is too high the fidelity of the qubit-bus
CZ degrades (because dε/dt increases). We find that 7.5 GHz
works well. At least 500 MHz is required between ωoff/2π

and the memory band to keep the MOVE errors (to or from the
bus) under control. Thus we arrive at the memory frequencies
given in Table II.

Having obtained prospective resonator frequencies, we turn
to couplings. The most frequently used gate is expected to
be the MOVE to or from memory, which must be as fast as
possible. Figure 6 includes four examples. The gate time for
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this operation is, approximately,
π

2gm
+ tramp + 1 ns. (122)

The first term is the π rotation time, and the second and third
are switching times (the detuning ramp can be fast because the
qubit is unoccupied). Choosing gm/2π = 100 MHz makes the
first term 2.5 ns. It might be possible to increase gm further,
but suppressing the resulting idling error (see below) would
require an even higher empty-qubit parking frequency. The
value of tramp is determined by the desired MOVE gate fidelity.
Because the dominant error is nonadiabatic excitation of the
bus, we can estimate it using our expression (76) for the
switching error psw, with G = gb, �on/2π = 1.0 GHz, and
�off/2π = 1.8 GHz (corresponding to m4, the worst case).
These values depend on our initial resonator frequency assign-
ments. From Fig. 5 we obtain |A|2 = 0.03 (9.8 × 10−4) for a
1 ns (2 ns ) ramp. Considering the largest (worst case) value
for gb/2π of 60 MHz gives psw = 1.1 × 10−4 (3.5 × 10−6) for
a 1 ns (2 ns) ramp. Thus we conclude that the MOVE to or
from memory can be done in about 5 ns if gm/2π = 100 MHz.
(Here we assumed the simplest 2 + 1-parameter MOVE to or
from memory gate, having two pulse-shape parameters and
one auxiliary z rotation angle. It is also possible to implement
this gate with even higher fidelity with 4 + 1 parameters [34].)

The bus coupling is found by the following “g-
optimization” procedure: Consider the set of discretized gb/2π

values, varying from 10 to 100 MHz in steps of 1 MHz. For
each value of gb, calculate the minimum value of tramp and
the associated tgate required to achieve a target fidelity, say
99.9%. We do this by stepping through tramp values, estimating
the fidelity using (76) and (84) from Sec. III H, which is
very efficient, then confirming through a full optimization on
QVN1. We then obtain, for each gb, the gate time of a 99.9%
CZ gate, or equivalently, the function,

t
(99.9%)
gate (gb). (123)

The function (123) gives the time required for a CZ gate with
a given target fidelity as a function of gb. Strict g optimization
requires choosing gb to minimize tgate, and this procedure
leads to the best performance in any given situation. However,
carrying this out leads to a different gb for each target fidelity.
Fortunately, the curvature at the minimum in (123) is small
and the simpler gb values reported in Table I, which are
independent of the target fidelity and are also constrained to
be multiples of 5 MHz, lead to very little performance loss,
typically 1–2 ns in gate time.

Having obtained prospective resonator frequencies and
couplings, we choose the empty qubit parking frequency ωpark

to control the idle error,

E = (�ZZt)2n2, (124)

where �ZZ is the effective σ z ⊗ σ z coupling frequency
between a memory resonator and the bus, induced by their
shared qubit [34]. The n dependence in (124) assumes the
worst case. Assuming ωpark/2π = 10 GHz, gb/2π = 60 MHz
(the worst case), and η/2π = 400 MHz (also the worst case)
leads to

�ZZ

2π
= −0.881 kHz. (125)

It will be necessary to keep (124) less than the fault-
tolerant threshold during a (potentially) long error correction
cycle. If we assume t = 1 μs, the idle error in QVN4 is
4.9 × 10−4, which is acceptable. Reducing the parked qubit
frequency to 9.5 GHz (9.0 GHz) increases the idle error to
3.8 × 10−3 (7.3 × 10−2).

We are now able to calculate the gate time of the MOVE to
or from bus operation. The gate time is, approximately,

π

2gb
+ tramp + 1 ns, (126)

where the first term is between 4 and 8 ns for the bus couplings
in Table I. As before, tramp is determined by the desired
gate fidelity. The dominant error is nonadiabatic transition
to memory, which we estimate using (76) with G = gm,
�on/2π = 0.5 GHz (the worst case), and �off/2π = 1.5 GHz.
Note that this error is enhanced by the large value of gm. From
Fig. 5 we obtain |A|2 = 5.9 × 10−2 (1.6 × 10−2) for a 2 ns
(3 ns) ramp. Then psw = 2.4 × 10−4 (6.4 × 10−4) for a 2 ns
(3 ns) ramp. Thus we conclude that the MOVE to or from bus
takes between 7 and 12 ns, depending on the actual value of
gb and on the desired fidelity.

Finally, we confirm that the assumed qubit parameters
are compatible with transmons. In the large EJ/EC transmon
regime, the qubit frequency ε and anharmonicity η are given
by [4]

ε =
√

8EJEC − EC, (127)

and

η = EC. (128)

We assume a split-junction flux-biased Cooper-pair box so
that EJ is tunable [43]. (Note that the tunable-EJ transmon
is sensitive to flux noise, which will degrade T2.) Combin-
ing (127) and (128) leads to the relation ε = η(

√
8EJ/EC − 1)

plotted in Fig. 8 for 300 and 400 MHz anharmonicity. Because
EJ/EC needs to be above about 50 to effectively suppress
charge noise, we see that the 300 MHz transmon can have
a transition frequency as small as 5.5 GHz, whereas the
400 MHz transmon has a minimum frequency of about
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FIG. 8. (Color online) Transition frequency for transmon with
300 and 400 MHz anharmonicity.
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7.5 GHz. Our choice of bus frequency is indeed consistent
with the 300 MHz transmon, whereas ωb/2π and the entire
spectrum of device frequencies would have to be increased by
about 2 GHz for the 400 MHz transmon.

VI. CONCLUSIONS

We have investigated the problem of CZ gate design for
the superconducting QVN architecture based on a realistic,
two-parameter filtered rectangular pulse (1). The gate operates
by using the noncomputational qubit |2〉 state as first proposed
by Strauch et al. [42]. The main results are summarized in
Table I. The use of interacting eigenfunctions as computational
basis states, and the use of auxiliary z rotations on the qubits
and bus are critical to obtaining this high performance. The
ability to perform SU(2) operations on the bus resonator is
nontrivial because they cannot be implemented directly with
microwave pulses or frequency excursions; instead, they must
be compiled into future qubit rotations.

Our investigation is limited to and constrained by the pulse
profile (1). Fidelity optimization determines the amount of
time to spend switching the qubit and how long to stay at
the “on” frequency. We find that this pulse shape correctly
captures the relevant pulse degrees of freedom for fidelities
up to about 99.99%. For higher fidelity gates, which are
slower and which would require larger coupling, alternative
few-parameter pulse shapes where most of the time is spent
switching, could become competitive with (1). Although we
are able to obtain fidelities well above 99.99% with profile (1),

it is possible that alternative few-parameter pulse shapes would
be able to achieve the same intrinsic fidelity in less gate time.

One can also consider more complex pulse shapes with
many control parameters, which can achieve nearly perfect
intrinsic fidelity in a time tgate (depending on gb) significantly
shorter than obtained with pulse shape (1). Egger et al. [59]
have recently investigated this optimal control approach (using
the gradient pulse shape engineering method of Khaneja et al.
[60]), and have obtained about a factor of two speedup for
a qubit-qubit CZ gate similar to that of Sec. IV B. This ap-
proach clearly warrants further investigation and experimental
implementation.

We did not include the effects of decoherence (or flux noise)
in this work. However, an order-of-magnitude estimate of the
T1 decay error E ≈ tgate/T1 suggests that it should be possible
to demonstrate a 99.9% CZ gate with existing transmon qubits,
which would be an important step towards the development of
fault-tolerant quantum computation.

Note added in proof. We would like to bring attention to
Ref. [61], which is also relevant to this work.
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