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Rolling quantum dice with a superconducting qubit
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One of the key challenges in quantum information is coherently manipulating the quantum state. However,
it is an outstanding question whether control can be realized with low error. Only gates from the Clifford
group—containing π , π/2, and Hadamard gates—have been characterized with high accuracy. Here, we show
how the Platonic solids enable implementing and characterizing larger gate sets. We find that all gates can be
implemented with low error. The results fundamentally imply arbitrary manipulation of the quantum state can be
realized with high precision, providing practical possibilities for designing efficient quantum algorithms.
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The Platonic solids have been studied since ancient times
for their beauty and symmetry [1], and make excellent random
number generators [2]. Here, we exploit their symmetry
for quantum information. Quantum processing would benefit
from having a large set of accurate gates to reduce gate
count and error [3–5], yet it is an open question whether
arbitrary gates can be implemented with low error—only
the restricted group of Clifford gates [6,7] has been used
with high precision [8–10]. We use the Platonic solids as a
pathway and implement gate sets inspired by the tetrahedron,
octahedron, and icosahedron, including gates never previously
benchmarked. We achieve low error for all gates. These
results illustrate the potential of using unitaries with a fine
distribution, and suggest arbitrary rotations can be realized
with high accuracy, opening new avenues for performing gates
and designing algorithms efficiently.

Recently, major advances have been made in accurately im-
plementing Clifford gates on a variety of platforms. Supercon-
ducting qubits, liquid NMR, and ion traps have shown single-
qubit gate errors ranging from 10−3 to 10−6 [8–10], determined
via Clifford-based randomized benchmarking (RB). Arbitrary
rotations—for quantum chemistry and quantum simulation
[3–5]—can then be approximated by sequences of Clifford
and non-Clifford gates [6]. To minimize the accumulation of
gate error when implementing these algorithms in present-day
quantum processors, one would like to perform such rotations
directly. However, high fidelity rotations outside of the Clifford
group are yet to be demonstrated. Process verification of non-
Clifford gates is a conundrum: Quantum process tomography
can be used, but state preparation and measurement error can
lead to significant systematic deviations, limiting precision.
Clifford-based RB is insensitive to these errors, but unavailable
for gates which fall outside of the Clifford group.

Here, we demonstrate the high fidelity implementation of
non-Clifford gates, by using larger rotational groups. Our
approach also opens the door to evaluating functions of higher
order, and experimentally tests a core premise—that any
unitary 2-design is sufficient—of randomized benchmarking,
a technique that is becoming a keystone metric in quantum
information. A different approach to estimating errors of
non-Clifford gates was proposed in Ref. [11].

The groups of unitaries we use here are formed by the
rotations that preserve the regular tetrahedron, octahedron,
and icosahedron—Platonic solids—in the Bloch sphere repre-
sentation (see Fig. 1). These are the rotational subgroups of
the tetrahedral, octahedral, and icosahedral symmetry groups
Th, Oh, and Ih. These rotations exchange faces, amounting to
a quantum version of rolling dice (such dice are referred to
as d4, d8, and d20), but now in Bloch space. The tetrahedral,
octahedral, and icosahedral rotational groups have size (order)
12, 24, and 60, respectively. The axes are defined by the
lines that intersect the origin, and a face center, vertex, or
midpoint of an edge. The angles of rotation around these axes
are, respectively, integer multiples of {2π/3,2π/3,π} for the
tetrahedral group, {2π/3,2π/4,π} for the octahedral group,
and {2π/3,2π/5,π} for the icosahedral group. The tetrahedral
rotations (orange axes in Fig. 1) are shared among all three
groups, enabling comparison experiments. The octahedral
rotations form the single-qubit Clifford group. The icosahedral
rotations form the most dense group—the icosahedron is the
largest of the Platonic solids—allowing for fine unitary control.

For implementing gates from these groups we decompose
them into rotations around the X, Y , and Z axes. The tetra-
and octahedral groups can be implemented using only π/2 and
π rotations [12]. The icosahedral group requires the rotation
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FIG. 1. (Color online) The Platonic solids and their rotational
groups. The axes of rotation are of the tetra-, octa-, and icosahedral
rotational group; the respective Platonic solids are superimposed.
The axes are defined by lines intersecting the origin, and a vertex,
face center, or midpoint of an edge. The tetrahedral rotational group
(orange) is shared among all groups.
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FIG. 2. (Color online) Calibrating the angles of rotation. (a) The
excited state probability versus X and Y pulse voltage amplitude on
the control board. The amplitudes for the required phases of rotations
around the X and Y axes are indicated with dotted lines. The data
follow a sin2 dependence (solid line) on the pulse amplitude, as
expected. Data are not corrected for measurement fidelity. (b) The
phase of the quantum state as a function of Z pulse voltage amplitude,
measured using quantum state tomography. Solid line is a fit to the
data. For brevity, only the positive angles are shown. Here tan φ =
(1 + √

5)/2. Insets show the trajectories on the Bloch sphere for the
X-, Y -, and Z-axis rotations.

angles {φ,2π/5,π/2,2φ,4π/5,π}, with φ an irrational angle
from tan φ = (1 + √

5)/2 the golden ratio. The decomposition
into physical gates is shown in the Supplemental Material
[13]. The average number of physical gates per tetra-, octa-,
or icosahedral rotation is 1 3

4 , 1 7
8 , and 4 4

15 , respectively. This
decomposition requires a minimal number of used angles and
only one irrational angle.

The rotations are implemented in our superconducting
quantum system, the Xmon transmon qubit [14]. This qubit
combines full, direct axial control with a high level of coher-
ence. Details of the device used in this experiment can be found
in Ref. [8]. Rotations around the X and Y axes are achieved
by applying microwave pulses. Rotations around the Z axis
can be directly performed by detuning the qubit frequency,
or by combining X and Y rotations. All control pulses have
cosine envelopes, generated by fast (1 Gsample/s) digital-to-
analog converter boards. For XY control we generate both the
in-phase and quadrature component and upconvert it to the
qubit frequency using quadrature mixing (see Supplemental
Material [13] and Refs. [8,15] for more detail). For calibrating
the pulse amplitudes we use the measured probability for X and
Y rotations, and for Z rotations the phase as determined using
quantum state tomography (Fig. 2). We minimize leakage to
energy levels above the computational subspace by applying
a quadrature correction [16,17]. Subsequently, fine-tuning
of the parameters is done through optimized randomized
benchmarking for immediate tune-up (ORBIT) [15], reducing
gate errors by approximately 10−4 [18]. The generators of the
tetrahedral and octahedral groups are fully parametrized by a
total of three parameters, and the generators of the icosahedral
group by a total of 14 variables (see Supplemental Material
[13]).

We test the gates using randomized benchmarking
[8–10,12,19]. In essence, randomized benchmarking is equiv-
alent to randomly rolling the die in Bloch space m times
followed by a final rotation that returns it to the starting
position, and then measuring the probability of success. One
would like to determine the gate error averaged over all
possible input states. As the gate error depends quadratically
on, for example, any amount of over- or under rotation,
we do not need to evaluate a continuum of input states.
The average of a polynomial function of order t over the
surface of a sphere can be evaluated exactly using only a
finite number of points; such a group of points is a spherical
t-design. For the single-qubit case, unitary designs are the
group of rotations that can generate spherical designs, mapping
between the points [20]. Therefore, the rotational group used
in randomized benchmarking needs to be a unitary 2-design
[20–23]. Moreover, unitary 2-designs depolarize any error in
the computational basis. For the single-qubit case, the rota-
tional groups which preserve Platonic solids are the 2-designs
[24]. There are only three unitary 2-designs as the cube shares
the same group as the octahedron (the cube and the octahedron
are duals), and the dodecahedron shares the same rotations as
the icosahedron (the dodecahedron and the icosahedron are du-
als). We have thus tested all unitary 2-designs in Bloch space.

Randomized benchmarking with 2-designs is therefore a
crucial test of coherent control. The decrease of the probability
of success—the sequence fidelity—with increasing sequence
length is used to quantify the gate fidelity. We start by measur-
ing a reference curve, using sequences of m random rotations.
The sequence fidelity follows Apm + B, with variables A and
B absorbing measurement and initialization errors, and pref

giving the average error per rotation: rref = (1 − pref)/2 [19].
We then interleave a specific gate with m random rotations;
the difference with the reference is a direct measure of
the gate error: rgate = (1 − pgate/pref)/2; the gate fidelity is
Fgate = 1 − rgate [25]. At each m, the data is averaged over
k = 50 random sequences [26].

We have performed randomized benchmarking using
the tetrahedral, octahedral, and icosahedral rotational
groups; the results are shown in Fig. 3. As we start by
initializing the qubit in the ground state, the sequence fidelity
is given by the ground state population after applying the
random sequences. The traces follow an exponential decay
with increasing m, as expected. We have also interleaved four
gates from the tetrahedral group (see insets for the rotational
axes). These rotations are shared by all three rotational groups,
allowing for a direct comparison between tetra-, octa-, and
icosahedral-based randomized benchmarking. We emphasize
that the interleaved gates are physically implemented in exactly
the same manner.

From the reference traces, we extract an average error per
group of rotations of rref,T = 9 × 10−4, rref,C = 10 × 10−4,
rref,I = 19 × 10−4. When dividing by 1 3

4 , 1 7
8 , or 4 4

15 , these
numbers consistently point to an average error of 5 × 10−4 per
physical gate (single decomposed rotation around the X, Y , or
Z axis). The gate errors are dominated by decoherence [27].
The extracted fidelities for the interleaved gates are tabulated in
Fig. 3. The reference error per gate, as well as the errors for the
interleaved gates, are consistent with previous measurements
[8], where the average physical gate fidelity lies at 0.9994. In
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FIG. 3. (Color online) Randomized benchmarking with the (a) tetra-, (b) octa-, and (c) icosahedral rotational groups. The sequence fidelities
are plotted as a function of m, the number of random rotations or sets of random rotation and interleaved gate. For each m, the fidelity is averaged
over k = 50 different, random sequences. From fits to the reference curves (black lines) we extract the average error per group rotation of
rref,T = 0.0009, rref,C = 0.0010, and rref,I = 0.0019, consistent with an average physical gate fidelity of 0.9995. The rotational groups preserve
Platonic solids in Bloch space; the respective solids are shown in the insets. The colored lower curves show the data when interleaving four
tetrahedral rotations which are shared among all three groups; the rotational axes are shown in the insets; the composed gates are Xπ (©),
Xπ/2 Yπ/2 (�), X−π/2 Yπ/2 (�), and Yπ/2 Xπ/2 (�). Here, Xπ/2 Yπ/2 denotes the unitary RY (π/2)RX(π/2) = exp(−iπσY /4) exp(−iπσX/4). The
gate fidelities are tabulated in the figures, extracted from fits to the data (solid lines). Error bars on the data indicate the standard deviation of
the mean. The standard deviations of gate fidelities are typically 10−4.

addition, the mean difference in error of the interleaved gates
is below 2 × 10−4 [29], verifying that any of the groups can
be used for randomized benchmarking.

With icosahedral randomized benchmarking shown to be
a viable method for determining gate fidelity, we can now
benchmark gates outside of the Clifford group, as shown in
Fig. 4. We chose three composite gates, which are implemented
using three, six, or eight physical gates. The rotational axes
are highlighted in the inset. The fidelities of these gates are
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FIG. 4. (Color online) Icosahedral-based randomized bench-
marking. We have interleaved three non-Clifford gates whose axes
are shown in the inset, the gates rotate around a face center, vertex
or edge midpoint of the icosahedron (superimposed). The gates
are composed of three, six, and eight elements. Their composi-
tions are: Yφ X2π/5 Y−φ (�), Xφ Z−2π/5 Y X2φ Z2π/5 X−φ (�), and
Xφ Z−2π/5 X−φ X−π/2Y−π/2 Xφ Z2π/5 X−φ (�). The gate fidelities
are tabulated in the figure. The average error per physical gate which
makes up the interleaved gates is r = 3 − 4 · 10−4.

tabulated in the figure. These complex gates work surprisingly
well: We compute the average error per physical decomposi-
tion to range between 3 × 10−4 and 4 × 10−4, assuming that
errors are small and uncorrelated. These results demonstrate
that even these complex, composite gates can be implemented
with high fidelity.

Apart from the first demonstrated implementation of
rotational groups beyond the Clifford group, the results on
icosahedral benchmarking in Figs. 3 and 4 clearly indicate
that physical rotations, other than the widely used Clifford
rotations, can be done with a very similar fidelity. This strongly
suggests that any arbitrary rotation can be done with high
fidelity. Moreover, the gate parameters can be optimized to
achieve decoherence-limited performance using the method
outlined in Ref. [15], providing an interpolation table for
implementing any desired rotation directly, efficiently, and
accurately. In addition, icosahedral benchmarking could also
be used for evaluating functions of higher order, beyond gate
fidelity, as the tetra-, octa-, and icosahedral rotational groups
are unitary 2-, 3-, and 5-designs [30,31].

We have shown a quantum version of rolling dice with a
superconducting qubit, using gate sets inspired by the Platonic
solids. Fundamentally, our work illustrates the potential of
using unitaries with a finer distribution for accurate control,
and provides a route for the implementation and benchmarking
of non-Clifford gates. More generally, our results imply that
arbitrary rotations can be done with high accuracy, allowing for
complex gates and algorithms to be performed more efficiently
in quantum information processing.
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