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Weak values arise experimentally as conditioned averages of weak (noisy) observable measurements that
minimally disturb an initial quantum state, and also as dynamical variables for reduced quantum state evolution
even in the absence of measurement. These averages can exceed the eigenvalue range of the observable ostensibly
being estimated, which has prompted considerable debate regarding their interpretation. Classical conditioned
averages of noisy signals only show such anomalies if the quantity being measured is also disturbed prior to
conditioning. This fact has recently been rediscovered, along with the question whether anomalous weak values
are merely classical disturbance effects. Here we carefully review the role of the weak value as both a conditioned

observable estimation and a dynamical variable, and clarify why classical disturbance models will be insufficient
to explain the weak value unless they can also simulate other quantum interference phenomena.
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I. INTRODUCTION

After their introduction over a quarter-century ago [1],
quantum weak values [2,3] have consistently found themselves
at the center of controversy [4,5]. Indeed, the original paper [1]
details how one can postselect a weak (i.e., noisy) measure-
ment of a spin-1/2 operator for an electron (using a sequence
of two Stern-Gerlach apparatuses) to obtain a conditioned
expectation value that approximates a weak value with an
anomalously large value of 100. The question whether this
strange average value has any physical meaning pertaining
to the spin has since plagued the concept of the weak value
(e.g., [6]).

The most recent addition to this controversy [7] considers a
superficially similar example consisting of a classical coin that
has its two faces noisily measured, then disturbed, and finally
conditioned to produce an anomalous average value of 100
heads. The conclusion drawn from their study (which has been
heavily criticized [8—12]) is that strange weak values may be
understood entirely as classical disturbance effects, making
them not “quantum.” In fact, every element of this simple
example of how intermediate disturbance can cause strange
postselected averages of noisy signals has been previously
demonstrated, and corroborates our published work: not only
did we emphasize a similar disturbance example using a
colored marble in our systematic investigation of generalized
observable measurements [13,14], but we also carefully
highlighted the potential role of invasive measurements in
studies linking strange conditioned averages (including weak
values) to violations of generalized Leggett-Garg inequal-
ities [15-19] (which were designed to test for “quantum”
behavior in macroscopic systems [20-22]). It is now well
established that any hidden-variable model that can produce
strange conditioned averages like the weak value must include
some form of intermediate disturbance (see also [23,24]). The
more interesting question to raise is not whether a particular
strange conditioned average may be explained as classical
disturbance, but rather whether such models of disturbance
can also reproduce the complete behavior of the weak value
as its physical parameters are varied.

In this paper, we revisit this question in order to dispel
the abundant confusion about weak values still present in the
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literature, and emphasize that a strange weak value is non-
classical in precisely the same manner that a single quantum
particle can be considered to be nonclassical. Specifically,
strange weak values fundamentally arise from inferference
(i.e., superoscillations [25,26]), and thus also appear in any
wavelike field theory, such as classical optics [27-29], in a
straightforward way. In such a classical field theory, anomalous
weak values do faithfully indicate physical wave properties,
despite how counterintuitive their predictions may seem. For
example, the orbital part of the Poynting vector field of optical
vortex beams, or evanescent fields, can show anomalous
local momentum distributions that are precisely equal to
strange weak values [30-32]. Therefore, as with any quantum
interference effect, only the fact that discrete and independent
random events can be measured (as opposed to attenuated wave
intensities) will distinguish whether the statistics producing a
strange weak value are truly quantum mechanical in origin.
(Alternatively, entangling the degrees of freedom of distinct
particles will not have a simple classical field interpretation,
e.g., [17].) Nevertheless, even in the case of discrete mea-
surement events the large number of measurements needed to
statistically resolve such a weak value still imply that it is best
considered as a dynamical physical variable for the effective
(classical) mean field, and not necessarily to each individual
quantum particle a priori [32]. To emphasize these subtle
points, we carefully review several complementary approaches
to deriving and understanding the weak value, paying special
attention to its role as an ideal estimate, an experimentally
measurable conditioned average, and as a classical dynamical
variable for reduced quantum state evolution. This detailed
treatment aims to supplement the simplified introduction to
the experimental applications of weak values in [2] with an
expanded theoretical discussion that highlights their pervasive
and underappreciated role throughout the quantum formalism.

In what follows we also emphasize the often overlooked
connection between weak values and joint quasiprobability
distributions (such as the Kirkwood-Dirac [33-38], Terletsky-
Margenau-Hill [39-42], and the various Moyal phase-space
distributions [43—46]) that determine conditioned observable
estimates. Notably, to obtain a strange weak value outside
the usual eigenvalue bounds, these joint quasiprobability
distributions must become negative as a consequence of the
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nonclassical quantum interference between probability ampli-
tudes. The best known examples of this intrinsic negativity
from quantum interference occur in the Moyal phase-space
distributions, such as the Wigner distribution for quadratures,
or the Glauber-Sudarshan P distribution for coherent state
amplitudes, which show such negativity with nonclassical
optical states [43—46]. Indeed, for single particles such
negativity in quasiprobability distributions has been proven
to be an equivalent notion of “nonclassicality” as the need
for contextual hidden variables [47,48] (in the sense of
Bell-Kochen-Specker [49,50]), and formally arises from the
usual operator noncommutativity of quantum mechanics. This
connection between contextuality and strange weak values
was emphasized in a recent proof by Pusey [51], as well
as an earlier study by Tollaksen [23], and is consistent with
the established understanding that strange weak values arise
fundamentally from (quantum) interference. It follows that if
a classical model as in [7] could really mimic the detailed
functional structure of the weak value, then it would also be
able to simulate other features that are normally considered
to be quantum mechanical. We further emphasize this latter
point by reviewing the deep connections between weak values
and the classical dynamical variables of the Hamilton-Jacobi
formalism, both in its fully quantum generalization that is
equivalent to the Schrodinger equation, and in the resulting
classical limit.

This paper is organized as follows. In Sec. II we derive and
discuss how the weak value is the best statistical estimate for
the average (but unmeasured) observable value for the times
between two known measurement events. In Sec. 11l we discuss
three approaches for experimentally verifying the weak value
as the appropriate such estimate: weak von Neumann coupling,
weak generalized observable measurements, and as the physi-
cal dynamical variables for reduced state evolution. In Sec. [V
we explicitly connect the weak value to quasiprobabilities,
focusing on the Terletsky-Margenau-Hill, Kirkwood-Dirac,
and Wigner distributions, and explicitly connect weak values to
classical mean-field dynamical variables using the Hamilton-
Jacobi quantum-classical correspondence. We conclude in
Sec. V.

II. WEAK VALUES AS ESTIMATES

Most of the controversy surrounding weak values rests
upon their common (but unnecessary) association with an
alternative time-symmetric approach to the quantum theory
that involves two state vectors [52—57]. In this time-symmetric
approach, one forward-propagates a state vector |i) from
an initial time O to ¢ in the usual way; however, one also
back-propagates a second state vector (f| from a final time
T to t. While the initial-state vector |i) corresponds to a
preparation procedure, the final-state vector {f| corresponds
to a postselection procedure.

Interestingly, the best estimate [58—60] of the average (un-
measured) value for an observable A at any time ¢ in the interval
[0,T1] is then not the expectation value A(t) = (i|U,TAlA],|i)
(which neglects the information about the postselection), but
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FIG. 1. (Color online) The best estimate of the average value of
Z conditioned on two boundaries that bracket the time interval [0,T]
is the weak value Z,,(r) = Re(f|0r_, 20, i)/ (f|0ri). For the Pauli
7 = |1)(1] — |0){0] qubit operator prepared in |i) = |1), postselected
in {(f| = (0], and evolving with U, = expliwt(]1)(0] 4+ |0)(1])], the
weak value Z,,(¢) (thin, green) coincides with the expectation value
Z(t) = (i|LA/,TZU,|i ) (dot-dashed, black) when the postselection is
consistent with the natural oscillation. Otherwise, Z(¢) (dashed,
black) displays a jump at time 7', while Z,,(¢) (red) smoothly connects
the boundaries, still passing through the same points of certain Z
(blue dots). The shaded regions exceed the eigenvalue bounds of £1,
indicating the inconsistency between the natural evolution and the
observed boundaries.

is rather the weak value
(f10r_ AUi)
(f1Urli)

as we will derive shortly. Here U, = exp(—i A t/h) is the
unitary propagator for a time interval ¢ that is generated
by the Hamiltonian H. Note that the imaginary part of the
weak value, while independently interesting as a measure of
intrinsic measurement disturbance [59,61,62], is unrelated to
the estimation of A as an observable, so we will ignore it for
now.

The problematic feature of Eq. (1) as an estimate is that it
may exceed the eigenvalue range of A; such strange behavior
is illustrated as the shaded areas in Fig. 1. As discussed in
the Introduction, a classical conditioned estimate may show
such anomalous behavior only if the estimation procedure
is noisy and if what is being estimated is disturbed in the
interval [0,7] [14,15,17,23,24]. The question raised in Ref. [7]
is whether such a classical model with noisy estimation and
disturbance is sufficient to explain Eq. (1). As we will show
in what follows, such a classical disturbance explanation is
difficult to defend when the many roles of this weak value
expression are examined in detail.

Ay(f) = Re (D

A. Derivation of the best estimate

For completeness we now show how this weak value
formula can be obtained as the optimal estimate that minimizes
a statistical uncertainty metric, justifying its interpretation as
a best estimate.

Suppose one wishes to estimate the best average values
for an observable A given a initial preparation |i), followed
by a projective measurement in a particular basis | f) that
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does not commute with A. For each f, we can guess a value
as that estimates the average of A given that the specific
result f was observed. This procedure formally constructs
a Hermitian observable Aest = Z ar| f){f] that is measured
by the procedure, which contams the estimates for every f
The goal is then to determine the optimal such estimates a f

of A conditioned on each measured result f.

To accomplish this goal, we must define a measure for
how close the estimate Aest is to the target observable A. A
natural choice for such a measure is the weighted trace distance
between two observables [41,58,60]

D,(A,B) = Tr(p(A — B)Y), )

which can generally depend upon any positive prior bias p. We
can interpret this measure as specifying the shortest geometric
distance in operator space, weighted by the statistical prior
bias of p. Since A and B need not commute, there is
generally no straightforward operational interpretation for this
distance [63—65], but it does formally provide a reasonable
definition of the geometric “closeness” for the two operators.

Now suppose we have a definite prior state p = |i)(i|
and choose B = A.y. Computing the weighted trace distance
yields [41,58,60]

Dy (A, Aes)) = (WI[A? + A2, — (AAey + Aet DY),

- s f|A|i>T
= (i|A%)i) Z| (fli) |[ i
Re LAl
3
+Z'f" [ <f|>} )

Only the final term depends on the choice of estimates ay for
each f, and is positive definite. Therefore, the trace distance
is minimized when this term vanishes, which in turn implies
that the optimal estimate for each independent f must be the
weak value formula

a = re 1A @

(i)

Note that if the basis | f) is chosen to be the eigenbasis
of A, then these optimal estimates reduce identically to the
eigenvalues of A and the trace distance vanishes.

To obtain Eq. (1) including intermediate time evolution,
we can choose a particular (f| (flle,t and initial state
i) > U,|i) that take into account Hamiltonian propagation
U, = exp(tH /ih) from the observed results for a specific
preparation and postselection.

This pure-state derivation may also be generalized in a
straightforward way [60], which produces a formulation of the
weak value suitable for generalized measurements and mixed
states

Ayt) = Re W ET-1 A7) (5)

Tr(ET—:01)
Here the back-propagating operator E7_, is often called a
“retrodictive state,” or “effect matrix,” in contrast to the
forward-propagating “predictive state” p,, or “density matrix.”
Recently, the estimate in Eq. (5) has been used to great effect
experimentally [66-69] for “quantum smoothing” [70,71]
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and “past quantum state” analyses [72,73] of continuously
measured signals (e.g., it was used to track individual
photon emissions into a monitored cavity [69]). Both Er_,
and p, generally evolve according to open-system master
equations [74,75] that can also include the effects from addi-
tional (discrete or continuous-in-time) stochastic measurement
results [72,76,77], in contrast to the closed-system (unitary)
Schrodinger—von Neumann dynamics usually assumed with
Eq. (1). Note that if the effect matrix Er_, is the identity
1, then no posterior conditioning has been performed, so the
usual expectation value is also recovered as a special case.

B. Interpreting and generalizing the estimate

As a philosophical side note, for those who believe
that the state-vector represents the complete physical (ontic)
reality (e.g., adherents to the many-worlds interpretation [78]),
this time-symmetric estimate prompts several more radical
speculations: the existence of the second state vector ( f|Ur_,
in Eq. (1) seems to imply not only that the state U,|i) is an
incomplete description of reality at time ¢, but also that there
seems to be a causal effect on the time ¢ from the future time
T [79]. Such a retrocausal interpretation is similar in spirit
to the interpretations of antiparticles in quantum field theory
as field excitations that move backwards through time [80].
However, just as with antiparticles, one does not need to invoke
such controversial philosophical concepts as physical state
vectors or retrocausation to meaningfully interpret the weak
value in Eq. (1) as the best available statistical estimate given
only the information about the specified boundary conditions.

A more pragmatic attitude (which we shall adopt here)
is to treat the estimate in Eq. (1) as subjective (epistemic),
and pertaining to a time interval [0,7] that has already
occurred in the past. That is, one performs an experiment
that prepares |i) at time 0, waits a duration 7', then makes
a projective measurement that shows a result corresponding
to the state (f|. One then interprets Eq. (1) as the best
estimate of the (unmeasured) average value of A within that
time interval [58-60], given only the knowledge of |i), (f],
and H. We emphasize that this approach is no different in

character than stating that the expectation value (i| U:A(Z i)
is the best estimate for the (unmeasured) average value of
A, given only the knowledge of the preparation |i) and H.
Indeed, such a counterfactual interpretation of the expectation
value in the absence of measurement is at the core of the
Ehrenfest theorem that equates quantum expectation values
with mean-field classical dynamical variables [81]. If we
interpret weak values as similar (but additionally constrained)
classical dynamical variables, then an anomalous weak value
should indicate the presence of some interesting intermediate
physical process that must have occurred in order to satisfy
both boundary conditions that bracket the time interval [0, 7]
(see Fig. 1).

Supporting this point of view is the fact that similar
bidirectional (in time) estimates about unknown properties of
structured stochastic processes (e.g., hidden Markov models)
during such an interval are now well established in classical
computational mechanics [82—85]. There it is shown that one
should use both forward and reverse “causal states” (i.e.,
probability distributions) that contain information gathered
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both before and after each time t to optimally estimate
the properties of an evolving stochastic process. Similarly,
classical statistics and filtering theory also use bidirectional
states to provide the best estimate for information contained
in noisy data confined to a time interval (called optimally
“smoothing” the noise) [86,87]. Since quantum theory is
closely related to probability theory [14,88], it is logical that
similar estimation methods can be applied. Indeed, upgrading
these estimation schemes to the quantum realm [76,88,89]
produces both states in Eq. (1), as well as the mixed-state
generalization of Eq. (5) [90-92].

III. MEASURING WEAK VALUES

The confidence that estimations like the expectation value,
or the weak value in Egs. (1) and (5), reflect something
meaningful about the physical world (and are not merely
fevered hallucinations of the mind) follows from verification of
their predictions by experimental measurements. In the case
of the expectation value, any unbiased estimation of A will
suffice, corroborating the predicted result. In the case of the
weak value, however, the presence of the posterior boundary
condition additionally constrains the form of the possible
measurements that can verify the estimate.

Specifically, those measurements must be “weak,” meaning
that they should not appreciably perturb the evolution of
the quantum system. Since information extraction necessarily
disturbs the quantum state, only minimally informative (i.e.,
noisy) measurements will leave the state mostly unper-
turbed [1,75], and thus faithfully reproduce the assumptions
made about the evolution during the time interval [0,7] by
the formulas in Egs. (1) and (5). The surprising fact is that
averaging such weak observable measurements can indeed
consistently verify the weak value as the correctly estimated
average, even when it predicts anomalous averages.

In what follows we will detail the standard von Neu-
mann approach for measuring the weak value, as well as
a more general approach that solidifies its interpretation as
a conditioned average in the limit of negligible disturbance
to the quantum state. We will also detail how the weak
value appears as a classical dynamical variable for reduced
system evolution even outside the usual context of postselected
weak measurements, further cementing its interpretation as the
appropriate mean-field variable that physically estimates the
observable when the natural state evolution is unchanged by
external influences.

A. von Neumann interaction

The standard approach for performing a weak observable
measurement [ 1-3,93], originally due to von Neumann [94], is
to couple the system observable of interest A (such as the spin
of a particle) to a detector observable F (such as the transverse
momentum of the same particle) for an independent degree of
freedom, using a simple linear interaction Hamiltonian

Hps(t) = hg(t)F ® A. (6)

The time-dependent coupling profile g(¢) is typically assumed
to be zero outside a short interval of duration &f and to
be impulsive, i.e., short on the time scale of the natural
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dynamics of both the system and the detector. In the interaction
picture for the system and detector, this coupling Hamiltonian
produces a joint unitary rotation of the joint state that entangles
the system with the detector

Vps = exp(—igF & A), (7)

where g = f(f " ¢(t")dt’ is the effective coupling strength for
the impulsive interaction.

For a concrete example of such an interaction, in the optical
experiments [27-29] a wafer of birefringent crystal was used
to couple the polarization (system) of a paraxial beam to its
continuous transverse momentum (detector). In contrast, the
optical experiments [16,17,95] used polarization-dependent
reflection from partially transmitting optical elements to
couple the polarization (system) of a paraxial beam to its
binary orbital which-path degree of freedom (detector). In
the more recent superconducting qubit experiment [18] the
energy basis of one transmon qubit (system) was coupled via
an intermediate bus stripline resonator to the binary energy
basis of a second and physically separated transmon qubit
(detector) using microwave pulses.

To derive the effect of such an interaction, consider the
coupling procedure in Fig. 2. Suppose that the impulsive
coupling begins at a time ¢, and that the joint state of the
detector-system degrees of freedom is initially a product state
|d")|i"), where the initial detector and system states at time ¢

ld'y =0 1d), |i'y = U,li) (8)

0 to t T T

FIG. 2. (Color online) Impulsive von Neumann interaction for
measuring A= >, ala){al. A system degree of freedom [i) (blue,
top) is prepared at time O, and a detector degree of freedom |d)
(red, bottom) is prepared at a potentially different time #,. After
independent unitary propagation U, and U,(f),f), respectively, to the in-
termediate time ¢ they interact impulsively (green, wavy) with a joint
unitary interaction VDS for a short duration §¢. After the interaction,
both system and detector continue to propagate until the detector is
measured at a time 7" to find the result (x|, and the system is measured
at a potentially different time 7 to find the result {f|. This entire
coupling procedure may be represented as a single system operation
(lightly shaded region) M, = (x|U{”,VpsU,") |d) that includes the
detector preparation, evolution, coupling, and measurement together,
producing a net effect only on the evolving system state. If the identity
A= > o M X' M, can be satisfied for some calibrated signal values
a, for the detector, then the system observable A can be faithfully
estimated by the detector results x in an unbiased way. For strong
measurements by the detector, the effective system operations become
eigenstate projections M, — |a){a| with an eigenvalued signal o, —
a, while for weak measurements the operations approximate the
identity M, ~ 1 with a noisy signal || > |a|, leaving the state
essentially unperturbed. Averaging this noisy signal ¢, for such weak
measurements conditioned on a particular f approximates the weak
value Re(f|Ur_ AU, i)/ (f1Urli).
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may have propagated from previous states |i) and |d) that
were prepared at the possibly different earlier times r = 0 and
t = ty, respectively, following the independent Hamiltonian
evolution

UP = exp(—itHp/h), U, =exp(—itHs/h). (9)

After the entangling interaction of Eq. (7), the detector and
system are allowed to again evolve freely for (potentially
different) times 7 — ¢ and T’ — ¢, respectively, after which
they are independently measured projectively in the bases
(x] and (f| to obtain a pair of detector-system results (x, f).
Back-propagating these measured states from 7’ and T to the
time immediately following the impulsive coupling ¢ + §t ~ ¢
produces the effective final states

(f'l = (f107_. (10)

The joint probability distribution for the results (x, f) can then
be written in the compact (scattering) form

Per = WX f 1 Vpsld i) (11)

Importantly, changing the durations of time 7 and T’
before measuring the system and detector does not affect
the general form of the joint distribution in Eq. (11); only
the back-propagated states |x’) and | /') will change from the
free evolution when these durations are varied. For a concrete
example of this effect, in the optical case of [27-29] the free
evolution of the transverse momentum (detector) produces
diffraction effects after the birefringent crystal, which alters the
effective back-propagated state implied by a later transverse
position measurement.

For a sufficiently small coupling strength g, the interaction
only weakly perturbs the initial system states, and we can
expand the joint interaction Vjg perturbatively. To good
approximation, we find that the relative change of the joint
probability in Eq. (11) due to the weak interaction has the form

px,f
I/, f/1d i) |
which involves only the first-order (complex) detector and
system weak values

(D
(| = (x|07,,

~ 1 +2gImF, A, + g*FulP A’ (12)

(x IFId)7 A, = (f IA.Il ) (13)
(x'ld") (f11i)
Note that continuing this expansion will produce an infinite
series characterized entirely by higher-order weak values
involving all powers of Aand F [2]; however, this truncation
that involves only the first-order weak values is remarkably
accurate for sufficiently small coupling strengths that satisfy
8lFul|Aw] < 1[96].

This joint distribution also determines the relative change of
the marginalized distributions for the detector, p, = > 7 DPx.f>

and system, py = D p, , statistics alone

w =

P
oy = T2 (A E g ANIRP, (14
—|<f{7|{’>|2 ~ 1+ 2g(F)ImA, + 2(F)[A, P (15)

Critically, note that the reduced detector statistics involve the
expectation value of the system operator (A) = (i’'|Ali’), as
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well as its second moment (A2) = (i'|A2|i’). This dependence
means that by examining only the statistics of the detector, we
can indirectly estimate the system observable A. Similarly, the
system statistics involve the expectation value of the detector
operator (F) = (d'|F|d’), as well as its second moment
(F2) = (d'|F?|d"), so can be used to indirectly estimate the
detector observable F in a symmetric way.

To perform such an estimation using only the detector
statistics in the linear response regime (where we can neglect
the terms that are second order in g), an experimenter weights
each of the outcomes x of the detector by some scaling
value «,, which constructs an effective detector readout
observable [3,13]

R="7 anlx)ixl, (16)

and produces the detector average (keeping all system results)

> ope & (R) + 2g(A)Im(RF), a7

in terms of the detector quantities (R) = (d'|R|d’) and (RF) =
(d'|RF|d'y. Hence, by calibrating a known initial detector state
|d’) and choosing the observables £ and R strategically, one
can extract the expectation value (A) in an unbiased way using
only the detector statistics. Note that typically the detector state
|d’) is chosen such that the relevant observables have zero mean
prior to the interaction, (F) = (R) = 0.

Now suppose our experimental setup additionally filters the
system outcomes so that only f may occur. (Alternatively, we
can select only those particular events in the postprocessing
of data that includes more outcomes.) The statistics of
the laboratory detector x measurements that are properly
conditioned on a particular system f outcome will then have
the usual form from Bayes’ theorem

px,f
Paiy = . (18)
prxvf

The approximate relative change of this conditional distribu-
tion is thus

Pxif 1+2gImeAw—|—g2|Fw|2|Aw|2
[(x/ld) > 14 2g(F)ImA, + g2(F?)|A, >

19)

When the terms of order g2 can be neglected, and when (F) =
0, we thus have the linear response result that can be compared
to the unfiltered estimation in Eq. (17)

D epaiy & (R) +2gImA, (RF), 0

= (R) + 2g[ReA,Im(RF) + ImA ,Re(RF)].

Importantly, the weak value factor ReA,, that scales Im(R F’)
corresponds directly to the expectation value (A) in Eq. (17).
That is, the filtering procedure partitions the total average (A)
into subensembles that have conditioned averages of ReA,,
which precisely matches what we expect from the best estimate
of A in Eq. (1). The final term involving ImA,, averages to zero
in the total ensemble, and corresponds to the intrinsic symmet-
ric backaction of the detector on the system due to the joint
interaction of Eq. (7); it does not correspond to the estimation
of A [61,97,98], and can be removed from the detector signal
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in practice while preserving the estimation of (A) by choosing
the detector observables such that Re(RF) =0.

B. Observable estimation

The preceding discussion of the von Neumann coupling
is traditional in the weak value literature [1-3] and is often
sufficient for describing experimental implementations that
measure weak values (e.g., [27-29]). However, this perturba-
tive derivation makes the association between the estimations
of the total observable average (A) and the real part of the weak
value Re A, somewhat inferential, prompting skepticism about
the appropriateness of the connection. Since ReA,, has such
counterintuitive properties, having a more direct link between
the estimation of A and ReA, as a conditioned average
value more generally is desirable. Thankfully, we can indeed
demonstrate that this is the proper association by rephrasing
the conditional estimation procedure using the formalism of
generalized measurements [13,14,76].

To do this, we rewrite the joint probability of Eq. (11)
entirely in the system space

Pe s = [ IML i), (1)

by defining a measurement (Kraus) operator that encodes
the entire coupling and measurement procedure into a single
system operator [75,99]

M, = (x'|Vpsld'). (22)

Notice that this measurement operator has the form of a
partial matrix element, but only contracts out the detector
part of the joint unitary Vpg to leave a purely system
operator, which directly corresponds to how the complete
measurement procedure affects the system. Intuitively, for
strong measurements of A, the measurement operators M, —
|a){a| will become projectors onto the eigenstates of A, while
for weak measurements (in the sense of [1]) the measurement
operators M, ~ 1 will approximate the identity operator for
all x, which leaves the initial state nearly unperturbed.

It follows that the marginalized distribution of only the
detector results can be written

Px :pr.f =
f

which has the form of the system expectation of a probability
operator

i\ VN ), (23)

P.o=MIM, (24)

for the detector result x. These probability operators are posi-
tive, and form a resolution of the identity in the system space

Y Py =(d'|V) [qum] Vpsldy =1,  (25)
making them a probability operator-valued measure (POM, or
POVM). Such a POM is the operator version of a properly nor-
malized probability distribution. Indeed, when P, commutes
with A, its diagonal elements will be precisely the classical
conditional probabilities p,|, describing the likelihoods of
each detector result x given a definite preparation of a [14].
For each a, these probabilities then independently satisfy
>, Pxla = 1 according to Eq. (25).
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Generally speaking, any purity-preserving generalized
measurement can be expressed as such a measurement operator
Mx and associated POM ﬁx = MIMX [75,99], with the von
Neumann interaction being a special case for implementing
such a measurement with a concrete Hamiltonian. For
example, the polarization-dependent reflection measurement
in [17] did not use a von Neumann Hamiltonian description
of the interaction of the entangled photon pair with the glass
microscope coverslip in the experimental analysis, but rather
characterized the relevant POM operators P, directly with
a series of separate calibration measurements by measuring
the conditional probabilities py, for known preparations
of the eigenstates |a). Up to additional phases that were
also calibrated in separate measurements, the diagonal
elements of M, then had the form «/Px1a- The benefit of this
direct approach is that the effect of the actual measurement
procedure may be experimentally measured, without requiring
a more detailed model of the extended detector space.

Now suppose that we can use the measured probabilities
p. to estimate the expectation value of A in an unbiased way.
To do this, we must weight the outcomes x of the detector
with appropriately scaled values «, (e.g., by rescaling a low-
visibility signal in the usual way) [13]

Y ape = (i [Zaxﬁx} li'). (26)

Evidently, to produce the expectation value (A) = (i'| Ali’) for
any initial state |i’), we must be able to choose appropriate val-
ues «, that will calibrate the detector to probe the generalized
spectral expansion [13,14]

A= Zax p.. (27)

If it can be arranged, this operator identity will guarantee that
the values o, and measurement operators A;Ix (and thus the
probability operators P,) will directly estimate A in an unbi-
ased way. As a concrete example, in [ 1] the detector was chosen
such that F = p was the momentum operator, R = £ was
the position operator, and (x|d’) = 2w o?)~"/* exp(—x?/40?)
was a zero-mean Gaussian distribution, such that (R) = (F) =
0, F, =ix/20?, and thus (RF) =i/2 in Eq. (17); setting
the simple scaled values of «, = x/g then directly yields
an unbiased estimation of (A) for all g. Note, however, that
this common choice for Gaussian measurements is generally
not a unique choice for producing an unbiased estimation,
since the dimension of the detector often exceeds that of the
system [13,14].

Once we fix the weights «, to achieve the estimation
identity of Eq. (27), we also fix the partial average for each
postselection f according to Eq. (21)

D apey = ('10:i"), (28)

which we write compactly in terms of the operator

O, =) a.MI|f)(f'IM,,
;a A (29)

1 . R -
E(Alf’><f/| FIIA) + D e LI £ (),
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that we write as a symmetric (Jordan) product [100] between
the operator A and the postselection | f){ f'|, modified by a
sum of weighted Lindblad (dissipation) operations [76]

LIMING) = Sqmt, s, + ML), (30)

familiar from open-system dynamics [74,75]. These Lindblad
terms quantify the perturbation introduced by the measure-
ment. Note that for weak measurements (i.e., Mx ~ i) these
terms approximately vanish to leave only the symmetric
product, signifying that both the initial system state and
postselection are essentially unaffected by the measurement
of M, [14,76].
Expanding the partial average in Eq. (28) produces

> wpe s =Re(f|AIN 1) +Elal. G

where we have introduced the Lindblad error terms

=Y LIS DI (32)

that are produced entirely by the perturbation from the
measurement. Conditioning this partial average on obtaining
a particular f then yields

Y, pes  Re(f/|Ali")
Zx Px.f f/|l

When the error terms £ are small enough to be ne-
glected [14,101] (meaning that the initial system state is
negligibly perturbed), the real part of the weak value in Eq. (1)
is unambiguously recovered as the measured conditioned
estimate for A, verifying our derivation of this real part as
a best estimate. As expected, the imaginary part is unrelated to
the estimation of A, so does not contribute to Eq. (33), which
justifies our interpretation of the terms in the von Neumann
linear response of Eq. (20). Deriving Eq. (5) as a measured
estimation is a similar exercise [93].

Importantly, nothing about the derivation of Eq. (33)
changes when the time ¢, the initial system state |i}, the system
postselection (f]|, or even the system Hamiltonian H are
varied, as long as one keeps fixed the measurement procedure
set by the choice of calibration weights o, and corresponding
M, (e.g., the detector states |d’) and (x'|, Hamiltonian
H™) and coupling interaction Vpyg). This robustness of the
derivation implies that the same weak measurement procedure
can approximate the entire functional dependence of the
weak value in Eq. (1), in contrast to the single arbitrary
value produced by the coin disturbance scheme in Ref. [7].
Moreover, the weak value in Eq. (1) no longer depends upon
the specific measurement procedure, just like the expectation
value in Eq. (26), so this approximation will work for any
unbiased weak measurement procedure. The only requirement
for consistently recovering the weak value Eq. (1) as the
limiting value of the conditioned average in Eq. (33) is for
the Lindblad perturbation terms in Eq. (30) to be small
enough to neglect [76,93], meaning that the quantum state
is approximately unperturbed. (For a physical example where
the state disturbance from the coupling may not always be
neglected, see [102].)

({'f") +Ela]

33
) + €0 53)
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FIG. 3. (Color online) Energy-level perturbations. The eigenval-
ues E of a Hamiltonian H are shifted to new eigenvalues E’ when
a Hamiltonian perturbation A is added. These shifts in energy levels
are exactly (real) weak values (E|A|E')/(E|E’), and thus may lie
outside the spectrum of the perturbation A.

C. Dynamical weak values

Thus far we have carefully discussed the most well-known
role of weak values in experiment, namely as complex
parameters that characterize a von Neumann interaction, and
as conditioned estimations of observable averages. However,
these are not the only places that weak values naturally appear.
Here we consider two more common cases that are usually
overlooked: weak values as eigenvalue perturbations, and
weak values as classical dynamical variables in reduced system
dynamics.

The first case is mathematically trivial to show, but has
nontrivial implications. Consider the case of a Hamiltonian H
with energy eigenstates |E) and eigenvalues H|E) = E|E).
Suppose this Hamiltonian becomes perturbed by a new contri-
bution A, producing new eigenstates (H + A)|E') = E'|E").
This latter eigenvalue equation can then be contracted with an
unperturbed eigenstate ( E | and rearranged to find the following
relation between the eigenvalues:

: (EIA|E)
E=F+ ——+—, (34)
(E|E")

which is illustrated in Fig. 3. That is, the (purely real) weak
value of the perturbation A determines the shift in energy for
the eigenstates of the Hamiltonian, and thus may lie outside the
spectrum of A. One can understand this weak value as the best
estimate of the average energy perturbation required to move
from the old eigenstate |E) to the new eigenstate |E’). No
measurement is being performed here, so this shift constitutes
a dynamical effect where the weak value indeed represents the
physical energy shift. This shift can be verified by measuring
the eigenenergies before and after such a perturbation is added
to the system.

The second case of a dynamical weak value is best
illustrated by an explicit example, shown in Fig. 4. Suppose we
couple a qubit dispersively to a single-mode resonator (e.g.,
a superconducting qubit setup like the one used in [18]). The
simplest Hamiltonian for how such a joint system naturally
evolves is

~  ho,
H = Tm + how,a'a + hyé.a'a, (35)
where 6, = |1)(1]| — |0)(0] is the Pauli Z operator between the
qubit energy levels, a is the lowering operator of the resonator
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FIG. 4. (Color online) Superconducting qubit capacitively cou-
pled to a one-sided stripline resonator with energy-decay rate «,
which is pumped through a circulator with a coherent microwave
source &£(t) at a frequency detuned by A from the bare resonator
frequency w,. The resonator frequency is shifted by +x depending
on the qubit state due to the dispersive coupling. As such, each
definite qubit state |0) or |1) approximately correlates to a distinct
resonator state [yp) or |y). The reduced qubit state g,(¢) then
displays coherence oscillations at a frequency w, + 2y Ren,,(t) due
to the ac Stark shift, which depends on the real part of the weak value
ny(t) = (Y latalwo) /(| Wo) of the resonator population. The qubit
coherence similarly displays decay at an average rate I' = 2y Imn,,(¢)
that depends on the imaginary part of n,,(¢), indicating measurement
dephasing from ensemble averaging the fluctuations of the resonator
population. Importantly, the complex weak value n,,(¢) is physically
the relevant mean-field classical dynamical variable for the resonator
population that affects the reduced qubit state at every point in time
t, with the real part corresponding to the best classical estimation
of the ensemble-averaged resonator population probed by coherent
qubit superpositions of |0) and |1).

mode satisfying [a,af1=1, w, and o, are the oscillation
frequencies of the qubit and resonator, and + x is the dispersive
frequency shift of the resonator that depends on the qubit
state. Note that the interaction term between the qubit and the
resonator has the general von Neumann form of Eq. (6), but it
is no longer impulsive.

Assuming a pure state for the joint qubit-resonator system,
we can make the following ansatz for the form of the joint
state

|W) = co(r) [0)[o(1)) + c1(r) [1) Y1 (1)), (36)

where c¢g | (¢) are complex amplitudes, and | ;(¢)) are normal-
ized resonator states that are correlated to each definite qubit
state. It follows that the reduced qubit density matrix o, =
Tr, W) (W] after tracing out the resonator has the following
diagonal populations

po®) = lco®*,  pi(®) = 1)), (37)

as well as an off-diagonal coherence

po1(t) = ci(Oco() (Y1 Po(D)), (38)

that depends explicitly on the overlap between the two distinct
and dynamically evolving resonator states that are correlated
to definite qubit populations.

The simple Hamiltonian considered in Eq. (35) is already
diagonal in the energy basis of the qubit, so the populations
in Eq. (37) do not change in time. However, the coherence in
Eq. (38) will display phase oscillations due to both the natural
qubit energy splitting and the added influence of the dispersive
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resonator coupling. After extracting the components of the
joint Schrédinger equation i /id, | W) = H|W) by differentiating
Eq. (36), and a bit of algebra, it is straightforward to
derive the evolution equation for the coherence directly from
differentiating Eq. (38)

3 por1(t) = ifwy + 2xny ()] o1 (1). (39)

Notably, the (complex) weak value of the resonator population
naturally appears
~ 1— A
ny(t) = W@lataivo®) = a(t) +in, (1). (40)
(U @Oo(0)

This weak value can be understood as a classical dynamical
variable that completely determines the ensemble-averaged
dynamical influence of the resonator on the reduced qubit
state at each point in time 7, even in the absence of any explicit
preselection or postselection measurements.

The real part 7i(¢) of this weak value is the best estimate of
the population of the resonator mode if the qubit transitions
between its ground and excited states at time ¢. According to
Eq. (39), this weak value produces a shift 2 x 7i(¢) of the natural
qubit frequency, commonly known as the ac Stark shift [103—
105]. Notably, this shift does not involve either of the average
mode populations ng = (Yolatalyo) orny = (y|ataly,) that
one might naively expect, since the qubit coherence does not
pertain to a definite population. Any imaginary part i, (t) of
the weak value does not contribute to the ac Stark shift in
Eq. (39), but instead produces a decay of the qubit coherence
that indicates the resonator coupling is dephasing the qubit at
arate 27, (¢).

For an explicit example of this reduced evolution, to a good
approximation [106—108] a one-sided resonator with energy-
decay rate k (as shown in Fig. 4) that is pumped with a coherent
state ¢ detuned by A from the bare resonator frequency will
reach a steady state that approximates the pure-state ansatz
of Eq. (36), with |y) and |¢|) approximating coherent states
with complex classical amplitudes

_ . _ 2¢e 1 41

Yo = (Yola| o) = ?m7 41
. 2¢e 1

Y = (Yrlalyn) = 42)

Kk 1+i2(A+ x)/x
The weak value of the resonator population in Eq. (40)

correspondingly has the simple steady-state form (assuming
a wide-bandwidth resonator for brevity, with x, A < «)

. ~482 4y
me=Vivo ™ — [14i=" 43)

which produces the ac Stark shift 2y7 of the qubit fre-
quency with 71 = 4¢2/k?, as well as the dephasing rate I' =
2xi, = 8x2ii/k. These expressions for the ac Stark shift
and ensemble-average dephasing rate agree with the known
results for dispersive qubit measurements in circuit quantum
electrodynamics (cQED) [106-109].

We emphasize that the complex weak value of the resonator
population in Eq. (40) is physically the relevant classical
dynamical variable that controls the behavior of the ensemble-
averaged reduced qubit evolution in Eq. (39). Indeed, the
ac Stark shift of the qubit frequency is the primary method
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used in cQED for extracting the average population 7 in the
resonator at steady state (e.g., [110]), but we see here that in
actuality such a dynamical method probes the weak value of
that population, and not the population associated with any
particular qubit state, or even the total average population
iy = (W|a'a|W). The weak value arises from the interference
between the two fields |) and |y) in the resonator that are
correlated with the two definite qubit states, on average.

At each time ¢ the real part of n,, indicates the best estimate
of the average resonator excitation number seen by a qubit
that is not in a definite energy eigenstate, while its imaginary
part indicates the best estimate of the backaction on the qubit
dynamics caused by the fluctuations of the resonator popula-
tion around that average value. These latter fluctuations result
in ensemble-average dephasing of the reduced qubit state,
reinforcing the observation made for weak measurements that
a weak value can only describes the average (i.e., classical
mean-field) state of affairs for an ensemble of realizations [32].
Indeed, when the time-dependent leakage from the resonator
is accounted for, the qubit will not dephase in this manner, but
will instead follow a pure quantum trajectory [67,107,109,111]
that depends on the leakage record. As such, we must
necessarily interpret the weak value n, here as implicitly
averaging over many such realizations in practice to produce a
classical dynamical variable associated with the classical mean
field in the resonator.

IV. DISTURBANCE, QUASIPROBABILITIES, AND
HAMILTON-JACOBI

Given the consistent role of the real part of a weak value as
a best conditioned observable estimate, we can now observe
an intriguing logical tension inherent to the weak value. On
one hand, any classical conditioned average must include
disturbance to obtain anomalous values [14,15,17,23,24]: the
larger the disturbance, the more strange the average can
become. On the other hand, the strangeness of the conditioned
average in Eq. (33) is greatest when the quantum state is least
disturbed by an intermediate measurement [93], and even
persists when there is no added disturbance to the natural
dynamical evolution in the example of Eq. (39).

These two statements imply that any classical (hidden-
variable) explanation of a strange weak value as a disturbance
effect must satisfy one of two properties: either (a) the
quantum state must be a subjective (epistemic) quantity
that is completely insensitive to whatever physical (ontic)
disturbance is occurring, or (b) the relevant disturbance occurs
entirely during the postselection, and not the intermediate
measurement [14].

Classical fields that produce strange weak values in weak
measurement experiments satisfy this second property, where
the disturbance at the postselection filter causes interference
between previously independent field components [27,30-32].
However, quantum systems can display similar interference
without wavelike intensities [16,18,95], and permit additional
entanglement effects [17] such as the dynamical evolution
involving weak values emphasized in the previous section.
Especially for such a dynamical role of the weak value, it does
not seem possible to ascribe strange weak values to classical
disturbance mechanisms without also demanding that the
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quantum state is itself a fundamentally subjective collection
of some more physical microstates; such a demand, while
not impossible, must contend with the Pusey-Barrett-Rudolph
theorem [112] and the other no-go theorems (reviewed
in [113]) for states of such epistemic character.

A. Terletsky-Margenau-Hill and Kirkwood-Dirac

To quantify this logical tension, we can express weak values
in a more established and familiar way by rewriting Eq. (1)
using the spectral expansion A = )" ala){al to find A,,(t) =
> 4 aDaji, f» Where
Re(f"la)(ali") ("l f')

I(f 11

This is a conditional quasiprobability distribution that weights
the eigenvalues of A in A,, and satisfies the normalization
Y o Paii,f = 1. As a result, if a strange weak value |A,| >
||A|| is estimated, then at least one quasiprobability must be
negative: py;, s < 0.

Since the conditioning denominator of Eq. (44) is positive
definite, we infer that the joint quasiprobability

Pa.rii = Re(f'|a){ali")(i'| ') (45)

in the numerator of Eq. (44) [also appearing directly in
the experimental partial average of Eq. (31)] must be nega-
tive. This joint quasiprobability distribution is precisely the
Terletsky-Margenau-Hill distribution [39-42] that has been
used since the late 1930s.

Interestingly, the Terletsky-Margenau-Hill distribution is
the real part of the complex quasiprobability distribution in-
troduced even earlier by Kirkwood [29,33-38] as an alternative
to the Wigner distribution [43]. This Kirkwood distribution is
also known as the standard-ordering distribution for quantum
phase space [114]. In fact, Dirac later considered this distri-
bution specifically to discuss the classical-to-quantum tran-
sition [34], observing that the negativity arises directly from
the usual operator noncommutativity of quantum mechanics.
Notably, the fully complex weak value that appears in reduced
state dynamics is nothing more than a conditioned version of
this complex Kirkwood-Dirac quasiprobability distribution.

An important feature of the Kirkwood-Dirac distribution
that has recently come to light [29,36] is that any quantum state
can be written in an operator basis such that this distribution
forms its components. That is, if we define a suitable operator
basis

Paji.f = (44)

la){f]
a,f = f s (46)
(fla)
then we can write any quantum state using the expansion
p =Y (flayalplf)Tay- (47)
a.f

As such, the quasiprobabilities p(f,a) = (fla){a|p|f) of
the complex Kirkwood-Dirac distribution are a complete
quantum state representation for an arbitrary density matrix
that is analogous to a complex wave function ¥ (x) = (x|¥)
for a pure state. Unlike the usual wave function, however,
the Kirkwood-Dirac distribution is directly compatible with
Bayes’ theorem [as used in Eq. (44)], and thus behaves
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like a true probability distribution. This notable feature has
enabled alternative methods of quantum state tomography
by directly measuring complex weak values using von
Neumann interactions [29,36,62,115-118], and also permits
fully Bayesian quasiprobabilistic reformulations of coherent
quantum dynamics [37,38].

B. Wigner distribution and negativity

Importantly, the negativity in such a quasiprobability
representation of a quantum state is closely associated to
traditional measures of nonclassicality [47,48]. The usual
examples of this criterion for nonclassicality are the negativity
of the Wigner distribution [43], or the Glauber-Sudarshan
P distribution [45,46]; however, the Terletsky-Margenau-Hill
distribution in Eq. (45) has the same feature [42].

To emphasize this point, we can in fact relate weak values
directly to the Wigner distribution when we are considering
infinite-dimensional systems. To see this, consider the Wigner
distribution for an initially pure state |i) [43]

. *© Vi Y\ ipy/h dy
Wilx,p) = f_oobc Sl ilx + S)e o (48)
where x and p represent the usual classical position and
momentum variables. Now suppose we compute the partial
average of the momentum p for a fixed x using this joint
quasiprobability distribution

o0
/ pWi(x,p)dp

oo

* . o oondyd
- //_Oo(x—%|l)(l|x+%)(—lhaye”y/h)%,

o0 o0
. Vi y ipy/h AP
= o, | (x — = b ry/h 28 gy,
/,oo’ ’[<x 2|’><'|x+2>]/, ™

_ /-oo (—ilid, (x — %Ii)z)(ilx + 4+ o ¢ .

= Re(—ihd,(x]i)){i|x),

= Re(x|pli){i|x),

= / pRelx|p)(pli){ilx)dp. (49)

In other words, after performing integration by parts the partial
average of the Wigner function yields precisely the same result
as averaging p over the Terletsky-Margenau-Hill distribution
of Eq. (45). It follows that conditioning this partial average
directly produces a momentum weak value as the proper local
average of momentum at the position x

S22 pWiCx, p)dp _ o xlpli)
52, Wix, p)dp (x]i)

As with Eq. (44), the denominator is a positive-definite
probability, so only the partial average of Eq. (49) in the
numerator of Eq. (50) can produce nonclassical behavior.
The inescapable conclusion is that weak values are inti-
mately related to quasiprobability distributions for the quan-
tum formalism in a fundamental and unavoidable way [119].
Moreover, these conditioned averages consistently confirm the

. (50)
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best estimate that we expected from the derivation of Eq. (1).
Similar relationships can be established for the other quantum
phase-space Moyal distributions [44], of which the Wigner
function and the Glauber-Sudarshan P distribution [45,46]
are special cases. (See [120] for an example that emphasizes
this point using nonsymmetrized correlation functions.)

We therefore have the following observation: if strange
conditioned averages approximate the functional dependence
of the weak value in Eq. (1), then classical hidden variable
models will be unable to satisfactorily explain that dependence.
If one could, then it would also be able to reproduce other
nonclassical statistical features of the quantum theory that arise
from the negativity of these quasiprobability distributions (see
also [23,51]). Such negativity, in turn, arises from intrinsic
quantum interference that is not present in classical systems
of particles.

C. Hamilton-Jacobi formalism

As a last, albeit poignant, illustration of the pervasive
theoretical role of weak values in the quantum mechanical
formalism, let us reexamine the Schrodinger equation for a
nonrelativistic particle

2m

ﬁZ
iho |y) = [— + V()?):| 1¥). (51

We can expand this equation into a wave-function form that
is local in the coordinate x by contracting it with (x| and
rearranging

A2
3Gh In(x|y)) = LGV L2 V(x). (52)

2m  (x[yr)
This local form automatically involves the weak values of the
kinetic and potential energies.
Noting the familiar structure of this equation, we can then
define a complex version of Hamilton’s principle function (i.e.,
the classical action) as

S(x,t) = —ih In{x[yr), (53)
with real and imaginary parts
ReS(x,t) = hd(x,1), (54)
h
ImS(x,t) = —3 In p(x,1), (55)

that naturally isolate the phase (i.e., eikonal) ® and proba-
bility density o components of the wave function (x|{) =
Jp(x,t) expli D(x,1)].

From this complex action, we can define the classically
conjugate momentum field p(x,t) that corresponds to the local
coordinate x in the usual way

(x|ply)
(xly)

which naturally produces a complex momentum weak value

as the appropriate classical dynamical variable for the local

momentum field. The real part of this weak value is the
Bohmian momentum [28,121-123]

Rep(x,t) = hd, d(x,1), (57)

pGx,t) = 8, S(x,t) = —ihdy, In(x|¥) = (56)
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while the imaginary part is the osmotic momentum [124,125]

Imp(x,t) = —Zax In p(x,1), (58)

that indicates the logarithmic change of the probability
distribution p(x,t) = [{(x|¥)|> as x is varied [61]. These
local momentum fields jointly act as the average fluidlike
momentum that corresponds to a fluctuating classical mean
field for the quantum particle [126,127].

Using this complex action, we can thus identically rewrite
Schrodinger’s Eq. (51) as a straightforward Hamilton-Jacobi
equation for the classical mean-field x and p(x,r) dynamical
variables [128]

0=10,8(x,t) + H[x,p(x,1),t], (59
where the classical Hamiltonian function has the form
1 (x| p?|y)
H[x’p(xat)J]:_—“l‘V(x)y (60)
2m (x|¥r)

involving local position weak values of the kinetic and
potential energies.

Splitting the complex Hamilton-Jacobi equation of Eq. (59)
into its independent real and imaginary parts produces

[Rep(x,0)]*

0= ho,®(x,1) +
2m

+ V) +0k), (6D

0= 3,p(x,t) + d <p(x,t)$> : (62)

Note that Eq. (62) is nothing more than the usual continuity
equation for the probability density p(x,?) in terms of the local
Bohmian velocity field v(x,#) = p(x,t)/m, while Eq. (61) is
the Bohmian Hamilton-Jacobi equation that contains the local
kinetic energy, potential energy, and what is usually known as
the quantum potential energy

0.1 = YulRep(x.O] _ P aNp(D)
YOS T T T e

which is proportional to the weak momentum variance

h— 2
Var[Rep(x,t)] = Re (xI[p — Rep(x,1)] |1ﬂ)’

{(xly)
) A 2
_ eI [RG(XIPIW] 64
(x[yr) (x[yr)
The classical particle trajectory limit corresponds to the
eikonal approximation, or ray approximation (familiar from
geometrical optics), where we can neglect rapid spatial

changes in the probability density p(x,t) that arise from the
wavelike quantum interference. This approximation allows us

(63)
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to neglect the spatial derivatives of p(x,?) that appear in the
weak momentum variance of Eq. (64) [or quantum potential
of Eq. (63)], as well as in the osmotic momentum of Eq. (58),
implying that the local Bohmian momentum field in Eq. (57)
has precise and nonfluctuating values at each definite position.
In this limit, Eq. (59) becomes purely real and identified
with the usual classical Hamilton-Jacobi equation, while the
momentum weak value of Eq. (56) reduces to the purely real
Bohmian momentum and becomes identified with the usual
classical momentum. Similarly, Eq. (62) becomes trivially
identified with the usual continuity equation for families of
classical trajectories in phase space.

Evidently, at every stage of the usual quantum-classical
correspondence through the Hamilton-Jacobi formalism, weak
values directly produce the proper classical mean-field dy-
namical variables, so are the appropriate conditional estimates
akin to the expectation values found in the Ehrenfest theorem.
This fundamental role of the weak value corroborates the
various interpretations we have encountered in this paper, and
makes it clear that weak values are an inextricable feature of
the quantum formalism that directly pertains to the classical
mean-field limit [32].

V. CONCLUSION

Quantum weak values have endured a controversial history,
despite the fact that they are essential to the quantum formal-
ism, with their seeming strangeness being a direct consequence
of quantum interference. As estimates of observable averages
within a bracketed time window, or as classical dynamical
variables for the mean-field evolution, their potential for
having anomalous values reflects the nonclassicality of the
quantum probabilistic structure, and is equivalent to the need
for negative quasiprobabilities. This negativity fundamentally
arises as an interference effect, both for the classical mean
fields and for manifestly quantum systems that permit discrete
detection events and entanglement. No classical model can
faithfully reproduce the functional dependence of weak value
anomalies without also simulating the corresponding features
of quantum mechanics.
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