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Continuous quantum measurement of a double dot
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We consider the continuous measurement of a double quantum dot by a weakly coupled detecedr
point contact nearby While the conventional approach describes the gradual system decoherence due to the
measurement, we study the situation when the detector output is explicitly recorded that leads to the opposite
effect: gradual purification of the double-dot density matrix. The nonlinear Langevin equation is derived for the
random evolution of the density matrix which is reflected and caused by the stochastic detector output. Gradual
collapse, gradual purification, and the quantum Zeno effect are naturally described by the equation. We also
discuss the possible experiments to confirm the thd&@9163-182609)01032-2

The problem of quantum measurements has a long hisvolution of pure wave function to be followed. Moreover, a
tory; however, it still attracts considerable attention and evermixed density matrix can be gradually purified in the course
causes some controversy, mainly concerning the wavesf a continuous measurement.
function “collapse” (see, e.g., Refs. 1 and.2Among vari- Similar to Ref. 19 we describe the double-dot system and
ous modern approaches to this problem let us mention thé1e measuring point contact by the Hamiltoniah="Hpp
idea of replacing the collapse postulate by the gradual decat Hpc+Hint, Where Hpp=(e/2)(cic;—clcy) +H(clc,
herence of the density matrix due to the interaction with the+c£c1) is the Hamiltonian of the double-dotHpc
detectof and the approach of a stochastic evolution of the== Eja/a +3,E,ala,+3, ,T(ala +aa,) describes the
wave function(see, e.g., Refs. 4—11The latter approach tunneling through the point contact (@ndH are real, and
(which is used in the present papean describe the selec- #;, ==, ATclc,(ala +a/a,), i.e., the tunneling matrix el-
tive measurements for which the system evolution is condiement for the point contact i or T+AT, depending on
tioned on the particular measurement regother keywords  \which dot is occupied. So, the average current
of the approach are quantum trajectories, quantum state dif= 27 T2p,p,€2VIt flows through the detector when the elec-
fusion, quantum jumps, efc.The renewed interest in the tron is in the first dot ¥ is the sufficiently large voltage

measurement problem is justified by the development of eXacross the tunnel contach, and p, are the densities of
perimental technique, which allows more and more experistates, while the current is l,=1,+Al=27(T

mental studies of quantum measurement in optics and mesq-AT)2p, 5 e2V/# when the second dot is occupied.

H -17
scopic structuret:*’ The problem also has a close  \we make an important assumption of weak coupling be-
connection to the rapidly growing fields of quantum cryptog-yween the double-dot and the detectarbetter term would

raphy and quantum computirid. . _ be the “weakly responding” detectpr
In the recent experimettwith the “which-path” inter-
ferometer the suppression of Aharonov-Bohm interference [Al|<lo=(11+15,)/2, (N)

due to the detection of which path an electron chooses, was o many electronsN=(1,/A)?>1, should pass

observed. The weakly coupled quantum point contact wa . S .
used as a detector. Tyhe intperfergnce sup;?ression in this e%_rough the point contact before one can distinguish which

ot is occupied. This assumption allows the classical descrip-
Q[lon of the detector, namely, to neglect the coherence be-
tween the quantum states with different number of electrons
ssed through the detecfdr.

periment can be quantitatively described by the decoheren
due to the measurement procé$s?
We will consider a somewhat different setup: two quan-

tum dots occupied by one electron and a weakly couple(‘j)a N >
detector(point contact nearbymeasuring the position of the '€ decoherence rat#'q=(yl,/e—yl,/€)"/2 of the

electron. The decoherence of the double-dot density matri5iiOUb|e'do.t density matrbe(t) due to the measurement by
due to continuous measurement in this setup has been aniynnel point contact ha§ bee_n calculated in Ref. 19. In the
lyzed in Refs. 19 and 22. However, the decoherence apeaKly responding limit(1) it can be replaced byl'y
proach cannot describe the detector output which is a sepa- (A1)7/8€lo or by the expression

rate problem analyzed in the present paper. We answer two 4= (A4S )

. ! . d (I

interrelated questions: how the detector current behaves in

time and what is the proper double-dot density matrix for awhereS,=2el, is the usual Schottky formula for the detec-
particular detector output. We show that the models of pointor shot noise spectral densiy. Equation(2) has also been
contact considered in Refs. 19—21 describe an ideal detectarbtained in Refs. 20—22 for the quantum point contact as a
In this case the density matrix decoherence is just a conseletector, the difference in that case $=2ely(1—-7)
quence of averaging over all possible measurement resultahereT is the transparency of the chantfelwhile above we
For any particular detector output our equations allow thémplicitly assumed7<1).2>?® Notice that the decoherence
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rate (2) was derived in Refs. 19—-22 without any account ofdistribution of different outcomes given by E() and the
the information provided by the detector, implicitly assum-upper bound6) for each realization,
ing that the measurement result is just ignored. Now let us
study how this additional information affects the double-dot
dens)?ty matrix. |<012(T)>r|sf Vo(m) o) P((1), 1)d(l)

We start with the completely classical case in which there )
is no tunneling between dot$i(=0) and the initial density =V011(0)020) exd —(AD)*7/4S]  (7)
matrix of the system does not have nondiagonal eIe_ment§here<>r means averaging over realizationhis upper
01(0)=01,(t)=0. We can assume that the electron is ac+qynqd exactly coincid@&with the result given by the deco-
tually located in one of the dots, but it is not known in which grence approad?). This fact forces us to accept the some-
one, and that is why we use probabilities,,(0) and \yhat surprising statement that E) gives not only the
02(0)=1=01,(0). The detector output is the fluctuating ypper hound, but the true value of the nondiagonal matrix
currentl (t). The fluctuations grow wher(t) is examined at - element, i.e., the pure statemains pure(no decoherence
smaller time scales, so some averaging in tifflew-pass  occurg during each particular measuremegictually, this
filtering”) is necessary, at least in order to neglect the probis the usual statement for selective measurentents,e.,
lem of individual electrons passing through the point contactynen the detector output is taken into account.

Let us always work at sufficiently low frequenciels; 7 Simultaneously, we proved that the point contact detector
<§ /€7, for which the possible frequency dependenc&of considered theoretically in Refs. 19—2the model is con-
can be neglected. firmed experimentalf?) causes the slowest possible deco-

The probabilityP to have a particular value for the current herence of the measured system, and hence represents an
averaged over timer, (I)=7"1/gl(t)dt, is given by the ideal detector in this sense. In contrast, the result of Ref. 29
distribution shows that a single-electron transistdriased by relatively

large voltage is not an ideal detectithe nonideal detector
P((1),7)=011(0)P1((1),7) +0220)P2({1),7), (3  pas also been considered in Ref%.izgmotice, however, that
_ in the range of elastic cotunnelingthe operation of the

Pi({1),1)=(27D) *exd —(()=1)%2D],  (4) single-electron transistor is almost equivaférto the case
where D =S,/27. Notice that these equations obviously do considered above, and, hence, it becomes an ideal detector.
not Change if we divide the time intervalinto pieces and If the initial state of the double dot is not purely COherent,
integrate over all possible average currents for each fitece |012(0)|<\011(0)0(0), it can betreated as the statistical
consider only positive currents, the typical timescale combination of purely coherent and purely incoherent states
should be sufficiently longS, /7 < 12, that is always satisfied Wwith the sameo;,(0) ando,,(0), then
within the assumed low frequency range :

After the measurement during time we acquire addi- _ er
tional knowledge about the system and should change the 7127) = 712(0) exp( h )
probabilitieso; according to the standard Bayes fornftla
for a posteriori probability (taking into account particular
detector resul{l)):

o12(7) ol 7) | M2

011(0) 25 0)
Equations(5) and (8) are the central result of the present

paper; they give the density matrix of the measured system
(in the caséH =0) with account of the measurement resdilt.

(€S

o11(7)=012(0) exd — ((1Y—11)%2D1{o14(0)exd — ({1) These equations can be also_ used to gimulate the dett_actor
output I (t) and the corresponding evolution of the density
—11)?/2D ]+ 02/ 0)exd — ((I)—1,)?/2D ]} 1, matrix. For example, in the Monte Carlo method we should
first choose the timestep, satisfying inequalitie®?/S,<r
T 7)=1—014(7). (5) <S5 /(Al)? and draw a random number f@r) according to

Notice that we have considered so far the purely classicdf® distribution(3). Then we update(t) ando(t) using

measurement and did not use any “collapse” postulate. NevtiS value of(l) and repeat the procedure many tinjéwe

ertheless, Eq(5) can be interpreted as a gradual “localiza- distribution for the current averaged over the intenidl

tion” of the electron in one of the dots due to acquired in- = 7 IS New every timestep because of changingt) which

formation. are used in Eq(3)]. The nondiagonal matrix element can be
Now let us assume that the initial state is fully coherentcalculated at any time with E¢8).

|or12(0)| = ’—011(0)022(0),While still H=0. Since the detec- U_smg Egs.(3)—(5), this Monte Carlq procedure can be

tor is sensitive only to the position of an electron, the detec€2Slly reduced to the following nonlinear Langevin-type

tor current will behaveexactlythe same way as in the case €duation(equation forey, is sufficient:

above. So, after the measurement during timee should oAl

assign the same _vglues for (7) as in Eq.(5), but the ques- 011=R, R=—011099—[1(t)—1 ol 9)

tion is not so trivial for the nondiagonal matrix element S

o15(7). Nevertheless, we can write the upper bound
ZAI 02— 0

lo1A )| < No1(7) oo 7). (6) :_011022? 2 11A|+§(t) ' (10

If the actual measurement result is disregarded, then th@here the random procesg(t) has zero average and
upper bound fofo;,| can be calculated using the probability “white” spectral densityS;=S;. The second expression for
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. i8 |H 0'22_0'11
T12= 3 012+ 7= (on~ 022 +m73012— YdO 12,
(12

where y4=0 for an ideal detectofsee below. The alterna-
tive “microscopic” derivation of these equations can be
done for the particular model of Ref. 19 and will be pre-
sented elsewhere.

Notice that in Eqs(9)—(12) the derivative is defined as
a(t)=lim__ o[ o(t+ 7/2)— o(t— 7/2)]/7 (Stratonovich for-
mulation of the stochastic equatidfls The equations would
o 1 é 3 f; I ; ' o be different.if the definition o(t+7)—o(t)]/7 was l_Jsed

t(S/AI2) (Ito formulation). We use the former one because it gives the
correct limit when the noise terré(t) is replaced by a se-

FIG. 1. Thick line: particular Monte Carlo realization of,,  guence of smooth functiofsand also because the equations
evolution in time during the measurement of uncoupled dets, in Stratonovich formalism are physically more transparent
=0. The initial state is symmetrier;4(0)= 05,(0)=1/2, while the  since they do not contain extra terms arising dueRtédt
measurement leads to gradual localization. Initially pure wave func=const [for example, the usual calculus rulég)’ =f'g
tion remains pure at any tinteThe thin line shows the correspond- +fg’ is still valid]. To translate Eqs(9)—(12) into 1to for-
ing detector currentl) averaged over the whole time interval start- malism, one would need to add the teffs
ing fr_omt_=0 while_ the dashed line is the current averaged over the(S|/2)F(d F/do)/2, whereF is the factor before(t). This
running window with duratior§ /(Al)?. would lead to extra terms (o,,— o17) Al/2 in square brack-

ets of Egs.(9)—(10) and extra term—o1,(Al1)?%/4S, in Eq.
R allows the measurement to be simulated while the first oné12). Notice that in lfoformalism the equations become lin-
can be used to calculate the density matrix for gitgn [in ~ ear[except for the terms proportional &t)].
caseH =0 it can more easily be done using E§)]. The simplest way to avoid the possible confusion between

Figure 1 shows a particular result of the Monte Carlotwo formulations of stochastic equations is to use the explicit
simulation for the symmetric initial stater,;,(0)=0,,(0)  calculation procedurefor finite 7) described above. How-
=1/2. The thick line shows the random evolutionmf(t).  ever, the difference should be taken into account when re-
Equation(10) describes the gradual localization in one of thesults of other approaches to the stochastic wavefunction
dots (first dot in case of Fig. )L Let us define the typical evolutiorf ' are compared. For example, this explains the
localization time asr.=2S,/(Al)? (we choose the expo- apparent difference between E¢8)—(12) and the results of
nential factor aioy;=0,,=1/2). Then it is exactly equal to Ref. 9 for a two-level systerfwith e =0 andy4=0) derived
the time 74;s=2S,/(Al)? necessary to distinguish between in a different way. Among various approaches to selective
two stategdefined as the shift of two Gaussia@ from 1,  quantum measurements, our approach is most closely related
by one standard deviatipnand 7,.= 74/2 whererd=1“g1. to the method (_)f restricted pgth integfahiowever, _in some
It is easy to prove that the probability of final localization in Se€nse we consider the classi¢abt quantum path integral.
the first dot is equal tor;;(0), becauser; () averaged over Let Us also mention that the quantum nondemolition
realizations is conservéthe deterministic flow ofr,; due to Measurementsare outside the scope of our study, we con-
the first term in square brackets of H40) is exactly can-  Sider only the measurements at the so-called “standard quan-
celed on average by the dependence of the diffusion coefffm limit.” i
cient onoyq]. _ Figure 2 shows the particular _results of the Monte Carlo

The detector currenit(t) basically follows the evolution —Simulations for the double-dot with=H and the different
of o;;(t) but also contains the noise which depends on thstrength of the interaction with an ideal detector. The elec-

bandwidth. The dashed line in Fig. 1 shows the currenfron is initially located in the first dotg;,(0)=1. The
(1t t—At))zAtflﬁ_ml (t)dt averaged over the “running dashed line shows the evolution @f; without detector. No-

window” with duration At=S, /(Al)2, while the thin solid tice that because # 0, the initial asymmetry of the electron

Oy (<I> -L)/(1,-L)

line is the currentI(t,0)) averaged starting fror=0. location remains in this case for infinite time. When the in-
Now let us consider the general case of the double-dofgraction with detectorcfﬁ(AI)zlslH, is relatively small
with nonzero tunnelingd. If the frequency) of “internal” (top solid ling, the evolution ofc4; is close to that without

oscillations is sufficiently low() = (4H2+ £2)Y2/% <S, /€2, the detector. However, the electron gradually “forgets” the

we can use the same formalism just adding the evolution duldlitial asymmetry and the evolution can be described as the
to finite H (the product 7, is arbitrary). A particular re- slow variation of the two-parametric phase of oscillations
alization can be either simulated by a Monte Carlo procedur&'€call that the wave function remains purtn the decoher-
similar to that outlined abovEnow update ofry(t) using SNce approackaveraging over realizatiopshis corresponds
Eq. (8) should be necessarily done at each timestep, togethé? o11—1/2 att—ce. . .
with the evolution due to finitél] or equivalently described . When.t.he coupling with _the detector increases, the eyolu-
by the coupled Langevin equations tion §|gn|f|cantly chqngeemddle and bottom curves in Fig.
2). First, the transition between dots slows dogguantum
_ _ Zeno effect*>08912192239 gecond, while the frequency of
011= —02=(—2H/A)Im(o19) + R, (11)  transitions decreases with increasing interaction with the de-
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definition of the localization timegioc= 74is=2S,/(Al)?,
while 74<27,.. S0, we consider localization time not as a
real physical quantity but as a quantity related to the observ-
er's information. Similarly, the effective decoherence time is
defined asrj= v, *.

FIG. 2. Random evolution ofr1, (particular Monte Carlo real-
izationg for asymmetric double dot =H, with the electron ini-
tially in the first dot,o11(0)=1, for different strength of coupling
with detector:C=7%(A1)%/SH=0.3, 3, and 30 from top to bottom.

The dashed line represertts: 0 (unmeasured double doincreas- . . .
. ; . S Figure 3 shows a particular realization of random evolu-
ing coupling with detector destroys the quantum oscillati@visile

the wave function remains pure at atjy slows down the transi- tion of o4, and Imo, for a symmetrlc double dot.measured
tions between stategjuantum Zeno effeftand for¢>1 leads to by weakly coupled ¢=0.1) nonideal detector withyq/I'q
uncorrelated jumps between well localized states. =0.1. We start from a maximally mixed state;;,(0)
=0.5, 015(0)=0, and the figure shows the gradual purifica-
tector, the time of a transition also decreases, so eventuallyon of the density matrix in a course of measuremeitice
we can talk about uncorrelated “quantum jumps” betweenthat Rer,,(t)=0 because =0). The nonideality of the de-
states. tector does not allow the complete purification: oscillations
In a regime of small coupling with a detect@i<1, the  of Imo,,(t) do not reach=0.5 limit, as it would be in the
detector output is too noisy to follow the evolution af; case of ideal detector.
and, correspondingly, only slightly affects the oscillations Let us mention that following the “orthodox{Copen-
(the presence of quantum oscillations in the double-dot cahagen point of view, we do not attempt to distinguish be-
be noticed only as a relatively small peak in the spectratween the “real” density matrix and the density matrix
density of the detector currénin contrast, wherC>1 the  which can be known by the observer. For example, the evo-
detector accurately indicates the position of electron and sitution of o;; due to the measurement in case of no tunneling
multaneously destroys the oscillations. between dotsfl=0) can be interpreted both as a real pro-
Equationg(11) and(12) with the termR given by Eq.(9) cess or just as a gradual acquiring of information about the
can be used to obtain the evolution of the density matrix inelectron position. Another example is the case of the non-
an experiment provided the detector outp(if) and initial  ideal detector. We can interpret the termy o, in Eq. (12)
condition o;(0) are known. Notice that even if the initial as real decoherence; however, it is also possible to argue that
state is completely randorg;; 1= 0,,=1/2, 01,=0, the non- it just represents the partial loss of information inside the
diagonal matrix element gradually appears during the meamperfect detector, so that perhaps the pure density matrix
surement, so that sufficiently long observation with an ideatould be restored if some hidden traces left in the detector
detector leads to almost pure wave function for the doublénad been analyzed. Developing this example further, let us
dot. Such a purification of the density matrix described byimagine that two observers have different levels of access to
Egs.(11) and(12) is analogous to the localization Et=0. the detector information, then the density matrix for them
Equationg11) and(12) can be generalized for a nonideal will be different. Actually, this just means that the observer
detector'y> (A1)?/4S, (as in Refs. 22 and 29which gives  with less information will not be able to make as maoy as
less information than possible in principle. Let us model it asaccuratg predictions as the other one. Nevertheless, he still
two ideal detectors “in parallel” with unaccessible output of can treat his density matrix as a real one for all purposes. The
the second detector. Then the information loss can be reprdimiting case when the observer does not have any informa-
sented by the extra decoherence termygoq, in Eq. (12)  tion about the detector outpar this information is ignored
whereyy=T"¢4— (A1)%/4S, . The limiting case of a nonideal in the experimentis equivalent to averaging over all pos-
detector is the detector with no outpuist an environment, sible realizations, i.e., to the standard decoherence approach.
Al=0) or with disregarded output. Then Eq$1) and(12) So, if different realizations of the detector output are ef-
reduce to the standard decoherence approach. fectively averaged in an experimefas in Ref. 15, the de-
For a nonideal detector it is meaningful to keep our oldcoherence approach is suitable. In contrast, if the single re-
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alization of the detector current is record@hd somehow [(t) and Egs.(11) and (12) it is possible to calculate the
used in an experiment, then the proper description is givenevolution of the density matrix. These calculations will show
by Egs.(11) and(12). The simplest experimental idea is just the gradual purificatiorfthe most interesting case {37,
to measurd (t) when( is not too small and check if it is =<1), eventually ending up with almost pure wave function
consistent with these equations. However, it would be muchvith precisely knownphaseof quantum oscillations. The
more interesting to devise an experiment in which the subfinal check of the wave function can be similar to that con-
sequent system evolution depends on the preceding measugddered above. However, it can be even simpler, because
ment result. with the knowledge of the phase of oscillations it is easy to
For example, let us first prepare the double dot in the>tOP the evolution by raising the barrier when the electron is
symmetric coherent stater;;= o= |0y =1/2, makeH with certainty in t.he flrst dot. If rap|d calculatlorﬂ?y some
—0 (raise the barrier and begin measurement with an al- analog on-chip cwcp)tare not gvallable, the barrier control
most ideal detector. According to our formalism, after someSan b€ random, while appropriate cases can be selected later.

time 7 (the most interesting case 4s- 7,,.) the wave func- An experiment of this kind could verify the formalism

tion remains pure but becomes asymmetric and can be Caq_gveloped in the present paper. While such an experiment.is
culated with Eqs(5) and (8). To prove this, an experimen- still a challgnge for present-day technology, we hope that it
talist can use the knowledge of the wave function to movecaT be re?l|z¢d n thﬁ nea& futulre. d a simole lism f
the electron into the first dot with probability equal to unity. h conclusion, we have developed a simple formalism for
the evolution of the double-dot density matrix with an ac-

Namely, he switches off the detector &t 7, reduces the t of th it of th y th K
barrier(to create finiteH), and creates the energy difference count ot the resuit ot thé continuous measurement by weakly
e =[(1—4|0132) 2~ 1] HReo 1,/ | o12: then after the time coupled (weakly responding point contact. In contrast to
periodAtz[:rz—arcsin(lrm ﬁ(%/H)ﬁ?Ql the “whole” elec.  MOSt previous studies on the selective quantum measure-
tron will be moved to the f%rzst dot. which can be checked byments, our equations treat mixed states and allow the consid-
the detector switched on agaipAlternatively, using the eration of a nqnldeal_ _d_etecto_r. The equations show the
knowledge ofo; (7) an experimentalist can produce exactly gradual pur_lflcat|0n of initially mixed state of th_e double-dot
the ground state of the double-dot system and check it, fo?jue fo continuous quantum measurement. Th's effect can be
example, by photon absorptidn. studied experimentally in various mesoscopic setups.
Another experimental idea is to demonstrate the gradual The author thanks S. A. Gurvitz, K. K. Likharev, D. V.
purification of the double-dot density matrix. Let us startAverin, and T. V. Filippov for fruitful discussions. The work
with a completely random stater(;= 0,,=1/2, 01,=0) of  was supported in part by the French MENRHAST), U.S.
the double dot with finiteH. Then using the detector output AFOSR, and Russian RFBR.
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