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Shot-noise suppression at two-dimensional hopping
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We have used Monte Carlo simulation to calculate the shot-noise intensitySI(v) at ~two-dimensional!
hopping using two models: a slanted lattice of localized sites with equal energies and a set of localized sites
with random positions and energies. For wide samples we have found a similar dependence of the Fano factor
F[SI(0)/2eI on the sample lengthL: F}L2a where a50.8560.02 anda50.8560.07 in uniform and
random models, respectively. Moreover, at least for the uniform model, all the data forF as the function of
sample lengthL and width W may be presented via a single function of the ratioW/Lb, with b52a21
'0.7. This relation has been interpreted using a simple scaling theory.
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Shot noise at electron transport has been the subjec
intensive experimental and theoretical research lately~for a
recent review see, e.g., Ref. 1!, because it may provide im
portant information about nonequilibrium properties of co
ductors, unavailable from other transport characteristics.
other motivation for studies of shot noise is its direct relat
to electric charge discreteness. Namely, the smallness o
spectral density of current fluctuations at low frequen
SI(0), in comparison with the Schottky value of 2eI, is a
necessary condition for quasicontinuous charge transfe2,3

Such ‘‘subelectron’’ transfer through conductors with suf
ciently high resistanceR and low stray capacitanceC may
make possible several resistively-coupled single-electron
vices insensitive to background charge randomness.4 In this
context, hopping conductors are very promising, so that
development of understanding of shot-noise in such cond
tors seems to be an important task.

However, though the basic theory of hopping conductiv
is well developed,5 until recently little had been known abou
noise at hopping. Few publications we were aware of h
been devoted to narrowband, 1/f -type noise~see, e.g., Ref. 6
and references therein! rather than broadband fluctuation
such as shot noise. This is why in the recent work of o
group,7 a detailed theoretical study of broadband curr
fluctuations at one-dimensional~1D! hopping was carried ou
@on the foundation of prior important work on statistics
the so-called asymmetric simple exclusion process~ASEP!
model8#.

For uniform, linear 1D arrays the low-frequency noi
depends on the boundary conditions~namely, the filling fac-
tors f L , f R of the edge sites! and may or may not be domi
nated by boundary bottlenecks. In the former case, the F
factor F5SI(0)/2eI tends to a finite value of the order of
~e.g., for f L5 f R5 f , T50 and negligible Coulomb interac
tion, F5u122 f u) i.e., shot-noise suppression is insigni
cant. In the absence of boundary bottlenecks~e.g., if f L
5 f R51/2), the Fano factor tends to zero at large numbe
hops N, but only asN21/2, i.e., much slower than in 1D
arrays of tunnel junctions whereF51/N far enough from the
Coulomb blockade threshold.3,7 @This behavior has bee
explained7 using a simple scaling theory which also explai
other features, i.e., the frequency dependenceSI(v)}v21/3

in an intermediate frequency range.# Nonuniformity of 1D
0163-1829/2001/63~8!/081302~4!/$15.00 63 0813
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hopping systems decreases the noise suppression, brin
the Fano factor closer to the Schottky valueF51.

The goal of this paper is to show that the ability of ele
trons to circumvent transport bottlenecks at 2D hopp
leads to a qualitatively different situation. Namely, in suf
ciently long and broad samples the shot noise may be s
pressed quite considerably:

F}L2a, ~1!

whereL is the conductor length anda'0.85, even in ulti-
mately nonuniform conductors.

We have employed the usual Monte Carlo simulati
technique~see, e.g., Ref. 7! to analyze two different models
so far both without Coulomb interaction and at vanishi
temperature:

Model A: hopping between sites with random localizati
energies, randomly distributed over a 2D sample, and

Model B: hopping on a uniform, slanted lattice witho
site energy fluctuations.

In both models, each site may be occupied by just o
electron, and the rate of~inelastic! transitions between the
sites is described by the usual formula@see, e.g., Eq.~4.2.17!
in Ref. 5#:

G i→ j5A
e i j

12exp~2e i j /T!
, ~2!

corresponding to the constant density of phonon states. H
e i j is the electron energy gain during the hopi→ j ; in the
absence of Coulomb interaction between electrons this g
can be expressed as

e i j 5~e i2e j !2eE~xi2xj !, ~3!

whereE is an external electric field applied along thex axis.
For relatively short samples, special care should be take
adequately describe electron transfer between the electr
and the edge localized sites. After experimenting with va
ous options, we have concluded that the same expressio~2!
may be used to describe this transfer, without creating
physical bottlenecks at the electrode-sample interfaces.9

In our main Model A, single-particle site energiese i are
distributed randomly within a broad energy band, with a co
stant 2D density of statesD, and site positionsxi ,yi are
©2001 The American Physical Society02-1
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randomly distributed within a rectangular sample of lengthL
and widthW. The rate amplitudeA is an exponential function
of the intersite distancer i j :

A5A0 exp~2r i j /a!, ~4!

wherea is half of the localization radius. All the results hav
been averaged not only over a sufficiently long time peri
but also over a set of random samples with the same gl
dimensionless parametersL/a, W/a, and eEDa3 ~param-
eterA0 just determines the scaleI 05eA0W/Da3 of the total
current!. Such averaging requires considerable computer
sources; the calculations have been performed on IBM
parallel supercomputer.

Figure 1 shows the numerically calculated nonlinear
conductivity s5I /WE as a function of electric fieldE for
sufficiently long and wide samples. Depending onE, we
have simulated samples of areaL3W ranging from 120a
330a up to 300a3120a to keep the number of ‘‘active’’
sites Ns;1500 approximately constant~the growing error
bars at lowerE are due to larger fluctuations from sample
sample!. The absence of significant dependence ofs on the
sample size was being checked. For low electric fieldsE
&0.02E0 (E051/eDa3) the current follows closely the de
pendenceI /E}exp@2C(E0 /E)1/3# expected for 2D variable
range hopping5,10 in the activationless~‘‘high-field’’ ! regime.
The best fit~straight line in Fig. 1! gives the numerical con
stant C'1.27. ~This number is to be compared with th
valueC51.02 following from analytical calculations in Re
11.! The minor deviation from the analytical dependence
E*0.02E0 is possibly due to multiple, well-branched perc
lation paths which are not considered in the usual theore
treatment of high-field hopping.

Figure 2 shows the Fano factor~averaged over 32 sampl
realizations! as a function of the sample length forE
50.035E0 and for three values of sample width:W55a
~circles!, W510a ~asterisks! andW520a ~squares!. At this
field the average hop length isr̄'3.3a ~with r.m.s. projec-
tions r x'3.1a, r y'1.9a) so that the factor exp(2r̄/a) is

FIG. 1. The nonlinear dc conductivitys5I /WE ~normalized by
s05I 0 /WE0), as a function of electric fieldE for Model A. The
straight line is the analytical fit discussed in the text. Inset: the sa
data on a linear scale.
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still small. Most importantly, we see that shot noise is su
pressed considerably (F!1) in wide and long samples. Th
physical reason of this suppression is essentially the sam
for 1D systems:3,7 asL grows, the sequence of electron ho
from one electrode to another looks more and more as c
tinuous transport~for which shot noise vanishes1!.

As a function of the sample lengthL at fixed widthW, the
average Fano factor first decreases following Eq.~1! ~solid
line in Fig. 2! and then at certain length deviates up from th
dependence. The deviation starts at largerL for wider
samples. For narrower samples one can see the saturati
the average Fano factor at largeL; simultaneously the width
of the Fano factor distribution grows significantly. The ave
age Fano factor also decreases with the sample width at fi
length, obviously saturating at largeW since the electron
transport in remote parts of a very wide sample is unco
lated. Having performed the calculations at fixed length
several widths~not all the results are shown in Fig. 2! we
have extrapolated the Fano factor dependence to infini
wide 2D samples. As a function ofL, these results~shown in
Fig. 2 by diamonds! closely follow Eq. ~1! with a50.85
60.07. The power-law dependenceF(L) has been observe
within one order of magnitude range ofL. The longer
samples have not been studied due to computer limitat
~as an example, calculations of a single pointL5160a, W
520a in Fig. 2 has required 380 hours of total CPU time!.

In order to verify the shot-noise suppression for larger
of lengths and widths, we have used the simplified Mode
in which (N21)3M localized sites with equal energies a
arranged on a uniform slanted square lattice~see inset in Fig.
3!.12 In accordance with Eq.~2!, at T50 the transport is
unidirectional, and transfer ratesG between all the interna
neighboring sites are equal. For the links from the left el
trode to the nearest internal sites we have selected the
2G f L ~the factor of 2 reflects two ‘‘channels’’ per interna
site! while the rates of hopping onto the right electrode a
2G(12 f R). For the numerical analysis we have chosen

e

FIG. 2. Dependence of the Fano factorF in Model A ~averaged
over 32 sample realizations! on the sample lengthL for E
50.035E0. Circles: W55a, asterisks: W510a, squares: W
520a, diamonds:W→`. Error bars show the standard deviatio
of the mean.
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casef L5 f R50.5 in which, similarly to the 1D model, ther
are no boundary bottlenecks. Since Model B does not req
averaging over different random realizations, it may be st
ied with much better accuracy using the same computer
sources.

Figure 3 shows the Fano factor as a function of the ar
length N for several values of widthM. Again, we see a
strong shot-noise suppression. For sufficiently wide sam
the suppression follows Eq.~1! ~where nowL should be
replaced byN), with a similar exponent as in the wide ran
dom samples:a50.8560.02. On the other hand, for fixedM
and sufficiently longN the suppression power approach
0.5, i.e., the same value as for 1D hopping.7

There is numerical evidence~see Fig. 4!, as well as scal-
ing arguments~see below!, that for N@1 and M@1 the
crossover between these two asymptotic laws may be pa
eterized in the following way:

FIG. 3. Fano factor dependence on the lengthN for hopping on
a uniform slanted square lattice~Model B, inset! with width M
equal to 2, 5, andN.

FIG. 4. The data from Fig. 3~circles: M52, triangles:M55,
and stars:M5N) collapsed onto universal curveg(x) using param-
eterizationx[N0.7/M and g[(NM)1/2F. Lines connecting points
are just guides for the eye. The inset shows the same data
added points forW520a ~squares! from Fig. 2 using the rescaling
N5L/5.9a andM5W/11a.
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F~N,M !5N21/2M 21/2g~Nb/M !, ~5!

where b50.7060.04, and the functiong(x) is shown in
Fig. 4:

g~x!}H const, x@1

x21/2, x!1.
~6!

Checking if the data from Fig. 2 for the random Model
may also be collapsed on the similar universal curve we h
found a reasonable fit for relatively wide samples~see inset
in Fig. 4! for the following replacements:N5L/5.9a, M
5W/11a ~for the particular fieldE50.035E0).

We will start the interpretation of our findings from th
uniform Model B. Similarly to the 1D ASEP model,8 in the
absence of lateral boundary effects due to finiteM, and at
f L5 f R5 f the probability of any charge configuration is e
pected to be the same as if each site had independent o
pation with probabilityr5 f .13 As a result, dc current be
tween any two neighboring sites should equalGr(12r), so
the total dc current is

I 52MGr~12r!. ~7!

Following the arguments of Ref. 7 we obtain only a min
suppression of low-frequency shot noise,F'u122ru, in the
caserÞ0.5 ~the noise significantly decreases at frequenc
v*v l;Gu122ru/N). However, when the coupling with
electrodes is strong enough,f L>0.5, f R<0.5, the half-
filling is expected inside the array,r50.5, and the Fano
factor can indefinitely decrease with the array lengthN. In
this case, for sufficiently largeN ~narrow array! we may
repeat all 1D scaling arguments of Ref. 7 based on Eq.~7!,
and arrive at the following estimates:

F;~NM!21/2, v l;GN23/2M 21/2, ~8!

for the Fano factor and the saturation frequencyv l , above
which the dependenceSI(v)/2eI;(v/G)21/3N21 is ex-
pected.

Obviously, this result should eventually fail if we sta
increasing the widthM for fixed N, becauseF cannot depend
on M in the limit of wide array~since the transport in remot
parts of the array is uncorrelated and so bothSI and I are
additive!. Denoting the crossover width asM0 we get the
estimateF;(NM0)21/2 for wide arrays. It would be natura
to expectM0}N, however, the numerical results~Fig. 3!
indicate the power-law dependence,M0}Nb, with b being a
phenomenological parameter. If this assumption is true,
obtain the following estimates:

F;N2(11b)/2, v l;GN2(31b)/2, ~9!

for wide arrays,M@Nb. Our numerical result,a50.85
60.02, then leads to the valueb52a2150.760.04. For
intermediate widths it is natural to suggest that the crosso
is governed by some function of the ratiox[Nb/M alone.
Thus we recover the behavior described by Eqs.~5! and ~6!
and illustrated by Fig. 4.@Actually, at this stage we canno
rule out the possibility that the functiong in Eq. ~5! also has

ith
2-3
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a weak dependence onM that would lead to either smoothin
or sharpening of the curve in Fig. 4, leaving however
asymptotes~6! intact.#

If we apply the same scaling arguments which have led
Eq. ~9!, to smaller blocks7 of size Nv3Nv

b , we obtain the
noise frequency dependence

SI~v!/2eI;v2gN21, g[~12b!/~31b!, ~10!

for wide arrays at intermediate frequencies,v l!v!G.
This power-law dependence,SI(v)}v20.08, was con-

firmed numerically with the accuracy of the exponential fa
tor about60.007. The same frequency dependence sho
be expected for the narrow arrays,M!Nb, at frequencies
higher than ;GM 2(31b)/2b, while at lower frequencies
SI(v)}v21/3, as discussed above.

Now, let us turn back to our main, random Model A
According to the percolation picture of hopping,5 the con-
ductivity of a sample is determined by a ‘‘percolation clu
ter,’’ essentially a network of sites connected by the m
probable hop paths. The percolation cluster may be divi
into blocks of a certain size, such that the aggregate cha
teristics of each block~e.g., the average current! are nearly
equal, even though inside each block the sample is hig
~exponentially! nonuniform. Average block size in the tran
port direction for the random model A may be determined
mapping 2D hopping in disordered wide samples onto
uniform model B, forM.N, where the shot-noise suppre
sion was found to be similar. If this interpretation is vali
then the ratioL/N55.9a obtained from the mapping shoul
be comparable to the correlation lengthLc; r̄ ( r̄ /a)n

;3.3a.14 We believe these numbers are reasonably con
tent.

On the other hand, the model A behavior in narro
samples (W&10a) is quite different from that in the uniform
model: instead of going down with growingN, the Fano
factor saturates. Simultaneously, the statistics ofF becomes
much wider. This behavior is very natural, since if t
sample is narrower than the block size~for our value of
n

lin
as

08130
e

o

-
ld

t
d
c-

ly

y
e

s-

electric field, about 10a), the exponentially broad distribu
tion of hopping paths within the block is revealed and
mapped onto the properties of the sample as a whole.

Our results for wide samples are in good agreement w
data from a recent experiment15 in which shot noise at hop
ping was measured inp-type SiGe quantum wells. Actually
the experimentalI -V curve significantly differs from that in
our Model A. However, our result~1! for F seems more
general. For wide samples with two different lengthsL1
52 mm andL255 mm the Fano factor was measured15 to
equalF150.43 andF250.2, respectively. This correspond
to Eq.~1! with a50.84, the value which is virtually equal t
our resulta50.85. Such perfect agreement is possibly jus
coincidence, since so far only two experimental points
available. Evidently, it would be valuable to have more e
perimental data, in order to verify the shot-noise suppress
powera50.85.

In conclusion, we have numerically investigated sh
noise suppression at 2D hopping in random samples as
as in uniform arrays. Very similar shot-noise suppression
been found for both models for wide and long samples.
2D hopping the Fano factor decreases with the sample le
as F}1/L0.85. This suggests that shot-noise suppression
2D hopping is insensitive to details of the hopping proce
e.g., the energy dependence of the hopping rate. If this
mise is true, the Fano factor should not be a very stro
function of temperature. It may, however, be substantia
altered by Coulomb interaction of hopping electrons, as
the 1D case.7 Our next plans are to explore the effects
both these factors.
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