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Correlated quantum measurement of a solid-state qubit

Alexander N. Korotkov
Department of Electrical Engineering, University of California, Riverside, California 92521-0204

~Received 23 March 2001; published 12 October 2001!

We propose a solid-state experiment to study the process of continuous quantum measurement of a qubit
state. The experiment would verify that an individual qubit stays coherent during the process of measurement
~in contrast to the gradual decoherence of the ensemble-averaged density matrix!, thus confirming the possi-
bility of qubit purification by continuous measurement. The experiment can be realized using quantum dots,
single-electron transistors, or superconducting quantum interference devices.
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The impressive advantages promised by quan
computing1 have revived interest in the fundamental qua
tum effects in two-level systems, which in this context a
called qubits. In this paper we address the problem of
continuous measurement of a qubit state having in min
solid-state realization of the setup. Among numerous prop
als of quantum computers, the solid-state realizations~see,
e.g., Refs. 2–5! look more promising because of better co
trollability of qubit parameters and interqubit coupling
However, the qubit measurement in this case is not
straightforward as in typical optical experiments where
single photon just ‘‘clicks’’ the detector. The reason is fin
~and typically weak! coupling with a solid-state detector an
finite intrinsic noise of the detector. As a result, the measu
ment cannot be done instantaneously, and so the coll
postulate of the ‘‘orthodox’’ quantum mechanics6 cannot be
applied directly. Instead, the quantum measurement sh
be considered as a continuous process, so that the ra
information acquisition~which defines the collapse tim
scale! can be comparable to the typical frequency of qu
evolution.

There are two main theoretical approaches to the cont
ous quantum measurements. One approach~which dominates
in solid-state physics and so can be called ‘‘conventional’’! is
based on the theory of the interaction with dissipat
environment.7,8 Taking the trace over the numerous degre
of freedom of the detector, it is possible to obtain the grad
evolution of the density matrix of the measured system fr
the pure initial state to the incoherent statistical mixture, th
describing the measurement process. Since the procedur
plies averaging over theensemble, the final equations of this
formalism are deterministic and can be derived from
Schrödinger equation alone, without any notion of state c
lapse.

The other approach~see, e.g., Refs. 9–14! is closer to the
collapse viewpoint and describes the stochastic evolutio
an individual quantum system due to continuous measu
ment ~note the close relation to the theory of imperfe
measurement15,16!. Such evolution obviously depends on
particular measurement result and is usually called selec
or conditional quantum evolution. Depending on the deta
of the studied measurement setup and applied formal
different authors9–14 discuss quantum trajectories, quantu
state diffusion, stochastic evolution of the wave functio
quantum jumps, stochastic Schro¨dinger equation, complex
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Hamiltonian, method of restricted path integral, Bayes
formalism, etc. The theory of selective quantum evoluti
was only recently introduced into the context of solid-sta
mesoscopics.14,17–20In particular, it was shown that the con
tinuous measurement of an individual qubit does not lead
gradual decoherence~in contrast to the conventional resu
for an ensemble!; instead, the measurement can lead
gradual purification of the qubit density matrix.

Since the concept is still considered controversial, an
perimental check is quite important. In this paper we prop
an experiment which can be realized using three poss
setups available for present-day technology: doub
quantum-dot qubit measured by quantum point contact,21 qu-
bit based on single-Cooper-pair box measured by a sin
electron transistor,22 or superconducting quantum
interference device~SQUID! based qubit measured by an
other SQUID.23,24

Let us start with reviewing the result of the convention
formalism for the continuous measurement~Fig. 1! of a qubit
state~see, e.g., recent publications in Refs. 21 and 25–3!.
For the qubit characterized by the standard Hamilton
HQB5(«/2)(c1

†c12c2
†c2)1H(c1

†c21c2
†c1) in the basis de-

fined by coupling with the detector~here « is the energy
asymmetry andH is the tunneling strength!, the evolution of
qubit density matrixr is given by the equations

ṙ1152 ṙ22522H Im r12, ~1!

ṙ125ı«r121ıH~r112r22!2Gr12, ~2!

where the continuous measurement is described by
dephasing rateG.

These equations do not depend on the detector outpu
cause they represent the result of ensemble averaging
cluding averaging over the measurement result. To study
evolution of an individual qubit14,17–20let us denote the noisy
detector signal asI (t) ~assuming current for definiteness!.
Two ‘‘localized’’ qubit statesu1& and u2& correspond to av-
erage detector currentsI 1 andI 2 which by assumption do no
differ much,DI[I 12I 2!I 0[(I 11I 2)/2. The intrinsic noise

FIG. 1. Schematic of a qubit continuously measured by a de
tor with output signalI (t).
©2001 The American Physical Society07-1
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BRIEF REPORTS PHYSICAL REVIEW B 64 193407
of the detector signal is characterized by the spectral den
S which is frequency independent in the range of intere
The noise determines the typical measurement timt
;S/(DI )2 necessary to distinguish between statesu1& and
u2&, and thus defines the time scale of the selective evolu
of the qubit density matrixr(t). Within the Bayesian
formalism14,17–20the selective evolution is described by th
equations

ṙ11522H Im r121~2DI /S!r11r22@ I ~ t !2I 0#, ~3!

ṙ125ı«r121ıH~r112r22!2~DI /S!~r112r22!

3@ I ~ t !2I 0#r122g r12, ~4!

where the dephasingg5G2(DI )2/4S>0 is now due to the
contribution from the ‘‘pure environment’’ only. In particula
g50 if the qubit is measured by symmetric quantum po
contact, since in this caseG5(DI )2/4S ~see Refs. 25,26,21
and 30!. We will call such a detector an ideal detector,h
51, whereh[12g/G is the ideality factor. In contrast, th
single-electron transistor in the operation point far outs
the Coulomb blockade range is a significantly nonid
detector,29 h!1; however,h becomes comparable to unit
when the current is mostly due to cotunneling processes.19,31

The SQUID is an ideal detector when its sensitivity is qua
tum limited.19,32,33

Equations~3! and ~4! allow us to calculate the evolutio
of qubit density matrixr if the detector outputI (t) is known
from a particular experiment. To simulate the measurem
we can use the replacement14

I ~ t !2I 05DI ~r112r22!/21j~ t !, ~5!

where the random processj(t) has zero average an
‘‘white’’ spectral densitySj5S. One can check that averag
ing of Eqs.~3! and~4! over all possible measurement resu
@i.e., over the random contributionj(t)# reduces them to
Eqs. ~1! and ~2!. Notice that the stochastic equations a
written in Stratonovich form which preserves the usual c
culus rules, while averaging is more straightforward in̂
form.34

As follows from Eqs.~3! and ~4!, if a qubit with initially
pure state,ur12(0)u25r11(0)r22(0), is measured by an idea
detector, then its density matrixr(t) stays pure during the
measurement process. Even if the initial state is a statis
mixture,r(t) is gradually purified during the measurement14

The predictions of the Bayesian formalism can
checked experimentally; however, it is not simple at t
present-day level of solid-state technology. The direct exp
ment was discussed in Ref. 14. The idea was to perform
measurement by a near-ideal detector during timet, record
the detector outputI (t), use Eqs.~3! and ~4! to calculate
r(t), and then check the calculated value. This check can
done by changing qubit parameters« and H in a way to
ensurer1151 at some specified moment of time, that can
verified by the detector switched on again. Since for cohe
evolution the qubit can be placed with 100% certainty in
stateu1& only if the wave function is known precisely, such
19340
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check ~repeated many times! verifies thatr(t) is pure and
coincides with the calculated value.

Unfortunately, this experiment would require very fast r
cording of I (t). Since the expected coherence time is on
order of 10–100 ns at most~see, e.g., Ref. 22!, the band-
width of the detector signal coming out of the cryos
should be at least 1 GHz, which is very difficult experime
tally. Another proposed experiment18,30 is to measure the
spectral density of the quantum coherent oscillations
check the predicted maximal peak-to-pedestal ratio of
Such an experiment may be easier to realize~because the
basic spectral analysis can be done on-chip inside the
ostat!; however, it would not prove unambiguously the Bay
sian formalism, since an alternative interpretation of the
sult is possible.18

Here we propose an experiment which is even easie
realize and which can test the Bayesian formalism~3! and
~4!. The main idea is to use two detectors (A and B) con-
nected to the same qubit~Fig. 2!. The detectors are switche
on for short periods of time by two shifted-in-time voltag
pulses~one for each detector! with durationstA and tB ,
supplied from the outside. The output signal from the det
tor A is the total chargeQA5*0

tAI A(t) dt passed during the
measurement period. Similarly, the output from detectorB is
QB5*t

t1tBI B(t) dt, wheret is the time shift between pulses
If the measurement by detectorA changes the qubit densit
matrix, it will affect the result of measurementB. Repeating
the experiment many times~with the same initial qubit state!
we can obtain the probability distributionP(QA ,QBut) of
different outcomes, which contains information about the
fect of the quantum measurement on the qubit density
trix. In comparison with previous suggestions, the advant
of this correlation experiment is that the wide signal ban
width is required only for input pulses~that is relatively
simple! while the outputs are essentially low-frequency s
nals. The experiment can be called ‘‘Bell type’’ because
some similarity with the famous proposal of Ref. 35.~In both
experiments a quantum system is measured by two dete
so that one detector collapses the system and the othe
tector ‘‘feels’’ this collapse. However, in Bell’s experimen
the main point is the lonlocality of the collapse, while w
check the effect of continuous collapse.!

Figure 2 shows a realization of the experiment us
single-electron transistors as detectors. The transistors

FIG. 2. Schematic of two-detector correlation experiment us
Cooper-pair box and two single-electron transistors.
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BRIEF REPORTS PHYSICAL REVIEW B 64 193407
switched on by short pulses of the bias voltage~the use of
gate voltage pulses is also possible; however, this would
troduce an extra noise!. Qubit is realized by the Cooper-pa
box36,22so that the electric charge of the central island can
in coherent combination of two discrete charge states.
other similar setup is two quantum point contacts measu
the charge state of a double-quantum-dot qubit. One m
setup is the 3-SQUID experiment in which the qubit is re
ized by one SQUID while two other SQUID’s are in th
detecting regime.

The conventional formalism~1! and~2! does not give any
explicit predictions37 for the resulting probability distribution
P(QA ,QBut). Since these equations cannot describe the
relations betweenr(t) and I (t), they imply, for example,
that the average result of the second measurem
Q̄B(QA ,t)[*QBP(QA ,QBut)dQB does not depend onQA .
The Bayesian formalism~3! and~4! makes the different pre
diction: Q̄B does depend onQA .

For simplicity let us assume symmetric qubit,«50,
which is initially in the ground state,r115r225r1250.5,
and also assume relatively strong coupling between the q
and detectors, (DI A)2/HSA@1, (DI B)2/HSB@1 ~subscripts
A andB correspond to two detectors!, so that we can neglec
the qubit evolution due to finiteH during the measuremen
periodstA andtB , which are assumed to be on the order
SA,B /(DI A,B)2. Then from Eqs.~3! and~4! it follows that the
first measurement localizes the qubit state only partially,
after obtaining the resultQA from the first measurement th
qubit density matrix is

2r11~tA!215tanh
~QA2tAI 2A!22~QA2tAI 1A!2

2SAtA
, ~6!

r12~tA!5@r11~tA!r22~tA!#1/2exp~2gAtA!. ~7!

Here Eq.~6! is just the Bayes formula, so this result can
called ‘‘quantum Bayes theorem.’’16 @The probability to get
QA has the distributionP(QA)5(p11p2)/2 where pi
5(pSAtA)21/2exp(2(QA2tAIiA)2/SAtA).# The qubit performs
the free evolution during the timet2tA between measure
ments~here we neglecttA!t) and the average result of th
second measurementQ̄B5tB@ I 2B1r11(t)DI B# depends on
QA in the following way@Fig. 3~a!#:

dB5
1

2
tanh

~QA2tAI 2A!22~QA2tAI 1A!2

2SAtA

3
2H

V
cosS Vt2arcsin

g f

4H Dexp~2g ft/2!, ~8!

where dB[(Q̄B2tBI 0B)/tBDI B , g f is the dephasing with
both detectors switched off, andV5(4H22g f

2/4)1/2 is the
frequency of quantum oscillations~underdamped case is a
sumed!. Notice thatdB changes sign together with the sign
QA2tAI 0A , while the phase of oscillations is a piec
constant function ofQA .
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The dependence becomes quite different if thep/2 pulse
is applied to the qubit immediately after the first measu
ment, which multipliesr12(tA) given by Eq.~7! by ~minus!
the imaginary unit. In this case@Fig. 3~b!#,

dB5A sin~Vt1arcsinz/A!exp~2g ft/2!,

A5@~z21y22yzg f /2H !/~12g f
2/16H2!#1/2, ~9!

where z[r11(tA)21/2 and y[Im r12(tA10)5Rer12(tA
20) are given by Eqs.~6! and ~7!. This expression consid
erably simplifies for weak dephasing,gAtA!1 andg f!H;
then,

dB5
1

2
sin@Vt1arcsin~2r11~tA!21!#expS 2

g ft

2 D .

~10!

In contrast to Eq.~8!, now the phase of oscillationsdB(t)
depends on the resultQA of the first measurement, while th
amplitude is maximum possible and independent ofQA .
This fact is very important since itprovesthat after the first
measurement~by an ideal detector! the qubit remains in a
pure statefor any resultQA . This new state depends onQA
and is not one of the localized states as somebody co
naively expect.@Notice that Eq.~8! can in principle be inter-
preted in terms of such ‘‘classical’’ localization, as indicat
by its independence onhA .# It is easy to check that the
conventional equations~1! and~2! would lead to a prediction
quite different from Eq.~10!.

FIG. 3. The normalized average resultdB of the second mea-
surement for several selected resultsQA of the first measurement, a
a function of the timet between measurements. Panels~a! and ~b!
are for strong coupling and panels~c! and~d! for moderate coupling
between the qubit and detectors~other parameters are the same!.
The calculations are done by Bayesian formalism while the conv
tional formalism does not predict any nontrivial dependence.
7-3
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BRIEF REPORTS PHYSICAL REVIEW B 64 193407
In a realistic experimental situation the assumption
strong coupling with detectors may be inapplicable. In t
case the full probability distributionP(QA ,QBut) as well as
the dependenceQ̄B(QA ,t) should be calculated numericall
using Eqs.~3!–~5!. The results of these calculations fo
(DI A)2/HSA5(DI B)2/HSB51 are shown in Figs. 3~c! and
3~d!. Weak coupling as well as the nonideality of the dete
tors decreases the correlation between the results of the
measurements; however, for moderate values of the coup
and nonideality the correlation is still significant.

An experimental demonstration of the correlation a
quantitative agreement with the results of the Bayesian
malism would prove the validity of this formalism and ther
fore confirm its other predictions. In particular, an importa
prediction for practice is the gradual qubit purification due
continuous measurement which can be useful for a quan
computer.

All quantum algorithms require the supply of ‘‘fresh’’ qu
bits with well-defined initial states. This supply is not
trivial problem since the qubit left alone for some time de
riorates due to interaction with environment. The usual id
is to use the ground state which should be eventually reac
and does not deteriorate. However, to speed up the q
initialization we need to increase the coupling with enviro
ment that should be avoided. The other possible idea i
perform the projective measurement after which the state
comes well defined. However, in a realistic case the coup
with the detector is finite, which makes projective measu
ments impossible. A natural solution of the problem is
-

cs
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tune the qubit continuously in order to overcome the deph
ing due to environment and so keep the qubit ‘‘fresh.’’19

To realize such state purification the qubit is continuou
measured by a weakly coupled detector and the detector
nal is plugged into Eqs.~3! and ~4!, which allows us to
monitor the evolution of the qubit density matrix. It is com
pared with the desired evolution and the difference is use
generate the feedback signal which controls the qubit par
etersH and « in order to reduce the difference. We hav
performed a Monte Carlo simulation of the qubit purificatio
by the feedback loop in the regime of well-pronounced qu
tum oscillations19 and found strong suppression of the qu
dephasing due to the environment in the case when
dephasing rateg is comparable or weaker than the ‘‘me
surement rate’’ (DI )2/4S. It is interesting to notice that eve
‘‘naive’’ feedback@which responds to the difference betwe
desiredr11(t) and properly normalizedI (t)# leads to some
degree of purification.

In conclusion, we have proposed a Bell-type experim
which can test the predictions of the Bayesian formalism
the evolution of an individual qubit due to continuous qua
tum measurement. The next~and much more difficult! step is
the experimental realization of the qubit purification usi
the quantum feedback loop.
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