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Quantum feedback control of a solid-state qubit
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We have studied theoretically the basic operation of a quantum feedback loop designed to maintain a desired
phase of quantum coherent oscillations in a single solid-state qubit. The degree of oscillations synchronization
with external harmonic signal is calculated as a function of feedback strength, taking into account available
bandwidth and coupling to environment. The feedback can efficiently suppress the dephasing of oscillations if
the qubit coupling to the detector is stronger than the coupling to the environment.
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The principle of feedback control is used in a wide varie
of physical and engineering problems. In particular, it can
applied in a straightforward way to tune the oscillation pha
of a harmonic oscillator in order to achieve a desired s
chronization with some reference oscillator. An intriguin
and fundamental question is whether continuous feedb
can be used to control quantum systems; for instan
whether or not it is possible to tune the phase of quan
coherent~Rabi! oscillations in a qubit~two-level system!?

At first sight the quantum feedback seems to be imp
sible because according to the ‘‘orthodox’’ collap
postulate1 the quantum state is abruptly destroyed by the
of measurement. However, as was shown 2 decades ag
particular by Leggett,2 in a typical solid-state setup the co
lapse of a qubit state should be considered as a contin
process rather than as an instantaneous event.

While the Leggett theory as well as a majority of simil
approaches can describe onlyensemblesof quantum sys-
tems, the theory describing the gradual collapse of asingle
solid-state qubit was developed only recently.3–5 ~A similar
problem in quantum optics was solved much earlier—s
e.g., Refs. 6 and 7 and references in Ref. 4.! Basically, the
theory says that the evolution of a single quantum sys
due to continuous measurement is governed by the infor
tion continuously acquired from the detector. Similarly
classical probability, the Bayes formula8 that naturally takes
into account incomplete information from the detector, c
still be applied to the density matrix of the measured qu
tum system; thus the formalism is called Bayesian.3

In case of a poor detector the extra noise acting back o
the input disturbs the measured system more than the
determined by the uncertainty principle; this leads to grad
decoherence of the measured system. In contrast, when
sured with a good~quantum-limited! detector, the quantum
system does not loose the coherence~even though the quan
tum state evolves randomly!; moreover, its density matrix
can be gradually purified3 which basically means acquirin
as much information about the system as permitted by qu
tum mechanics.

Since the Bayesian formalism allows us to monitor t
continuous evolution of a quantum system in a process
measurement, this naturally gives rise to a possibility of c
tinuous feedback control of a quantum system. In this pa
we will study the operation of a feedback loop proposed
Ref. 4 and designed to maintain a desired phase of quan
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coherent oscillations in a solid-state qubit.~Quantum feed-
back in optics has been proposed and studied earlier—
e.g., Refs. 7, 9–15.! In particular, we will study dependenc
of the loop operation on the feedback strength, availa
bandwidth, and dephasing due to environment.

As an example of the measurement setup~Fig. 1! we con-
sider a qubit represented by a single electron in a dou
quantum dot~DQD!, the location of which is measured by
quantum point contact~QPC! nearby in a way used in Ref
16. If the electron is in the dot 2~stateu2&) which is closer to
QPC than dot 1, then the QPC tunnel barrier is higher and
the average currentI 2 through QPC is smaller than the ave
age currentI 1 corresponding to the electron in the dot
~state u1&). Consequently, from the QPC current one g
information about the electron location. We consider a re
istic case of weak response,DI[I 12I 2!I 0[(I 11I 2)/2. In
this case the measurement timeSI /2(DI )2, which is neces-
sary to achieve signal-to-noise ratio equal to 1~hereSI is the
QPC shot noise!, is much larger thane/I 0, so the QPC cur-
rent I (t) is continuous on the measurement time scale.

The evolution of the qubit density matrixr during the
measurement process is described within the Bayesian
malism by equations3,4

ṙ1152 ṙ22522
H

\
Imr121r11r22

2DI

SI
@ I ~ t !2I 0#, ~1!

ṙ125 i
«

\
r121 i

H

\
~r112r22!2~r112r22!

DI

SI
@ I ~ t !2I 0#r12

2gr12, ~2!

where« andH are, respectively, the energy asymmetry a
tunneling strength of the qubit@the qubit Hamiltonian is
Hqb5(«/2)(c2

†c22c1
†c1)1H(c1

†c21c2
†c1)#, andg5gd1ge

is the dephasing rate due to the detector nonideality (gd) and
coupling with the environment (ge).

17 Theoretically,gd50
when qubit is measured by a QPC; however, if instead
QPC we use a single-electron transistor~SET!, then dephas-
ing gd is usually quite significant4,18 ~except the case whe
the SET operates in a cotunneling regime19,20!.

Notice that the ensemble dephasing rateG5g
1(DI )2/4SI is larger thang because of differing evolution
of the ensemble members due to randomI (t). Individual
realizations can be simulated using the formula4
©2002 The American Physical Society01-1
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I ~ t !2I 05~r112r22!DI /21j~ t !, ~3!

wherej(t) is the pure white noise with spectral densitySj

5SI . If Eqs. ~1! and ~2! are averaged overj(t) ~we use
Stratonovich definition for stochastic differential equation!,
then we get usual ensemble-averaged equations~terms pro-
portional toDI disappear andg is replaced byG).

It is natural to characterize the effect of extra dephas
gd by the detector ideality ~efficiency! h[1/@1
1gd4SI /(DI )2#. One can show4,21 that h5(\/2ed)2 where
ed is the total energy sensitivity of the detector@ed
[(e ieo)1/2, whereeo is the usual~output! energy sensitivity
ande i is a similar quantity characterizing backaction to t
input#. So, an ideal caseh51 corresponds to a detector wit
quantum-limited sensitivity.

To realize a feedback loop~Fig. 1!, we can monitor the
qubit evolution using the detector currentI (t) plugged into
Eqs. ~1! and ~2!. Then the qubit state is compared with th
desired state, and the difference signal is used to contro
qubit parametersH and/or«. In our example the feedbac
loop is designed to stabilize the quantum oscillations of
state of a symmetric qubit («50), so the desired evolution i
r11(t)512r22(t)5@11cos(Vt)#/2, r12(t)5r21* (t)
5 i sin(Vt)/2, where the frequency isV5(4H21«2)1/2/\
52H/\. As a difference~‘‘error’’ ! signal we use the phas
differenceDf (uDfu,p) between the desired valuef0(t)
5Vt(mod 2p) and the monitored value f(t)
[arctan„2 Imr12(t)/@r11(t)2r22(t)#…. This difference is
used to control the qubit parameterH ~changing the barrier
height of DQD!; here we study a linear control:H f b5(1
2F3Df)H, where F is the dimensionless feedbac
factor.22

In this paper we neglect additional time delay4 in the feed-
back network, however, we take into account the finite ba
width of a line carrying detector current~which is a critical
parameter for a possible experiment!. More specifically, we
average the currentI (t) with a rectangular window of dura
tion ta , I a(t)[ta

21* t2ta

t I (t8)dt8, before plugging it into

Eqs.~1! and~2!, so that the ‘‘available’’ density matrixra(t)
differs from the ‘‘true’’ density matrixr(t). Also, to compen-
sate for the corresponding implicit time delay, we useDf
5fa2V(t2kta) with k51/2 ~we found thatk51/2 pro-
vides the best operation of the feedback loop!.

Let us start with the case of ideal detector,h51, absence
of extra environment,ge50, and infinite bandwidth,ta50.
Figure 2 shows numerically calculated correlation funct
Kz(t)[^z(t1t)z(t)& wherez[r112r22, for several feed-
back factors:F50, 0.05, and 0.5. The curves are obtain
using Monte Carlo simulation3,4 of the measurement proces

FIG. 1. Schematic of the quantum feedback loop maintain
the quantum oscillations in a qubit.
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for moderately weak coupling between the qubit and det
tor: C[\(DI )2/SIH51 ~notice that the Q factor of
oscillations23 is equal to 8/C, so C51 is still a weak cou-
pling!. In the absence of feedback (F50) the correlation
function decays to zero, while for finite feedback factor t
correlations remain for indefinitely long time~assuming per-
fect reference oscillator!. The nondecaying correlations sho
that the quantum feedback loop really provides the synch
nization of quantum oscillations. The degree of synchroni
tion depends on the feedback factorF. One can see that for a
moderate value ofF50.5 the synchronization is already ver
good @the ideal case would beKz(t)5cos(Vt)/2#.

For analytical analysis we take into account that in t
ideal casegd5ge50 the qubit state is pure,4 and using Eqs.
~1!–~3! start with the equation

d

dt
Df52sinf

DI

SI
S DI

2
cosf1j D2

2FH

\
Df, ~4!

which assumes the absence of 2p phase slips~good or mod-
erate synchronization!. For weak coupling (C/8!1) we can
neglect the first term in parentheses and average the ran
term over sinf assuming almost harmonic evolution th
leads to the simplified equation

d

dt
Df5 j̃2

2FH

\
Df, ~5!

where j̃(t) is the white noise with spectral densitySj̃

5(DI )2/2S. This equation describes a particle diffusion
the parabolic potential~we again assumeuDfu,p). The cor-
responding Fokker-Planck equation has an exact solu
that is used to calculate the correlation functionKz(t)
'^cos@Df(t)2Df(t1t)#&cosVt/2. In this way we obtain the
analytical expression

Kz~t!5
cosVt

2
expF C

16F
~e22FHt/\21!G , ~6!

which fits well the Monte Carlo results whenC/8!1 and
C/16F&1 ~weak coupling and moderate or good synchro
zation!. As an example, the dots in Fig. 3 show the nume

g

FIG. 2. Correlation functionKz(t) of the qubit quantum oscil-
lations for C51 and feedback factorsF50 ~thin solid line!, 0.05
~thick solid line!, and 0.5~dashed line!. Nondecaying oscillations
are due to synchronization by the feedback.
1-2
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cally calculated~using the least-mean-square fit! asymptotic
amplitudeAKz of Kz(t) oscillations~at t→`) as a function
of the feedback factorF for three values of the couplingC,
while solid lines show the corresponding analytical curv
AKz5exp(2C/16F)/2.

The correlation functionKI(t)[^I (t1t)I (t)& of the de-
tector currentI (t) is somewhat similar toKz(t), however, it
also has the decaying contribution23 due to correlationKzj

and ad-function contribution due to the detector noise. T
analytical result for the same regime as above,

KI~t!5
SI

2
d~t!1

~DI !2

4
~11e22FHt/\!Kz~t!, ~7!

also agrees well with the Monte Carlo results. The spec
densitySI(v) of the detector current can be obtained as
Fourier transform ofKI(t). While in the absence of feed
back, the quantum oscillations in the qubit can provide o
a moderate peak ofSI(v) around frequencyV ~the peak
height cannot be larger than four times the noise pedest23!
the feedback synchronization leads to the appearance od
function at the frequency of desired oscillations.

Besides the correlation function and spectral density,
have studied one more characteristic,D, of the synchroniza-
tion degree. We defineD as the average scalar product of t
unit-length vector on the Bloch sphere corresponding to
desired state and the vector corresponding to the actual
of the qubit. The equivalent definition isD[2^Trrrd&21,
whererd is the density matrix of the desired pure state.@The
so-called fidelity is equal to either (D11)/2 or A(D11)/2,
depending on the definition.15# Perfect synchronization cor
responds toD51. It is simple to show that in the limit o
weak coupling and for symmetric distribution ofDf ~un-
shifted desired frequency!, AKz coincides withD2/2. Notice,
however, that at moderate coupling,D2/2 ~dashed lines in
Fig. 3! is much closer to the analytical result thanAKz .

Upper solid line in Fig. 4 shows the dependence ofD on
the feedback factorF for C51 andta50. One can see tha
D is proportional toF for small F ~‘‘soft’’ onset of the syn-

FIG. 3. Dots: asymptotic amplitudeAKz of Kz(t) oscillations as
a function of feedback factorF for several couplings with the de
tector,C50.5, 1, and 2. Solid lines: analytical approximationAKz

5exp(2C/16F)/2. Dashed lines: corresponding numerical resu
for D2/2.
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chronization! andD is asymptotically approaching 1 at larg
F. The analytical resultD5exp(2C/32F) ~dashed line in
Fig. 4! is very close to the numerical results at moderate a
good synchronization.

Finite available bandwidth of the detector currentI (t) ~fi-
nite averaging timeta in our formalism! worsens the perfor-
mance of the quantum feedback loop. The solid lines in F
4 show the dependence of the synchronization degreeD(F)
for ta /T50, 1/3, and 2/3, whereT52p/V is the oscillation
period. Obviously, a significant information loss occurs wh
ta becomes comparable toT, leading to a decrease ofD. The
curvesD(F) saturate at largeF allowing us to introduce the
dependenceDmax(t). Calculations for the parameters of Fi
4 show pretty good synchronization,Dmax50.993, for ta
5T/30, whileDmax50.98, 0.92, and 0.57 forta5T/10, T/3,
and 2T/3, respectively.

The main potential practical importance of the quantu
feedback is the ability to suppress the effect of the qu
dephasing caused by interaction with the environment~see
Fig. 1!. This can be used, for example, for qubit initializatio
in a solid-state quantum computer. Solid lines in Fig. 5 sh
the dependenceD(F) for several magnitudes of the depha
ing due to environment,de50, 0.1, and 0.5, wherede
[ge /@(DI )2/4SI # is the ratio between the qubit coupling t
the environment and to the detector~we still assume an idea
detector!. First of all, we see that the feedback still maintai
the qubit phase synchronization for infinitely long tim
However, for finitede the degree of synchronizationD satu-
rates at a level less than unity. We have studied numeric
the dependenceDmax(de) for C51/2, 1, and 2~while ta
50 andh51) and found a linear dependence at smallde :
Dmax.120.5de . @A little better formula Dmax.1
20.5de /(11de) works reasonably well up tode&1.# This
means that the feedback loop can efficiently suppress
qubit dephasing due to the coupling to the environmen
this coupling is much weaker than the qubit coupling to
nearly ideal detector.

Notice that the solid lines shown in Figs. 4 and 5 a
calculated assuming the feedback control of the tunnel

s

FIG. 4. Synchronization degreeD as a function of feed-
back factorF for several valuesta of detector signal averaging
ta /T50, 1/3, and 2/3, whereT52p/V. Dashed line D
5exp(2C/32F) almost coincides with the upper curve. Dotted lin
corresponds to ‘‘direct’’ feedback withta5T/10.
1-3
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trix elementH f b5H(12F3Df) even whenH f b becomes
negative~this is also an assumption for the analytical r
sults!. To eliminate this unphysical assumption we have a
performed numerical calculations with restrictionsH f b.0
and H f b.H/2. This leads to rather minor modifications o
the presented curves~dashed and dotted lines in Fig. 5 sho
the results forde50 andta50). However, important differ-
ence is thatD(F) goes down at largeF, so the optimum
Dmax is achieved at some finite value ofF.

Besides the discussed feedback based onDf calculation,
we have also studied a ‘‘direct’’ feedback loop in whic
H f b(t)/H215F„2@ I a(t)2I 0#/DI 2cos@V(t2ta/2)#…sin@V(t
2ta/2)# ~we call it also a ‘‘naive’’ feedback because th

FIG. 5. DependenceD(F) for C51, ta50, and several magni-
tudes of dephasing due to environment:de50, 0.1, and 0.5. Dashed
and dotted lines correspond tode50 and limitation ofH f b by 0 and
H/2, respectively.
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ontrol formula is easily designed from the naive assumptio
hat the detector current directly follows the evolution o

11). Direct feedback is much simpler for experimental real
ation since it does not require real-time solution of the
ayesian equations~direct feedback in quantum optics has
een studied in Refs. 7, 10–13!. Surprisingly, the direct feed-
ack can also provide a good phase synchronization of qua

um oscillations ifF/C is close to 1/4~see dotted line in Fig.
!. However, it requires more careful choice ofF andta than
or the Bayesian feedback, and also suffers more signi
antly from the restriction onH f b variation.

Experimentally, besides the realization of quantum feed
ack control of a DQD continuously measured by a QPC
ne can also think about the qubit based on a single-Coop
air box measured by a single-electron transistor~see discus-
ion in Ref. 4!. This realization can be preferable because o
rapid progress of metallic single-electronics technolog

owever, the problems are high output impedance of th
ingle-electron transistor and its nonideality as a quantu
etector. The third potential realization can be based on s
erconducting quantum interference devices. For any realiz

ion the major problem is the bandwidth: the feedback shou
e at least faster than the qubit dephasing. Because of th

he quantum feedback of a solid-state qubit should probab
e attempted only after the realization of recently propose
ell-type two-detector correlation experiment,24 which
ould show the possibility of quantum monitoring, the firs
tep to quantum feedback control.
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