PHYSICAL REVIEW B 71, 235407(2005

Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback
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We analyze squeezing of the nanoresonator state produced by periodic measurement of position by a
guantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum
nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector.
The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement,
taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the
guantum feedback, which prevents fluctuations of the wave packet center due to measurement back-action.
Verification of the squeezed state can be performed in almost the same way as its preparation; a similar
procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.
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I. INTRODUCTION measurements?~14The general idea of a QND measure-
ment is to avoid measurin@r obtaining any information gn

Recent advances in fabrication of high-frequency nanothe magnitude conjugated to the magnitude of interest, and
mechanical resonatdrs (see also Refs. 6 and Take the therefore to avoid the corresponding back-action. An impor-
direct observation of their quantum behavior possible in thaant implementation of this idea is the “stroboscopic” mea-
nearest future. Resonator frequenay/2m slightly over  surement of the oscillator positiot:** Suppose the position
1 GHz has been already demonstrat&ar such a resonator x; is measuredinstantaneouslywith a finite precisionAx,
the conditionT <#wq (We usekg=1) is satisfied at tempera- which necessarily disturbs the momentum according to the
ture T below ~50 mK, which is within routine experimental Heisenberg uncertainty principligp=#/2Ax. Normally this
range. Actually, even in the cade>fiw, the quantum be- momentum change would affect the result of the next posi-
havior is in principle observabidf Tr,/Q=<#, whereQ is  tion measurement, and would limit the accuracy for the
the resonator quality factor ang, is the typical measure- position differencex,—x,, leading to the SQL for this mag-
ment time. This condition can be satisfied even for a MHz-nitude. However, if the second measurement is performed
range resonator with larg@-factor, if measured with a good exactly one oscillation period after the first one, the oscillator
sensitivity which translates into smatf,. There is a rapid returns to its initial state, and therefore the momentum
experimental progress in monitoring the oscillating positionchange does not affect the accuracy of xgex; measure-
of a nanoresonator using radio-frequency single-electroment. Such stroboscopic measurement gives no information
transistor(RF-SET) (Ref. 4 and % or quantum point contact related to the momentum, and this is exactly the reason why
(QPO (Ref. 9 (at present the RF-SET seems to be muchthe effect of quantum back-action is avoided14
more efficient; both solid-state techniques have some advan- The QND measurements have been mainly discussed in
tages compared to more traditional optical monitotffig'*  relation to detection of very weak classical forces, in particu-
). In particular, the position measurement accuragywithin lar gravitational wavesgsee, e.g., Refs. 15-17; see also Ref.
the factor 5.8 from the standard quantum lifBQL) Ax,  18). Recently the idea of QND measurements has been also
has been demonstratedusing the RF-SET; hereAx,  applied to solid-state mesoscopic structui®se, e.g., Refs.
=\h/2may is the width (standard deviationof the ground  19-21). Among other recent developmertstal number of
state of the oscillator with masm. Anticipating future papers on QND measurements is about half a thoydand
progress in measurement precision, in this paper we discussus mention the experiment on atomic spin-squeezing using
way of performing measurement with accuracy better thanhe QND measurement and real-time quantum feedBack.
AXo. Squeezing of a nanomechanical resonator using the QND

Such measurement implies squeezing of the nanoresonazeasurement by QPC or SET and quantum feedback has
tor state and requires using some tricks to avoid the effect dfeen proposed in our recent Proceedings p#Ajtise present
guantum back-action from the detector which normally leadaper is a more complete analysis of this proposal.
to the SQL® Actually, an instantaneous position measure- Measurement of the nanoresonator position by the SET or
ment by a strongly coupled detector can in principle be mad€@PC has already received a significant theoretical
with precisionAx better thanAx, (orthodox projection, for  attention’-24-32In particular, it was shown that the process of
example, implief\x=0); however, the limitation by the SQL measurement transfers the energy from the detector to the
arises for consecutive measurements and also for measunmeanoresonator leading to its “heatingf:2A possible way to
ment by a weakly coupled detector, which is necessarily conprevent such heating is using the quantum feedback control
tinuous. The well-known way to overcome the SQL limita- of the nanoresonat#¥33 (other ideas for cooling have been
tion is to use quantum nondemolition (QND) proposed in Refs. 34 and 85
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feedback derstood for the case of short measurement pulses applied
electrode periodically, for example, once per oscillation periog=2).

Each measurement pulse gives us s@theugh quite impre-
cise information on the nanoresonator positio@and corre-
spondingly reduces the width of the resonator density matrix

control
circuitry

nanoresonator

Vv I in x-domain. Between the pulses the resonator undergoes
” ” ” , 1) free evolution, which returns the density matrix into exactly

the same state one period lat@eglecting effects of finite

FIG. 1. Simplified schematic of the nanoresonator, which posi-Q']caCtor and unharmonicily Therefore, the free euvomt'on
tion x is measured by a single electron transistor or a quantum poin[PrOduces no e"ﬁeCt’ and measurement pulses are “stacked one
contact. Stroboscopic modulation of the detector voltee with upon arlother,_ so that the measurement strengt.h adds up, and
many imprecise measurements become equwalent to one

frequency 2/n leads to nanoresonator state squeezing. Detecto ) h h S f h
outputl(t) is used to monitor nanoresonator position. The quantumvery precise measurement. When the precision of such mea-

feedback loop keeps the center of the nanoresonator Wavepack%'tt'rement becomes better Fhﬂno, th.eX'Width (u_ncertainty
close tox=0. of the resonator stat@lensity matrix necessarily becomes

smaller than the ground state width, so the squeezed state is

The general idea of quantum feedback is very similar toproduced. Exactly the same mechanism of squeezing works
classical feedback and is based on the continuous monitoringhen the measurement pulses are separated by integer num-
of the system state and its continuous control towards a deser of oscillation periodgevenn) or by an odd number of
sired state. However, the nontrivial part is accurate monitorhalf-periods(odd n) since the free evolution during a half-
ing of evolution of the quantum statevave function in the period results only in the sign change for position and mo-
ideal casg which requires explicit account of the detector mentum.
back-action. The quantum feedback of mesoscopic solid- Notice that even though the measurement squeezes the
state systems is a relatively new subjécthough in quan-  resonator positio, free evolution between pulses makes it
tum optics the quantum feedback has been proposed moge“preathing” mode, so that-width oscillates in timewith
than a decade adb and has been already realized frequency 2, becoming periodically larger and smaller
experimentally? The quantum feedback analyzed in Ref. 30than Ax,; correspondingly the momentum uncertainty of the
assumes continuous monitoring of the nanoresonator stal@sonator also oscillates and becomes squeezed below
with constant “strength” of measurement and allows cooling;; ;5 Ay periodically. Because of these oscillations, squeezing

of the nanoresonator practically down to the ground stat§g ,q,a|ly considered in the rotating frame, so what is usually
However, it does not allow squeezing of the nanoresonato

state(below Axg), except in the unrealistic case of a strong a'ﬁ.Cl:fSEd 'E squeelzmg dOf _onfe of twolql_Jadr_aturehampht_u_des,
coupling between the nanoresonator and detector. which can be translated via free evolution into the position
Besides curiosity, the interest to nanoresonator squeezi d momentum at t.'”.‘eco- Howgver_, n t.h's paper we pre-
is justified by its importance for the ultrasensitive force de- rto cp_nS|der explicitly the oscﬂlatmg time ere_ndence of
tection. Nanoresonator squeezing by periodic modulation of'€ POsition and momentum uncertainty, and in this sense we
the spring constant at twice the flexural frequency has beefften use terminology of oscillating in time squeezing of
proposed and analyzed in Refs. 38 andhis proposal is to Position (or momenturj
some extent a scaled down version of the prop8siair Finite duration of each measurement pulse prevents com-
gravitational-wave detection and experiment on classicablete self-compensation of free evolution and consequently
thermomechanical noise squeeZlg Nanoresonator prevents infinite accumulation of the squeezing degree; in-
squeezing by reservoir engineerifigy coupling to a qubit stead, squeezing saturates after initial transient period. An
and illumination with two microwavesas been proposed in explicit account of finite pulse duration for continuous mea-
Ref. 41. We would like to notice that to be useful for an surement by a weakly coupled detector is one of the main
ultrasensitive force detection, the preparation of a squeezetdifferences between our formalism and the standard analysis
state should in any case be complemented by the measuref stroboscopic QND measurements?3
ment stage after the force has acted on the nanoresonator; theFinite duration of measurement pulses also leads to a ran-
most natural way for this measurement is using the RF-SETom motion(diffusionlike) of the wave packet center at the
(or QPQ as a detector, and such measurement of a squeezetbments of maximum-squeezing. This can be explained as
state is not trivial(unless detector is strongly coupjed a consequence of random momentum kicks during measure-
In this paper we analyze the nanoresonator squeezing proaent pulses, which are the quantum back-action price for
duced by measuring the nanoresonator positféig. 1) with  x-measurement. Since the free evolution between the pulses
the measurement strength modulated in &hféor example, is not cancelled exactly, momentum kicks lead to gradual
modulating the bias voltage of the QPC or RF-$E30 the  x-evolution as well. This effect causes gradual “heating” of
stages of the squeezed state preparation and its measuremth@ nanoresonator. If not stopped by the damping due to fi-
are essentially similar. We show that even for a weak counite Q-factor, the resonator energy will grow up to the effec-
pling with detector, a significant squeezing of the nanoresotive detector temperature which is on the order of the detec-
nator state can be achieved when the modulation frequendpr voltagé?® and is typically very large compared fav,.
w Is close to 2p/n, n=1,2,... . This heating can be prevented by using the quantum feed-
The mechanism of this effect is exactly the physics ofback which can keep the wave packet center near zero; such
stroboscopic QND measuremelits® and can be easily un- feedback has been analyzed by Hoplkétsl.,° and we will
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basically follow their analysis in the present paper. We assume a weak response of the detedtorl,|
Finite Q-factor of the nanoresonator, finite temperature of<|l,+1,|, and therefore the linear dependence of the detec-
the environment, and resonator unharmonicity obviously detor current on the measured position
crease the maximum achievable squeezing. In this paper we
consider the effects of th@-factor and temperaturghough L=lo+kx, (6)
for many results they are neglecletiut we do not consider npeglecting effects of detector nonlinearifylso, we neglect
unharmonicity. We also do not analyze explicitly the use ofthe dependence anof the detector current spectral density
the squeezed state for the ultrasensitive force detection; hovs which is assumed to be flat in the frequency range of
ever, we discuss the procedure of squeezed state verificatiofterest. Because the voltayevaries in timeJy, k, 1, andS,
which is a closely related topic. In the next section we de-|so depend on time, that will be taken into account explic-
velop Bayesian formalism for the analysis of our setup; it isjtly in the next section. Notice that the white noiSeis an
shown to coincide with the formalism of conditional evolu- intrinsic detector noise, which is defined for a fixed voltage
tion used in previous papers, in particular in Refs. 33 and 30gy 3 time scale much shorter than the time scale of voltage
Measurement modulation and simplified equations foryariations, while the long-time spectral density of the detec-
Gaussian states are discussed in Sec. Ill; Sec. IV is devotggy current is obviously affected by the voltage changes as
to the calculation of squeezing; quantum feedback is angye|| as by the oscillating signal from the nanoresonator.
lyzed in Sec. V; verification of the squeezed state is dis- Tg describe the dynamics of the continuous quantum mea-

Cussed in Sec. VI, and Sec. VII iS the Conclusion. surement proceSS, we app'y the quantum Bayesian approach
practically following the derivatioH for the case of qubit
Il. MODEL AND BAYESIAN FORMALISM measurement. We will have to use similar assumptions; in

particular, for the validity of the Markovian approximation
we assume that the internal dynamics of the detector is much
faster than the oscillator dynamicthis requireseVsfwy),

we also assume that detector current is quasicontinuous

For simplicity we consider the nanoresonaf#iig. 1)
measured by the low-transparency QRRough our results
are applicable to the RF-SET as welnd the system Hamil-

tonian is . , ; .
(which requires ly/e>wy and even stronger inequality
H= HO + Hdet+ Hint + Henv+ Hfb: (1) kAXO/e> wO)'
] ) ) ) To start the derivation, we first neglect the nanoresonator
where the first term describes the oscillator: evolution due toHg, Hen, and Hy, (which will be added
B2 mwé&z later) and assume constant detector voltagévariations of

Ho=—— (2 V, slow on the time scale of detector dynamics, will be taken
2m 2 into account later just as a parameter varigtid®imilar to
(f) and 5\( being the momentum and position operalptbe Ref 47, the derivation Of the Bayesian equations can be done
last term in two ways: “informational” and “microscopic.” Let us start
with informational derivation.

Hip =~ FX (3 Since the operator of the QPC current commutes Wijth
the detector current is insensitive to the off-diagonal matrix
Rlements of the resonator density matrp(x,x’) in
x-representation. For a measurement duratidong enough

describes the feedback control of the nanoresonator by a
plying the forceF(t). Hqe and H;,, correspond to the detec-
tor and its interaction with the nanoresonator similar to Refst:ompared to the detector time scaleteV and e/l, (and

42 and 25: short compared to the resonator evolution duéprHe,y
Heyer= s E|a1Ta4 + S Era;raf +S (Ma;ra4 +he), (4) +Hs, SO that_ it can be neglectgdhe probability distribution
[ r Lr of the noisy detector current averaged ovet |
=(1/7)Ji(t)dt’, is given by

Hin = 2 (AMXa]a, + h.c). (5) _ _
lr P(|,T):J P, (I, 7)p(x,x,0)dx, (7)

Finally, H.,, describes nanoresonator interaction with pho- _
non bath at temperatufg this interaction is assumed to be where the third argument gf is time andP,(l,7) is the

weak aan leads to a large quality facQe>1. In Eqs.(4)  yronapility distribution forl in the case of the resonator at
and(5) &, anday are the creation and annihilation operators yositionx. Sincer> e/l,, this distribution is Gaussian,
for two electrodes of the QPC, for simplicity we assume no

relative phase between the tunneling amplituffeand AM pX(|_’7-) = (27D, 2 exd - (I - 1,)2/2D,], (8)
(taking this phase into account is simpfe?®but makes the _

formalism significantly lengthier, see Appengi¥or a given whereD,=S/27 is the variance. Notice thatis treated as a
position x of the oscillator, the average detector current isclassical variable because detector decoherence(tirhieh
l,=27|M+AMx|?p,p,€?V/%, whereV is the QPC voltage is on the order ofi/eV) is much shorter tham.

which may vary in time with frequency comparable taw, Since classical and quantum dynamics are indistinguish-
e is the electron charge, angl, are the densities of states in able when off-diagonal matrix elements pfcannot affect
the electrodes. the evolution, the diagonal matrix elementspo$hould sat-
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isfy the classical evolution of conditional probability given , o 7 —
by the Bayes formul4® p(x,x',7) = p(x,x",0) Px(|,T)er(|,T). (12)
™ p(X,X, 0)Px(I, 7)dX
(x,%,0)Py(I, 7) f
plxx, ) = —" o (9)
p(%X O)P;(I_r)di We have neglected the possible phase factor(iéip be-

cause in our moded,,=0 since in the derivation presented

— ) above ¢, cannot depend oh (otherwise the upper bound
wherel is now a particular result of actual measurem@at  \yould not be reachedind there is no phase in the ensemble-
the evolution ofp is conditioned on the measurement reSU“averaged resuf® The absence of phasé, can also be
1. proven directly using the microscopic model discussed be-

Classical Bayes formula cannot tell us anything about thdow. Nevertheless, nonzeré,, can be present in somewhat
evolution of the off-diagonal matrix elemeni$x,x’). How-  different models which include “asymmetry” of the detector
ever, in the case of an ideal deteéfofsuch as QPCthe  coupling®® an example of such case is when there is a rela-
evolution equation can be derived using the same trick as itive phasé*-46 betweenM and AM in the Hamiltonian(4)

Ref. 47 by comparing the ensemble-averaged density matriand (5) (see Appendix

element® p,(x,x’) with the upper bound fojp,(x,x’)| de- So far we have proven E¢L2) only for a pure initial state
rived from the Bayesian viewpoint. Let us start from the p(X,x’,0). It is also easy to show its validity for a mixed
obvious inequality state. Representing initial state g®)==>;P;(0)p;(0), where
P, are the probabilities of pure statgg(0), we apply a
lp(x, X', 7)| < \/p(x,x, 7p(X' X', 7) (10) “double-Bayesian” procedur@s in Ref. 4% in which P;(7)

is found via classical Bayes theorem while eagfr) satis-
and take into account that for different members of the enfies the quantum Bayes equatim)_ S|mp|e a|gebra shows
semble(different realizations of the measurement progessthat evolution of the mixed density matrixis still described
the value ofl is different, with distributionP(l,7) given by by Eg.(12).
Eg. (7). Performing averaging over realizations and using Besides using the “informational” approach described
obvious inequality|p,,| <|p|,, We transform inequalitf10)  above, Eq(12) can also be obtained in a “microscopic” way.
into the following: Similar to the derivation for the qubit measuremé&hthe
evolution can be divided into the sequence of sufficiently
| — — short segments consisting of “conventional” evolution of the
lpadX. X', )| < f Ve X, D)p(x", X", 7)P(I, 7)dI. nanoresonator and detector, in which all the detector degrees
of freedom are traced over, except the numibef electrons
passed through the detector, so that the magnitude of interest
is the combined density matrix,(x,x’,t). At the boundaries
between the segments we collapse the numtsgrcording to
the orthodox procedur®:the probability of a particular “re-
alized” n=ny is equal tofp, (x,x,t)dx, and the correspond-
ing density matrix after collapse is

The integration ovef can be performed explicitly using Egs.
(9) and (8), that finally leads to an upper bound for the off-
diagonal matrix elements

a6 X', 7 < Vp(x,%, 0)p(x' X', 0)e b~ bx)*74S - (11)

Now let us compare this inequality with the result of con- pn (XXt =0)8, 1

ventional ensemble-averaged appro&thas shown by X t+0) = — = (13
Mozyrsky and Martin, in the larg®-limit the measurement fp X%t — 0)dx

by a low-transparency QPC leads to decoherence of the nan- Mot ™™

oresonator  state  as p,/X,x’,7)=p(x,x",0)exd-(, _ _ _
~1,,)27/4S]. Since the exponential factor is the same as inVNereé dnn, is the Kronecker symbol. Applying this sequen-
(1), then for a pure initial state, |p(x,x’,0)| tial collapse procedure to the conventional evolution of
= /p(x,x,0)p(x’ ,x',0), inequality (11) actually reaches its Pn(X, X ,t_) described by Eq6) of.Ref. 25, we can obtam_our
upper bound, which is possiblenly if inequality (10) Eq. (1) if the resonator evolution due ®o+ Hen* Hpp IS
reaches its upper bound feechmeasurement resuif (10) neglected and the limit of large detector voltage is assumed.

is a strict inequality for at least some realizations of measure- The differential equation describing evolutpn of the réeso-
ment, then averaging over realizations make$ a strict nator state due to measurement can be obtained by differen-

inequality]. This means thaa pure state of resonator re- tiating Eq. (12) over time 7 at 7-=_0 apd using Eq(8) (be-
mains pure in the process of measuremeinilar to the case cause of the Markovian approximation, this can be done for

of qubit measuremert. Notice that complete absence of de- &rPitrary starting time):

coherence in a particular realization of the measurement pro- . rH - / 1 _

cess is because the QPC is an ideal detector, while for the pOX 1) = p06X DS IO+ e = 1(1)]

SET the remaining decoherence rate would not be Zero. -[12+ |§, - 202(t))]/2}, (14)
Combining the equality ii10) with Eq. (9), we express it

as where we have introduced notatiodKt))=[1,p0(x,x,t)dx
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and<I2(t)>=fl)2<p(x,x,t)dx, while Eq.(7) transforms into Equation(17) describes the evolution of the nanoresona-
tor state due to measurement by the ideal dete@tow-
1(t) = (1(1)) + &(b), (19  transparency QP@Qlescribed by the Hamiltonia@) and(5).

. . . . . To extend the formalism to a nonideal detedfor example,
v_vhereg(t) Is a white noise with spectral dens@/(qs men- RF-SET we introduce its quantum efficiencideality) 7
tioned before, we neglect dependenc«ﬁocbn X). thlce that =<1 similar to Ref. 47 and replace the decoherence factor
Eqg. (14) actually does not require the current lineari{g) K2/4S, by k2/4S 7. Simply speaking, 1# is the ratio be-

and formally coincides with the similar equation for the case, ; -
) . L tween the product of output and back-action noises of the
of entangled qubits measured by an ideal detef€tdrx is P P

replaced by the index corresponding to the state of qubitsgetecmr and its quantum-limited valé"*’ For example,
. X 2/4S in Eq. (1 n be repl 4S 7 when an extr
For the linear detector with respon&®, Eq. (14) becomes /4§ 9. (17) can be replaced biy"/4S when an extra

term —yy(x—x")?p(x,x’) is due to additional classical back-

- " — nel _ " action noise from the detector or when the output noise of
X,X") = p(X,x I(t) = Ig]k(x+ X" = 2(x . . .
pxX') = p( ) S 2{[ ® ) olk( X ) the detector contains an additional noisee Ref. 45 and
— (K72)[x=+ ()= = 2Ax)]}, (16)  Appendi®. Notice that finite temperaturd of the low-

transparency QPC detector also reduces the detector effi-
ciency down t8” n»=tani(eV/2T).

As the final step of our derivation, we add into Ed7)
(modified by efficiency) the evolution due to termg{,
+H eyt Hip Of the Hamiltonian(1). Interaction with the ther-

al bath denoted b¥{.,, can be described by the standard

where (x)=[xp(x,x)dx, (x2=/x?p(x,x)dx, and for brevity
we do not show explicitly the time dependencepof

Notice that Eq.(14) has been obtained by differentiating
Eq. (12) over r using the standard rules for derivative®.,
using only the first order id7). Therefore Eqs(14) and(16)
are the stochastic equations in the so-called StratonovicH . nian motion master equati§h. Assuming weak cou-

form which assumes “centered” definition of the derivative, . ;

. X 'pling (large Q-facton) and arbitrary temperaturg€, we add

standard calculus rulé3.For a nonlinear stochastic equation — (Mw2/ 2:iQ)cothifiwy! 2T)[X,[%, p]] into the equat'ion’fob
0 ) 1 .

the_c_a_lculus rulef are qw}e dn‘_fere_nt for a_nc_)ther widely usecil'herefore, our final equation for the nanoresonator evolution
definition of the “forward” derivative p(t)=Ilim o[ p(t+7) is (in 1t form)

-p(t)]/ 7, which would lead to an equation in the so-called
It6 form 5! Advantage of the I1td form is the simple averaging ., —i iwy . .

over the noisgwhile averaging in Stratonovich form is not P(*X') = ?[HO'*Hfb*p]X:X’ - ZﬁQ[X’{p'p}JX’X'

trivial); this is the reason why Itd form is usually preferred 5 5

by mathematicians, even though physical intuition works (K Mg fiwg ) U2y
better in the Stratonovich form. Translation back and forth 4S 7 ¥ 2hQ coth o1+ Yadd (= x)p(xx)
between two forms is often useful to solve a particular prob-

k
lem. +—(X+ X" =200 p(x,x") &), 18
The rule of translation between the two forms is the 51( el & (18

following:©* _for a system_ of equatlonsyi(t):Gi(y,t) .. in which the white nois&(t) is related to the detector current
+Fi(yft)§(t)_ in the Stratonovich form, the corresponding Itd I(t) via Eq. (15) as &) =1(t)-1o—k(x(t)) and yaqq is intro-
equation is y(1)=Gily, ) +Fi(y, )&(t) +(S/4)Z [dFi(y. )/ duced phenomenologically to take into account sources of
dyJF;(y.0), wh.ereyi are the compoqents of the vecl;qui' additional dephasing, for example due to high-temperature
andF; are arbitrary functions, ang; is the spectral density electromagnetic fields penetrating into cryostate will
of white noise&(t). To apply this rule to our case, we replace mostly assumey,q=0). The damping term can be written in
indexi by continuous setx,x’) and replace summation by e explicit form using substitutioniX, {p, p}sly, = —if(x
integration;F; andG; are now functionals of=p(x,x’), and —x')(8l x—3al ax")p(x,x'). Notice that there is no damping
thg derivatives are replaced by functiongl derivatives. Usingerm due to measuremefin contrast to the term due to
this rule, Eq.(16) is translated into the It6 form as Q-facton because we treat the detector as a device with com-
: “_ , , letely classical output and therefore detector voltage is ver
pOX') = (WS)(x+X = 2x)p(x.X) £ IF;rge %vhile its unnofmalized coupling is very Weak;gin othery
- (K%/4S)(x - X")?p(x,X"). (17) words, we assume that the nanoresonator energy is limited
well below the effective temperature of detectahich is on

This equation is similar to equations derived in many publi-ihe order ofeV) by other effectgfeedback and)-facton.
cations(e.g., in Refs. 30, 33, 52, and Bfor measurement of

a mechanical oscillator. Notice that the last term in &)
does not describe decoherence in a particular realization Qfi \EASUREMENT MODULATION AND EQUATIONS

the me_asurem_emtecall that a pure state remain; prifEow- _ FOR GAUSSIAN STATES
ever, it describes ensemble decoherence, since averaging
over the measurement resutiver noise¢) is done in Itd Periodic modulation of the QPC voltagé=f(t)V, (with

form simply by settingé=0. This term can also be rewritten frequency comparable t@, and much smaller thaeV/#%
in a standard double-commutator fortsee, e.g., Refs. 25, and ly/e) leads to the corresponding modulation of the
30, 33, 49, and 53-36since(x—x")?p(X,X") =[X, [X, p]lxx'- measurement parameter&="f(t)ky, 1,=f(t)(Igo+keX), §
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=|f(t)|S, so that the “measurement strengk?’/S is modu- damps and dephases the nanoresoriate, e.g., Eq(7) in
lated as|f(t)|k3/S, [in generalf(t) may be negativk In the ~ Ref. 25 which has the voltage-independent damping kerm
case of RF-SET the voltage dependence of parameters is niat is neglected in the Bayesian formalism, while the Baye-
trivial (also the modulation can be arranged using the gatéian evolution rate is crudely proportional to the voltage
voltage instead of the bigsbut we still can defind(t) as the  (its strength relative to the neglected damping is crudely
modulation of the measurement strength from equation € V/#iwy for the resonator energy on the orderfial;). There-

5 5 fore, the Bayesian evolution during the whole modulation

kIS = [f(1)[kg/So. (19 period is much more significant than the neglected damping
Quantum efficiencyy in general can also be affected by the in the case OT su.fficiently'large maximgm vplta‘gzj@and not

too large oscillation amplitudéhe “heating” is prevented by

modulation, but for simplicity we assume it to be constant.f dback: otherwi h gel d be i X
(In reality, we expect decrease gfat smaller voltages be- fe€dback; otherwise the model would be inconsisterQat
=). The neglected contribution is expected to lead to a

cause of contribution from voltage-independent nois€e K d . fh d delv b
sources. However, these contributions can crudely be takef{€ax damping of the nanoresonator state and can crudely be

into account via reduction of th@-factor and, moreover, _taken;] into Iaccognt as some reduction of@*;&actc;r.[Equg‘;
they are assumed to be sufficiently small; therefore the eﬁedﬂg the voltage-independent term in E@) of Ref. 25 wit

of imperfect efficiencyy is mainly taken into account during 1€ Second term of our Eq18), we obta]li@n an estimatQ
the largeV fraction of the modulation perioy. =2eVy/hwyCqy which is on the order of 10 for the experi-

Notice that the nois&(t) in Eq. (18 has implicit time mental parameters of Ref.]50bviously, significant QND

dependence because of modulated in time spectral de&sity e:‘fect f?:hstroboscopm rrlea?urerr:e'gt requ:aeé very vtvheab %c,),u'
To remove this dependence we define the white noise piing ot the nanoresonator to outside world during the -0
fraction of the modulation period.

&(1) = EOVSYS sgrif(t)] (20) Following Refs. 30, 33, 60, and 61, we assume that the
o ) oscillator state can be described as a Gaussian state. This
with time-independent spectral dens8y Then the last term  5qqumption can be justified by the fact that a Gaussian state
in Eg. (18) can be written as \|f(1)|(ko/S)(X+X"  remains Gaussian in the process of continuous

=200 p(X,X") &o(1). measuremeft (we have checked this statement for nonideal
Somewhat similar to the case of qubit measurerfiewe  detectors including “asymmetric” detectors and for varying
define the dimensionlegime-dependentcoupling as in time strength of measuremérdand by the fact that the
A2 thermal state(natural initial condition is Gaussiaf® It is
C= 5 = |f(t)|Co, (21)  also knowfC that any initial pure state approaches a Gauss-
SMwy ian state in a course of continuous measurement by an ideal

which can also be expressed &s4/w,r, where -,  detector. We have also checked that a mixture of Gaussian
=25/(kAXo)? is the “measurement” time which would be States evolves into a single Gaussian state due to measure-

necessary to distinguidith signal-to-noise ratio of itwo ~ Ment.

position states separated by the ground state widgh We A Gaussian state is defin’@d_as a state for
will mainly consider the case of weak couplir@s< 1, which Wh,'Ch the }ngner, function W(x, p) = (m72)™"[ p(x+Xx", X
corresponds to a realistic experimental situation. As an ex- X )exp(~2ix’p/A)dx’ has a Gaussian form,

ample,C is on the order of 10 for the experimental param- W(x,p) = Norm X exp(- BTDB/2),
eters of Ref. 5.
In this paper we will consider two types of modulation X — (%) D, D,
with frequency o: harmonic modulation with the relative B=< ) =< p),
modulation depthA,og=(Fra—frin)/ Frre 0= Anog< 2: p—{p Dxp Dy
A, with normalization factor NormﬁZw(DxDp—Dﬁp)l’z]‘l. In
f)=1+ —Od(— 1 + coswt) (22 x-representation the density matrix of this state is
X+ X' 2
and the square-wavéstroboscopig modulation with pulse 1 ( > —<X>)
width 6t and relative deptt\,qq p(X,x") = — exp -
. . 27D 2D,
f L t-jx2nlo|< &2, =12, VETEx ) ,
® 1-Anog Otherwise. @3 xexp{— (x=x) (DXDpZ_ Dxp)}
Notice thatf(t)| <1, soC, corresponds to the maximum cou- 8D 4
pling. Sincef(t) reaches zero in both types of modulation at Xexp[i(x—x')(g + (LX' _ <X>>Qg)}_
Amoa=1 (we will mostly consider 100% modulatiom,oq h 2 hDy
=1), the conditionseV>fiwy and kAxy/e> wqy required for (24)
the Bayesian formalism are violated during a fraction of the
modulation period. Nevertheless, we will still use Ef9) The Gaussian state is characterized by only five real pa-

for the analysis, that can be justified in the following way. rameters: average positigr)=(X) and momentungp)=(p),
Surely, even av=0 the detector actually interacts and sotheir variancesD,=(%%)~-(%)? and D,=(p*-(p)?, and the
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correlation D,,=(Xp+pX)/2—(X)(p). These parameters sat- IV. WAVE PACKET WIDTH SQUEEZING

isfy the generalized Heisenberg inequafity In this section we analyze Eq&8)—(30) and show that

the x-width \EX of the nanoresonator wave packet can be
made much smaller thakix,=%/2mw,. Let us use the natu-

which reaches the lower bound for the pure states. In partic@ normalization ofb, andD,, by the ground state param-
lar, “coherent” states are the Gaussian states vith ©€t€rs,t=Dy/(h/2Mawy), dy=Dy/(Amwo/2), and similarly

DD, - D, = %24, (25)

=(AXp)?, Dy=(fi/ 2A%0)2, andD,,=0. dy,=Dyp/ (h12). Then Eqs(28)—(30) can be rewritten as
For Gaussian states E(L8) significantly simplifies and . B 5
transforms into the following set of equations: A/ wo = 20, - Colf()d, (3
L Ap 2 . 2
®="" §|f<t>|1/20x§o<t>, (26) /a0 = = 24,5+ (Col (D] = Colf DI~ 5l
2 h ah
2K o + = coth o 4 T2 Yadd (32)
(B) = = Mwg(x) + “I f(O[M2Dypbo(t) = -X(P) + F, Q 2T map
S Q
(27 : 1
) o=y~ & CH 0y~ o (33
D.= ED _ %If(t)IDZ (28) It is easy to see that the effect of additional dephasing
X * g ’ is equivalent(in case of finiteQ-facton to increase of envi-

ronment temperatur&; so we will not consider this effect
22 K2 5 separately(y,q=0 is assumed for the rest of the paper
Dp= — 2MwDyp + k0_|f(t)| - Elj0|f(t)|D)2(p_ ﬂ)Dp Also, let us postpone the analysis of effects due to fiQite

27 and temperature until Sec. IV D, and start with the case of
A M2 7 infinite Q-factor.
40 cothﬁ + 202y (29)

Q

A. Numerical results for squeezing degreeS

_ D 242 ° We have analyzed Eq@l)—(33) numgrically for the har-
Dyp= =b_ mwng - —|f(t)|DXDXp— —ODXp, (30) monic (22) and stroboscopit23) modulationf(t) for several

m S Q values of the maximum coupling,, concentrating on the
rangeCy=1. Notice that for the stroboscopic modulation the
evolution during each period of modulation can be calculated
analytically using Riccati equatiofisthat significantly sim-

which practically coincide with the equations derived in
Refs. 33 and 3(@see also Ref. 60 except for the time de-

pendentf(t). It is interesting to notice that while E¢L8) is lifies the numerical calculations. As anticipated, we have
a nonlinear stochastic equation, for which the Stratonovich, nq that imespectively of the initial conditions, Egs.

apd Ito forms are significantly different, there is no such(3l)_(33) approach the asymptotic solutions which oscillate
difference for EQs.(26)430), so they can be treated as it the modulation frequency (Fig. 2). Even for small
simple ordinary differential equations. coupling, Cy<1, the asymptotic oscillations can be signifi-
Notice that the equations fd,, Dy, andDy, do not de-  c4n¢ in the case of resonanae=2w,/n (notice that atC,
pend on noisé,(t) and feedback forcé, and are decoupled ¢ the variances oscillate with frequencyd. During the
from the remaining equations. Therefore the evolution of the,gciliation period the asymptotic solution fdg(t) reaches

“wave packet shape” is deterministiiull “shape” is charac- e yajues both above and below the stationary solution for
terized byD,, D,, and D, however, forx-domain we are f(t)=1 which i$033

interested irD, only). In contrast, the evolution of the packet

centerg(x) and(p) (in x- andp-domains is random and thus d, = (\,E/co)[(l +C§/77)1’2— 142 (39

is different for different realizations. To characterize the en- — )

semble distribution ofx) and(p), in Sec. V we will analyze and becomesd,=1/vy for Co<1. Most importantly, the
the corresponding variancesver realizations Dy, Dy, squeezed statal,<1, can be achieved for both harmonic

. L and stroboscopic modulation.
and Dyy- Since the total (unconditional, ensemble- Figure 3 shows the-squeezing maximized over the os-

averagefi x-width of the nanoresonator state {©,+Dg, cillation period for the asymptotic solution, S

both x-variances should be made smaller than the groune= max[l/dx(t)]:max[Axé/Dx(t)], as a function of the
state variancedxj in order to produce the-squeezed state. modulation frequencys for the harmonic modulatiori22)

In the next section we will show th&, may be made sig- and several values of couplin, efficiency » and modula-
nificantly smaller thanAx] using measurement modulation tion amplitudeA,,,s (Notice that in the rotating frame the
f(t), while in Sec. V we will show thaD,,, can be made even squeezingS does not depend on time for weak coupling.
smaller using feedback. One can see that maximum squeezing is achieved for modu-
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FIG. 2. An example of time dependence of dimensionless wave
packet variancedy, dp,, andd,, (upper panslfor harmonic modu-
lation f(t) of measurement strength shown in the lower panel. After
a transient period the evolution reaches stationary oscillating re-
gime. The state purity Tp?) (lower panel gradually approaches
unity (mixed initial state withd,=d,=10 is chosen The long-
dashed line in the upper panel shows evolutiordpin the non-
modulated casé(t)=1.

lation with twice the resonator frequenay=2wq, 100% am-
plitude, A,,q=1, and for ideal detectory=1. The value of
maximum squeezing does not depend much on cougling
[Fig. 3(@] and is equal t&&~= 1.73 for weak coupling, while
the width of resonance scales proportionallygaanalytical
results discussed later and shown by dashed lines confirm , . . ,
this behavioy. For nonideal detectorg;< 1iFig. 3(b)], the 0 1 2 olo 3 4
height of the peak decrease¥2w) =~ 1.73/ 7, and its width 0
increases. Away from the resonanSeapproaches the value FIG. 3. Dependence of the packet width squeezsh@gmaxi-
for non-modulated measurement given by E84) [dotted  mized over the modulation peripdn the frequency» of the har-
lines in Fig. 3b)]. Besides the main resonance, there aremonic modulation(22) of the measurement strength, for several
resonances ab=2wy/Nn, N=2, which are barely visible in values of(a) the coupling’y, (b) detector quantum efficiency, and
Figs. 3a) and 3b) and lead to small shoulders rather than to(c) modulation amplitude’,,,¢ Solid lines in(a) and (b) are the
peaks. However, these resonances become much better vigsmerical results while dashed lines are the analytical results cor-
ible for modulation amplitude#\,,q greater than 100% as responding to Egs(41) and (43); the dotted lines inb) are the
shown in Fig. 8c). In particular, forA,,4=2 there is no peak asymptotesS=y.
at w=2wq, and the main peak is ai=wyq; this is obviously
because in this casé(t)| oscillates with frequency @ in-  that the on/off ratio even as large as®*1€ads to a consider-
stead ofw. able decrease @ [obviously, the effect of finite on/off ratio
Much stronger squeezing can be achieved for the strobdsecomes more important with decreasesfT,]. Another
scopic modulatior(23) of the measurement. Figure 4 shows consequence of finite on/off ratio is the decrease of the reso-
S(w) for the ideal detector witlf;=0.5 and pulse duration nant peak height ab=2wy/n with n.
8t=0.05T,, where To=27/w, is the nanoresonator period. = The results presented in Fig(g show that for smaller
One can see that as expected from the standard theory obuplingC, the peak height remains practically the same, but
stroboscopic QND measuremeits? there are sharp reso- the peak width decreaséthis is the reason why we chose
nances atw=2wy/n. In the case of full modulationA,,q  relatively large coupling in Fig. 4 in order to have a notice-
=1, shown in Fig. 4a), the resonances have equal height;able peak width For smaller pulse duratioét, the squeez-
however, their width decreases with According to the ing peak becomes higher and narroeig. 5(b)], while the
QND idea, the squeezing should significantly decrease ifletector nonideality makes the peak lower and widgg.
measurement is not switched completely off between thé&(c)]. All these dependencies will be confirmed by the ana-
measurement pulses. Comparing Fige) 4nd 4b) we see lytical results discussed below and shown in Fig. 5 by dashed
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FIG. 4. Numerical results for the packet width squeezthas a 12 '
function of modulation frequency for the stroboscopic measure- 10_’ 5t/T=0.05 (C) B
ment modulatior{23) with finite pulse durationt. Efficient squeez- 1 c =% 1 ’
ing occurs atw= 2we/n. Infinitely large Q-factor of the nanoreso- 38 RS n=1.0
nator is assumed. 1 :
and dotted lineqddashed lines show more accurate results
while dotted lines correspond to a simpler formula
0
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B. Analytical results for squeezingS

1. Evolution of the state purity FIG. 5. The shape of the squeezing pe(lv) at w= 2w, for

Before discussing the analytical results for squeezing, |e$troboscopic modulation, for several value_s(a)‘ coupling with
us briefly discuss the evolution of the state purity(gfy detectorCy, (b) pulse durationst (To=27/wq is the resonator pe-
_ N N2 —1 /. _ 2 riod), and (c) quantum efficiency of measurement Solid lines
(—3(11)/2)/3; [?XDtF] Dipozllwt;l, th(r;u.t—.dxdp dXE[)' F(;on_‘n eqi show numerical results, dashed lingsactically indistinguishable
equ;tion with Q= and y,4¢=0) it is easy to derive the o0 e solig liney are the analytical results given by Edq49)

and (41), and the dotted lines are calculated using the simplified
(35) eguation(Sl). The height of the squeezing peak is proportional to
V! & [Eq. (52)] while its width is proportional taCy(6t)3/n?y7
SinceC, andd, are both positive, the asymptotic solution of [Eq. (53)].
this equation is obviously=1/7 and therefore the state pu-
rity reaches the asymptote (b?)=1'%. In particular, in the

u= woco|f(t)|dx( 77_1 - U) .

— [ 1, A2 _
case of ideal detectop=1, the state eventually becomes A0 =7+ A7 A cos 2ot + @), (36
pure (similar to the case of a qubit measurenténtAs will
be discussed later, the typical purification time is comparable do(t) = V5™t + A%+ A cod 2wt + ), (37)
to the time of reaching the asymptotic regime for variances
dy andd,. .

dyp(t) = Asinagt + ¢), (38)

2. Analytics for harmonic modulation with arbitrary amplitudeA and phasep. (Notice that these

For simplicity in this subsection we consider the harmonicequations satisfy the asymptotic condition pfE \577.) For
modulation (22) of the measurement strength only with weak coupling,Cy/ <1, and harmonic modulatio(22) in
100% modulation, A, ,g=1 (which leads to maximum the vicinity of the resonancey= 2wy, it is natural to look for
squeezing and we still assum&=«. Without measure- the asymptotic solution of Eqs(31)—(33) in the form
ment,Cy=0, Egs.(31)—(33) have the solution (36)—(38) with 2w, replaced byw (actually,A and ¢ vary in
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time with frequencyw, but variations are negligible at
Col n<1).
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phase of the modulation, while during the measurement
pulse of durationst the parameteré and ¢ slowly change

To find A and ¢, we substitute these equations into the(we again assume the weak coupling limit accordance

7w

equation [79 f(t)(7 *~d;~d7)dt=0 which follows from
the stationarity conditionff;‘,”w(dx+dp)dt=O, and Eqs(31)
and(32). This gives us the relation

(39)

We find numerically and analyticalligee belowthat =0 at
the resonancey=2wy. (This is quite natural: smalled, cor-
respond to larger measurement strengthen from Eq.(39)
we find A=1/\/3% and therefore

R
A=2\y 1+ A2 cose.

S(2wg) = V37 (40)

since the maximum squeezing and the amplitudeA are
related as

S=nA+\VA?+ 1), (41)

This result confirms the numerical result for the peak height

in Fig. 1.

To find the shape of the resonant peak, we need one more

equation relatingA and ¢. It can be obtained by deriving
equation ford,y(t) from Egs. (31)—33), and equating the
sin(wt+¢) component for the two sides of the equati@rs-

sumingCy/ 7<1 andw=2wy). In this way we obtain
(4w§ - w?)A= n_lcowg sine. (42

In particular, this proves thap=0 at w=2w,. Combining
Egs.(39) and(42) we find the amplitudeéA as

2/
A(w)z\/ — ,
3+9(w) + Vg%(w) + 109(w) + 9

(43)

whereg(w) =167(2-w/ we)?/C5. The corresponding analyti-
cal result for squeezing is obtained via Eq(41). This result

is shown by the dashes lines in Figga)3and 3b), which
practically coincide with the solid lines representing the nu

merical results. Notice that the linewidth of the peak is pro-

portional toCo/\s’Z; away from the resonanck decreases to
zero, andS approachesS=1 7, which is the same as for the
case without modulatiof® The analytical result forS(w)

works well for couplingCqy up to approximately 0.3; for

largerC, there is a noticeable difference from the numerical

result as seen in Fig.(8. It is curious that rather complex

shape of the resonance peak given by E4&) and (43) is

quite close to the square root of the Lorentzian shape
V3-1

: ) (44)
V1 + J (- 2wp)/Aw]?
with half-width at half-heightAw=0.63wyCqy/ \77

S(w) = \”7;(1 +

3. Analytics for stroboscopic modulation

In the case of stroboscopic modulati@®B) of the mea-
surement strengtfin this subsection we assume full modu-
lation, Ay,0q=1, and still neglec-factor, the variances,,
dp, andd,, should follow Egs.(36)—(38) during the “off”

with Egs. (31)—(33). In particular, close to theth resonant
peak of Fig. 4a), w=2wy/n, the phasep should change
during the pulse by the small amount

(45)

in order to match z/w periodicity of the asymptotic solu-
tion with the periodicity of free oscillation§36)—(38). On
the other handde can be found from the equation

@ =~ 4wCon Yf(1)|dy/[(dy - d)?+4d7)]  (46)

which follows from from Eqs(31)—(393). Integrating Eq(46)
within the pulse intervalt|< &t/2 using Egs.(36)—(38) in
which A and ¢ are assumed constant, we obtadp=
—Cp Sin(wgdt)/ nA. Combining this result with Eq(45) we
obtain an equation relating and ¢,

8¢ = — 2wy( 27 w) + 27N = % (wl wy — 2/N)

m?A(wl wy — 2/N) = 771Cq SiN(wdt)sin ¢. (47)

To obtain one more equation fék and ¢, we use the
condition [ f‘gf,z(dx+dp)dtzo. Expressing the derivative,

+d, from Eqgs.(31) and(32) and using Eqs(36)—38), we
get the equation

Awgdt =\ 771+ A? sin(wydt)cos . (48)

Equations(47) and (48) are sufficient to findA for the nth
resonance, though the expression is quite long,

_l .

_ /27] Slnz(woﬁt)- , (49)

B(w) + VBX(w) + 4g(w)Sin(wydt)
where  B(w)=G(w)+(wdt)?>—sif(wodt) and  G(w)
=m2n?(2/n- w/ wp)?n/C3. The squeezing is obtained from
this result using Eq.(41). The corresponding analytical
curves are plotted in Fig. 5 by the dashed lines which prac-
tically coincide with the numerical results shown by the solid
lines. One can see that the analytics works well even for
Co=1, even though we assumég<1 for the derivation.

The value of squeezing at=2wy/n (peak heightcan be
obtained from Eq(49), but it is easier to use E@48) with
¢=0 [which follows from Eq.(47)], that leads to the result

/ wOéT + S|r((1)05t)
woé’[ - S”’((Doét) '
]
(sinceS=27A for S> 1, andA=13/wydt\5), while the half-

The analytical results simplify in the case of short pulses,
which corresponds to the peak squeezing
width at half-height ofS(w) is

A(w)

SQwy/n) =7 (50

6/(wodt)*n
677\3'77n2(w - 2wg/N)
Col( ) %wg

A(w) = (51)

5t<T0: 2/ (O then
JT
S(2wo/n) = 2437l wydt (52
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25 4————J1 G '—1|8t/'T ~ 00551 and IV B. Comparing the asymptotic valdg given by Eq.
- 0_ ’ 0_ .

(52 with the linear increase from Ed54) and neglecting

20-; initial value Sy, we obtain the estimate

Z 15—3 — 2437
SO 8U/T=0.05 | Np= ol (55)
10 . Colwodt)

for the number of measurement pulses necessary for almost
¢ complete buildup of squeezirigf course the numerical fac-
“mod & F tor 23 is not really important heje
400 600 Since the saturation &)y is a gradual process, let us also
analyze analytically thdl-dependence fdl= N, whenSy is

FIG. 6. Gradual buildup of squeezing with number of mea- already close t&... Let us start with Eqs(36)_(38) assum-
surement pulsel starting from the ground state for several valuesNd that the asymptotic purity T =17 is already reached
of couplingCy and pulse duratiomt. Solid lines are the numerical but the parametek still changes withiN. Following the deri-

results, dashed lines correspond to Esf). vation used in Sec. IV B 3, we combine EoiSﬁ) and (37)
with (31) and (32) and obtain d, +d =2AA/ 7 T+ A2
Aw = 20o( 803wl an?y37. 53 =wCdf(t) (577 ~di~dZ,). Integrating this equation over the

measurement pulse duratiéassumingCy<1 and ¢=0) we
The curves calculated using E&1) are shown in Fig. 5 by find the corresponding small change of the paramater
the dotted lines. There is a noticeable difference from the
numerical results away from the resonance; however, the AA = Co\7 T+ A2\ L+ A sin wpét — Awgdt].
main part of the peak is fitted quite well. AN
Notice that in the case of exact resonanse,2wy/n, the
smallestx-width of the wavepacket is achieved at the middle
of the measurement pulse, and at this paigt1/S. How-
ever, d, increases considerably even within the duration of ASy Colwdt)?
the pulse so that the maximum vald@, ,,=4/S within the AN - (Sn=8x), (56)
pulse is at its onset and end, whilpaveraged over the pulse \377
duration isd=2/8. which shows the exponential approach of the squeegjpg
towardsS., as exgg—2N/Ny), i.e. the typical number of mea-

C. Time scale of squeezing buildup surements necessary to reach the asymptotic value is similar
to what was found from initial part of the transient, E§5).

Translating this equation into evolution of squeezing and as-
suming|Sy—3S..| <S.., wpdt<1, A%> 71 we obtain

An important question is how fast the squeezing ap- t i interesting to notice that the time scale of the purity
proaches its asymptotic value calculated in Secs. IV A andqcior saturation(see Fig. 2 is similar to the time scale of
IV B. In this subsection we analyze the duration of the tran-

X . . ; X squeezing saturation. Using Ed35 for u=d,d, d2
sient period of squeezing builduzee Fig. 2 for strobo- =1/TR(p?) and approximating averags, within the pulse
scopic modulationf(t) with A,,=1 anddt/Ty<<1 at reso-

3 2 o
nance w= 2w/, assuMIng=s. duration asdy =[1/7A+A(wgdt)*/4]/2, which becomesi;

Let us start with the standard QND case of instantaneous 215 close to saturation, we obtain

imprecise measurements!® which corresponds to the for- Au  Colwdt)?
mal limit &t— 0, Co— o, while Coét=const. Each measure- AN T( - 1n). (57)
ment changes the resonator density matrix by multiplying it v
by a Gaussian functiorfsee Egs.(12) and (8)] with  Therefore, similar taSy behavior,u also approaches asymp-
x-varianceD = (Ax,)?/Cowodt. Since the free resonator evo- tote as exp-2N/N,). Far from saturation we expea:tx
lution in between the measurements can be neglected if the 2/S_ and therefore a larger initial rate of reaching the
measurements are separated by integer number of halésymptote.
periods, the total strength of repeated measurements adds UpFinite time scale of squeezing buildup is important if an
(product of two Gaussians is a Gaussian with added inversgllowed experimental “waiting time?#,, is limited. Figure 7
varianceg Therefore for a Gaussian initial stat84) the  shows the squeezing as a function of measurement pulse
squeezing magnitudsy after N measurements is duration ét for several values of,, (initial state is chosen to
_ be the ground state While the upper ling(n,=«) corre-
S = NCowodl + So. (54) sponds to Eq(52) and increases indefinitely at smatl, the
While for instantaneous measurements the magnitude afqueezing for finite waiting timer,, reaches maximum at
sgueezing accumulates indefinitely, for a continuous stroboan optimum pulse duratioft. For smallerét the squeezing
scopic measurement with finitét the quantum back-action buildup is too slow[see Eq.(55] and the squeezing is
cannot be avoided completely, so the squeezing increases limited by the accumulated measurement strength
Eqg. (54) only during the initial transient periotFig. 6) and  Co(27,/ To)(8t/Tg), while for larger ét the limiting factor is
then saturates at the asymptotic level analyzed in Secs. IV £00 strong back-action.
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0= Fig. 4(b).] Notice that for infiniteQ the environment tem-
= c=01 | perature is not important since nanoresonator is not coupled
Tw/T0= 1000 0=20, [ to the environment and the evolution is determined by cou-

207 pling with detector only.
For an analytical analysis let us mention first thgt the
asymptotic purity T¢p?)=1/yu is no longer equal to|,

since EQq.(35) should be replaced by

u 2u 2d
—— — =Colf()|d(7 —u) - = + —* coth
0 005 §¢/T, 1 0.5 wo Q Q 2T

hrg

(61)

_ _ _ For Q> 1 we can neglect small asymptotic oscillationsuof
FIG. 7. Squeezing as a function of the pulse duratiaft for  and assume a practically constant asymptotic valusince
stroboscopic measurements with a particular *waiting timg'al- e average of E¢61) over the oscillation period should be
lowed for squeezing buildup. equal to zero in the asymptotic regime, we can finftom
equation
Numerical calculations show that this maximum squeez-
ing is fitted well by the formula c ?“’_& 7 -T) - g(ﬁ—d_coth MJ) =0, (62
0Yx 277 Q X L]

2T
Smax= 2.0VCo7/ Ty (0 =2w¢, 7=1). (598 — _ _
S ) ‘wheredy is d, averaged over the pulse duration whilgis
[For example, this fitting formula underestimates the numeriyyeraged over the whole period.
cal results forCy=0.1 (Co=0.5 by 9% (4.6% for 7./ To To find d¥ andd, we use Eqs(36)—(38) which are still
=30 and by 2.2%1.2%) for 7,/ To=1000] applicable for the asymptotic oscillations @ d,, andd,,, if
~ For an analytical estimate @,y let us assume that op- ;-1 iy these equations is replaced wiih Still assuming no

time being comparable to the waiting timer,2To=N, [Se€  has peen confirmed numericallyve obtain
Eq. (55)]. Then the optimum is achieved at

(7 L= T[T + A2wydt — A sin(wodt) ] + (27/CyQ)

Stopd To = 0.217 4 (Comp To) 2 (59 o
’P~ 2_~ =
(which is well confirmed by results in Fig) &nd the corre- X[cothfiwy/2T)VU+ A°~T] = 0. (63)
spondingSy,a calculated from Eq(52) is One more equation which relatésand A follows from zero
S~ 2(377)1,4\,m (60) average ofdy+d, in the stationary regime. Using Egs.
max / )

(31)—(33) and modified Eqs(36)—38) we find

which differs from the numerical resuls8) only by a factor
s (88) only by (577 = 2% ~Ti) ot + 2A\T + A2 sin(wqat) — (27/CoQ)

It is tempting to guess that the effect of finifefactor (at S [\Ti+ A2 = cothhewd/2T) = 0 64
least for zero temperature of environmeocan be described [V cothtfiwg/2T)] ' (64)
by a similar formula withr,, replaced byQT, (so thatS,,ay We have checked that the squeezifig(A+VA?+T)/T

= 7;1’4\3'CTQ) since r,, is naturally restricted by the resonator [see Eq(41)] calculated from the numerical solution of Egs.
damping time. However, as will be seen in the next section(63) and (64) practically coincides with results from direct
this gives only an upper bound and fini@factor actually  solution of Eqgs.(31)—(33) for C,Q=10. It is also easy to

leads to a significantly smaller value 8,4 check that in the limitQ=« Eq. (64) transforms into Eq.
(48); therefore we reproduce our previous resyfg) and
D. Effects of finite Q-factor and environment temperature (52) for squeezing.

Solid lines in Fig. 8 show the dependence of maximum
squeezingoptimized over the pulse duratiaft) as a func-
tion of the productCyQ for several temperatures of the envi-
ronment, calculated numerically using E¢83) and(64) for
w=2wq. These results are fitted well by the formula

In this section we analyze effects of finite quality facfr
of the nanoresonator and environment temperakdog stro-
boscopic measurement with=2wy/n and A,.q=1. (Extra
dephasingy,qqis equivalent to increase df.)

Numerical solution of Egs.(31)—(33) with a finite
Q-factor (Q>1) shows that as expected the squeezihg 3 \J’;COQ s
decreases at sufficiently sm@ll and higher temperature also Smax= 4 W ;
decreases. While for Q=9 the squeezing does not depend
on coupling with detectaf, =<1 for a fixed pulse durationt =~ shown by dashed lines in Fig. 8. As we see, the scaling
[see Fig. %a) and Eq.(52)], for a finiteQ the squeezing starts (C,Q)Y® is more restrictive than scalin@,Q)"? which could
to decrease for too smally, since coupling with detector be guessed from Eq60).
competes with coupling to environmerfThe effect is to For an analytical estimate @, let us start with high-
some extent similar to the effect @f,,q<1; in particular, temperature casd,>#w,. The thermal noise contributes to
the squeezing ab=2wy/n decreases stronger withas in  the increase ok-variance(due to random walkcrudely a8

(65)
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100 ol ool ol i process and therefore the produced squeezed state is in prin-
n=1 ciple useful for applications, large fluctuations of the center
a=2amg position would clearly lead to technical difficulties. The goal
Amod =1 of this section is to show that the wavepacket center can be
kept very close to origin all the time using quantum feed-
back.

The feedback is described by the foréein Eq. (27).
Similar to Refs. 33 and 30 we choose the linear feedback of
the form

1 T T TITT LELBLELILLLL T T TTTT] T T TTTT T T TTTT
10 0o 1000 10t 105 10° F==mwoydX) = vp(P), (67)

nl/ZCOQ where(x) and(p) are the continuously monitored values. To
analyze the feedback performance we charact®zahe
duration ét as a function of nanoresonat@-factor (multiplied by distribution of the packet center positi¢r) and ce.nter. mo-
coupling with detectoty and square root of efficiency) for sev- mentum (p) by the ensemple averagesver realizations

eral values of nanoresonator temperaftir&olid lines are the nu- (X)) and ((p)) and the variance® =((x)*) =((x))?, D¢
merical results, dashed lines correspond to the fitting forrt@Ba  =((P)2) = {(P)2 Dy ={(XN{(P)={(X¥))(p)). In the notation

of doubled angle brackets the inner brackets mean averaging
with the density matrixp in an individual realization of the
rocess, while the outer brackets is averaging over realiza-

. 5 ons. Notice that a natural characteristic of the total
estimated from Eq(54) as d=~(2/nTo)Cowodl/ S% assuM-  y_geviation of the state from the origin is the suPg+D,y

ing thatS is mainly limited by the effect oQ-factor[soS is +((x)2, so the feedback goal is to ens +H())2=D
much _smallerthan the \{alug given by E§2) for infinite Q]. = (AX ),2/8 to keep the s Seezed state sﬁiﬁ:ientl weIIXcen—
Equating two contributions, we obtainS?=(2/n) 0 P q y

. . tered.
X (8t Ty)CoQ(hwy/ 2T). Addition of quantum noise to the . . . .
thermal noise leads to replacement ofT/2wy by The equations fot(x)) and{(p)) derived from Eqs(26)

coth(fiwo/2T), which gives and(27) lead to the ensemble-averaged evolution
0 ]

CoQ 112 ((30) + (7p + 0/ QNN + (w5 + %@e)((X)) =0, (68)
(66)

FIG. 8. The squeezin§ maximized over the stroboscopic pulse

dX:(ZT/ﬁwo)(wolQ). In stationary state this increase is com-
pensated by the squeezing buildup contribution which can bg

2 woét
§= n 2 coth(Ziwy/2T) which shows tha{(x)) eventually relaxes to zero for positive
) ) ¥, even if Q-factor is infinite.
We have checked that numerical solutions of ES) and Introducing dimensionless variance, = D, 2mwo/%,
(64) practically coincide with this formula when squeezing dipy = D2 iMag, anddyyp = Dy(py2 /i, We derivé®33the

S>1 is mainly limited byQ-factor. Finally, comparing this . . )
formula with the limitation for infiniteQ [Eq. (52)] and following equations from Eqs26) and (27):

optimizing over &, we obtain the estimateSyay
=al\7CoQ/n cothiwy/ 2T)]*® confirming the fitting for-
mula (65), with the numerical factoa=1.03; this factor is .
obviously supposed to overestimate the result of numerical  dp/wg = = 2dyp) — 2uFdiyp) — 2Fd(, +Co|f(t)|d§p
optimization, Eq.(65).

Al @0 = 20y + Col F(D)] 02, (69)

As follows from Eqgs.(65), (66), and (52), the effect of —(2/Q)d,, (70)
finite Q-factor is not important only when botf,Q and
YN 3 .
CoQhwo/ T are much larger thas®/\ 5~ 7/ (wedt)*. Ao/ @0 = Ay = Ay = 12 Gy = F oy *+ ColF(1)]| el
V. QUANTUM FEEDBACK OF THE PACKET CENTER ~ (1Q)di(py» (71)

As shown in the previous section, thewidth of the = WhereF=v,/w, and u=1y/vy, are the dimensionless feed-
monitored Gaussian wave packet can be squeezed well beack parameters.
low the ground state width by applying periodic modulation ~We have simulated these equations numerically using the
|f(t)| of the measurement strength. However, because of th@symptotic solutions of Eq$31)~(33) for d,, d;, andd,,. We
measurement back-action, the center of the wave packet uRave mostly studied the resonanee 2w, in the weakly
dergoes random evolution described by E@§) and (27), couplmg regime. Since fmn@_—factor helps to decrease fluc-
and without feedback diffuses far away from the origin. Thetuations of(x), we have considered only the ca@e . The
diffusion is eventually limited either by damping due to finite main finding is that for both harmonic and stroboscopic
Q-factor or by very large(formally infinite in our model ~ modulation of measurement, the center position variahge
effective temperaturévoltage of the detectof>3°33Even can be made much smaller than the packet variahcat
though the evolution of the wave packet center can be monitime momentst=j2#/w (j is integej when the packet
tored using Egs(26) and (27) in each realization of the squeezing is at its maximum.
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0.01 , ”C0=I0.I1 — d), anddyy, decay practically to zero before the start of
. N 8/T=0.05 the measurement pulse. Within the pulse duratigny, can
g =1 be found from Eq.(71) as dyp=—udy. Substituting this
z_c% N value into Eq.(69) and using initial conditiond,(—st/2)
> 00013 > SR I 3 =0 at the beginning of the pulse, we obtaitl,(t)
& = woCof 5,02 Texd —2uwy(t— 7)]d7. Now using the station-
< ary solutiond,(t) =S 1+ (wgt)2S/  which follows from Eq.
(36) for ¢=0 andS> 1, we can calculate the variandg, at
0.0001 ———rr -
0.1 1 F 10 100 the pulse centeft=0):
Colwodt)? (2
=" | (1+1%)%exd— 2uywodtldy.
129 Jo
g (72)
5_03‘ In the caseuwydt>1 this expression simplifies to
/; i = Colwodt)?/24uy, (73
vV
= while in the opposite casgwyst<1 it gives
0.0001 T - iy = Colwodt)¥/57. (74)

100

In both cases, is much smaller thas = w,dt/ 2137 [see
Eq. (52)] for small woét and/or smaliCo/+7.

It is easy to see that the maximum valuedgj(t) within
the pulse duration is achieved at its gihd 6t/2), and can be
calculated by Eq(72) with the lower integration limit ex-
tended toy=-1/2 and with extra factor expuwyét). In
particular, this givesdg‘(%maxz 16d,, for uweot>1 and

Solid lines in Fig. 9a) show stationary values af,,, at A% max= 20 for pwgdt<1, which confirms numerical result
the center of the stroboscopic pulses, as function of the feednd shows tha(lig‘(max can also be made much smaller than
back factorF and several values of feedback facjarThe g =1/S similar to the result fory.

Ehosen pul_se duratiot=0.05T corr_esp(_)nds tod,=1/5 Overall, the analytical and numerical results show that the
=0.091, while the results fa, shown in Fig. %) are much feedback is sufficiently efficient for a broad range of feed-
s_maller. One can see that the feedba_\ck can operat_e SUffinck parameter§ and .
ciently well even foru=0, so the term withy, in Eq. (67) is At the end of this section we would like to discuss the
not really necessary; however, nonzeras beneficial since  fo|jowing concern on the possibility of using the quantum
it leads to even smallat,,. The curves in Fig. @) saturate  feedback in the case of stroboscopic measurements. The gen-
at F—o, and the saturation value df,, decreases with in- eral idea of stroboscopic QND measurement is to avoid ob-
crease ofu. taining any information on phase of the nanoresonator oscil-
Solid lines in Fig. 9b) show the dependenak,,(F) fora  lations, while quantum feedback requires us to know the
fixed valuex=5 and several values of the pulse durati@in phasga of packet center oscill_ations_. So, a natural question is
and couplingC,. One can see thal,, decreases with de- how it happens that we monitor this phase.
crease of botht andC,. Sinced, does not depend af}, [see A qualitative answer is that once we knaw) and(p),
Eq. (52)], the ratiod,,/d, obviously decreases at small cou- their further evolution can be extracted from the measure-
pling. ment record (t) via Egs.(26) and(27) even though the mea-

The packet center varian,(t) changes significantly sur_ement is_ performed during only a _sma_ll fraction_o_f t_he
within the pulse duration; however, typically it is still much period. (During "off” phases the evolution is deterministic

. ST and feedback is still continuously applied based on oscillat-

smaller _th:_:m 18. Dashed lines in F_|gs.(9) an_d ab) ;how ing calculated values dk) and(p).) Initial knowledge of(x)
dx maximized over the pulse durati¢the maximumdy, ., and( . :
_ _ o p) can be eventually obtained also using E@6) and
is achieved at the end of pulsd@he dependence @iy, vax  (27) starting from any(incorrecy initial condition, since the
onF, u, &, andC, is generally similar to the behavior dfy,  solution of the equations gradually forgets initial condition
at the pulse center, though the values are several timesnd is eventually dominated by the noise term known from
higher. the measurement record.

For an analytical estimate af,, let us assumé&>1 and Let us assume that we start using E@6) and (27) with
w=1 (we also assumé,<1 and&t/T,<1). Because of the ‘“incorrect” initial conditions(x;(0)) and(p;(0)) instead of
strong damping terms in Eq§69)—(71), the variancesly,, “correct” values(x,(0)) and{p,(0)), and let us show that the

FIG. 9. Variance of the wave packet centlgy, at the middle of
the stroboscopic measurement pu(selid lines and the variance
df;)'max maximized over the pulse duratigdashed lings as func-
tions of feedback parametér for several values ofa) feedback
parametery and (b) parametersC, and &t. We assumeQ=oo,
7=1, ®=2wy, andAyoq=1.
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normalized differences between the corresponding solutionwith the ground statéand much smaller thadx). This is
X=({(X1) = (X)) VA1 2mwg and P=((p1)—{p2))/ VEimwy/2 de-  the way to verify squeezing, and also this procedure is ex-
cay to zero with time. Since the same measurement recor@ctly what can be used for an ultrasensitive force measure-
I(t) is used for both solutions, the value of the noise termment with accuracy beyond the standard quantum ljrNio-

£=1-(l) is affected byx, and the difference evolves as tice that for two measurements per periads=2wg, the
definition (77) should be modified by adding odd
dx/dt= wo[P - Col f(1)]d,X], (75  (“m-phase) contributions with negative sign. Then all re-
sults of this section are valid fab=2w as well] For sim-
dp/dt= wo[— X = Co| f(1)|dypX — P/Q]. (76)  plicity in this section we neglect the effect of finite quality
o ) o ~ - factor Q of the nanoresonator.
Finite Q-factor obviously damps oscillations &andp, so The analysis of the distribution & (over realizationpis

for a worst case let us ggsgr;@szoo. Then the eVOlUt'OQZOf very simple in the case of instantaneous but imprecise mea-
the “energy function"s=x"+p" is dé_/dt:_z‘f’OCOH(t)deX ~ surementsgt— 0, Codt=const, since the Hamiltonian evolu-
+d,Xp). Assuming weak coupling, using asymptotic tion of the resonator in between the measurements can be
time dependence of varianced,=S™+A[1-co$2wqt)],  completely neglected. Therefore the problem reduces to a
dyp=Asin2wgt) [see Egs.(36) and (38)], and assuming classical sequential measurement of a “particle” position,
X="2sin(wt+ ), P=FY2codwot+¢#), we derive which is initially characterized by the Gaussian probability
equation dz/dt=—zwoCo|f(t)|{(A+SH[1-cos2wst+2¢)]  distribution with varianceAx3/S (recall Axy=\#/2may),
—-Alcoq2wgt)—cog2¢)]}. After averaging over the short while each imprecise measurement has variance
pulse durationdt, the expression in curly brackets becomes(Axy)?/Cowoét. In particular,N measurements with resubt}:"1
A[1+c0%2¢) | (wodt)? 16 +S[1-co%2¢) (1-(wodt)?/6)],  are equivalent to ondl-times stronger measurement with
which is always positive. Thereforg, decays to zero, and resultXy [mathematically this is because the product of sev-
this happens on the time scateTy7"/2Co (wedt) ™2, compa-  eral measurement Gaussians as in &j.is the Gaussian
rable to the timescale of purity saturation and squeezingvith added inverse variances and centereddt Then dis-
buildup (see Sec. IV € So, we have proven that) and({p) tribution of Xy is the convolution of the initial state Gaussian
calculated from Eqs(26) and (27) eventually depend only and the total measurement Gaussiaee Eq.(7)]; so the

on the measurement record and do not depend on initial vararianceDyy of Xy is equal to the sum of corresponding
ues. As a by-product, this statement also means that a mixariances,

ture of Gaussian statdsvhich in general is not Gaussian

eventually becomes a single Gaussian state. Dyn= Axé(l + ! ) (78)
' S NCowo§t

VI. VERIFICATION OF SQUEEZED STATE
The fact that the squeezed state of a nanoresonator can Egr comple‘z‘teness” let us aI;o mention f[hat aemeasure- .
prepared by the modulated measurement and quantum fee'a]-ents t.he actual position is chgracterlzzed by the Ga_ulssmn
back, does not automatically mean that this state may b robability [?ee Eq.(9)] with var|anceAxO(S+NCow0§t)
nverse variances are added for product of Gauskiand

useful for the measurement of extremely weak forces, an L .
even that such state can be checked experimentally in %entered akn/(1+5/NCowodt), which is the weighted sum

straightforward way. As an example of such problem, in Oneof the initial center of distributiorfassumed to be zerand
of setups analyzed in Ref. 63 the squeezed in-loop opticd1® Measurement resulf,.

state is realized by using quantum feedback, but the squeez- OPViously, atN>1/Cow,dt the variance oy given by
ing of the output light is impossible. Fortunately, as we dis-Ed- (78) is significantly smaller for a squeezed stage>1)

cuss below, in our case there is no problem with observabilthan for the ground stats=1). Even though this difference
ity of the squeezed state. can be rigorously verified only by performing many experi-
We have studied the possibility to verify the squeezedMents to accumulate statistics fDxy, it can be observed
state of the nanoresonator in the following way. After the€Ven in a single experiment with good reliabilityit- 1 (for
preparation of the squeezed state by stroboscopic measur@@plications like force detection we should discuss single
ment and feedback, the feedback at some morfter@)) is realization$. The error probability for distinguishing be-
switched off, while the stroboscopic measurement continuegWeen the two cases in one trial is essentially the overlap of

. . . .. i i i H H —-1/2
Considering for simplicity the case of one measurement pefV0_distributions forXy, which is crudelyS ' for N—oo
nanoresonator perioth=2,w=wy), we average the position (ratio of distribution widths [A better approximation for

measurement resuk;“ for the jth pulse over many pulses error probability to distinguish between two Gaussians with

each pulse gives a very imprecise result because of we inciding centers and different yariancasl and D, is
( b g y imp a?lér)n R/27R)Y? whereR=D;/D,>1; in our caseR=S.] So,

coupling: ) ) . .
the squeezed state wi§® 1 can be reliably verified even in
1o 1 1 [T a single experiment.
Xn= _E X = _E Stk |- [1(V) = looldt.  (77) Unfortunately, this result requires the assumption of infi-
N =1 N j=1 k0 jTo—ot/2

nitely strong coupling with detectafCy,— <), so it is not
As we show below, for a squeezed initial state, the r.m.sobvious if it holds in the practical case of weak coupling
fluctuation ofXy can be much smaller than if we would start (C;<1) or not. The anticipated problem is that for suffi-
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viate upwards and eventuallyy y starts to increase with,
which is expected because of the nanoresonator “heating”
due to measurement back-action.

The numerical minimum oDy y for squeezed statesS
>1) in Fig. 10 is a little higher thar(Z/S)Axg. We have
checked that the minimum is still close (tﬁ/S)Axg for sev-
eral other values of, and ét. As seen in Fig. 10, this mini-

OU/T=0.05 7 mum is achieved all close to N,, whereN, given by Eq.
015 ”":II —————— S (59) is the estimate of number of measurement pulses for
10 00 Ny 1000 squeezing buildup. We have checked that this result also

holds for different values oty and ét. The fact that the
L minimum of Dy y is higher than(2/S)Ax3 is not surprising

o S/2 — . )
10—5%,50’71&0 ‘ 2 """"" (b)E since the average varian€®, (square of the wave packet
S &9"% sz, _g@?.‘.‘-’ b width) within the pulse durationt is (2/S)Ax§ for S>1
g <« > %, I (see Sec. IV BB Hence, one could even guess tiiggy
§ I K3 a3 should be always larger than E{.8) with 1/S replaced by
a Coz0.1 ; 2/S. However, actuallyDy y goes below such a bound for a
0 ~ 2Nb‘: range ofN. Some understanding of this fact can be provided
0.1 StiTO_O'OZ s = by an argument that for a classical measurement the nan-
n=1 e F oresonator motion duringt would be averaged and s
o oo N o would depend only on the nanoresonator position at the cen-

ters of the measurement pulses.

FIG. 10. VarianceDy \ of the measurement resfi, [see Eq. The minimum ofDy for the case when we start mea-
(77)] as a function of numbeN of stroboscopic measurement surement prozcedure _from the_ground state, is only a little
pulses. The measurement procedure is applied either to the grouf@rger thanAxg (see Fig. 1 which means that the accumu-
state or to the squeezed state prepared by the same procedd@ed measurement accuracy becomes better than the stan-
complemented with quantum feedback. Parelsand (b) are for ~ dard quantum limitAx, at sufficiently smalleiN than when
different durations of the measurement pulses, corresponding to inthe back-action heating becomes important. Therefore, the
tial squeezingS=11.0 andS=27.6. Solid lines are the numerical ratio of Dy starting with the ground and squeezed states
results for finite pulse duratioft, while dashed lines correspond to (dotted lines in Fig. 1preaches the maximum of approxi-
Eqg. (78) (instantaneous measuremgn@otted lines are the ratios mately S/2 [in the case of instantaneous measurements de-
of the results shown by solid lines. Force detection beyond thescribed by Eq(78), this ratio would approacls at N— oo].
standard quantum limit is possible whexy y/Ax3<1. Thus, our numerical results show that for a proper dura-

tion of the measurement procedureN,Ty) the variances
ciently largeN which makes the second term in EF8) D, for the squeezed and ground initial states are signifi-
sufficiently small, the nanoresonator heating due to measure;ahﬂy different, and therefore these states can be reliably
ment backaction may already eliminate the squeezthg  distinguished. The squeezed state verification using a weakly
feedback is off. To resolve this issue we have calculatedcoupled detector is only by a facter2 less efficient than a
Dxn for stroboscopic modulation numerically by Monte similar procedure using instantaneous measurements by a
Carlo simulation of realizations using Eq6) and(27) and  strongly coupled detector. Even though these results have
then averaging over realizations. Such simulation happenegken obtained neglecting the effect of the reson@téactor,
to be not too simple; in particular, the time step should beye do not expect a significant difference for finebecause
chosen carefully. As a check of the simulation accuracy wet equally affects the preparation of the squeezed state and its
were comparing the variance ¢) obtained by averaging verification. Finally, let us mention that if an external force
over Monte Carlo realizations with the results from Eqgs.has shifted the nanoresonator positionAx; the procedure
(69—(71) without feedback; the difference was checked to bediscussed in this section can detect the force Ai

within a few percent. = \J’TS’AXO.
Solid lines in Fig. 10 show the numerical results By
for weak coupling(Cy=0.2) and two values of pulse dura- VIl. CONCLUSION

tion: (a) 6t/ Ty=0.05 and(b) 6t/Ty=0.02. The initial state is

either ground state or asymptotic zero-centered squeezed As analyzed in this paper, the uncertainty of the nanoreso-
state corresponding to the same measurement parameters,/&§0r position can be squeezed significantly below the
that the squeezing is given by E&2) and preparation of the ground state level by using the modulated in tin@
squeezed state differs from its verification only by quantun™ 2wo/n) continuous measurement of the nanoresonator po-
feedback switched on or off. Dashed lines in Fig. 10 aresition with the QPC or RF-SET detector. The measurement
calculated using Eq(78). One can see that the numerical strength can be modulated by applying the periodic voltage
results follow the simple analytics when the contributionacross the detector. For the RF-SET the modulation can also
from the measurement accuracy in Ef8) dominates; how- be done by varying the gate voltage; however, it is important
ever, at larger number of pulsésthe numerical results de- that such modulation periodically brings the SET into the
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Coulomb blockade regime, so that the back-action is periodience is that the quantum feedback should be switched off.
cally switched off(actually, similar gate voltage modulation We have studied the distribution of the position measurement
is alio possibfle for the QPC, bL:t it is ﬂuite uBnat)Jrahe N[;eSdUI;EXN 3\Eerag?:d ovleﬁl)\l r::tro?oscopic rr}easurement gtfjlses
mechanism of squeezing is similar to the stroboscopic nd found(see Fig. that for a significant range
measuremem%%zq13 for p?ariodic measurement pulseg sgpa—before the back-acgtion heatin becorges importangt], the width
rated by integer number of half-periods of oscillation, theof Xy distribution is close to/2/SAX,, which may be much
free evolution of the resonator is to the large extent compensmaller than the ground state widitx,. The analyzed pro-
sated, which allows the buildup of the effective measurementedure can be applied in a straightforward way for ultrasen-
strength for repeated imprecise measurements; therefore tiséive force detection beyond the standard quantum limit: the
squeezed state is produced when effective measurement gerce can be detected when it causes the nanoresonator shift
curacy becomes better than the ground state width A Ax larger thany2/SAx,.
significant difference between our analysis and the standard For an estimate of the present-day experimental param-
QND case of instantaneous stroboscopic measurements is tBEers let us use the data from Ref. 5. The experimental sen-
assumption of weak coupling with detect6g<1, whilec,  Sitivity of 3.8 fm/\Hz for the nanoresonator v_v|th)0/27r _
should be infinitely large for instantaneous measurements; 19-7 MHz andAx,=21 fm can be translated into the di-
Obviously, the squeezed state oscillates with time, so that th@er(1)45|onless couplingo=5x10"". For theQ-factor of 3.5
moments of minimum position uncertainty,/\S and the < 10" and using a crude estimate for quantum effur:]l_ency
minimum momentum uncertainty/2Ax,\S are shifted in 7~ 10", we have the produdQy#»=~6x107. Since this
time by Ty/4=m/ 2w, product_ should .be larger than at least 10 fo_r a nquceable
We have considered harmor(22) and stroboscopi€23) squeezingsee Fig. 8 we should conclude that it is S'tl|| 2-3
modulations with frequencyw and modulation amplitude orders of magnltude_ less than needed fo_r squeezing. How-
P A5 aMICDaIedApa i 101G 1 b e GPMU. 2t 1 LSS5 IPELETo o xperintl pagmetrs
value for maximum squeezing in both cases. We have foundcgles quadratically with responkg the estimates of Roef.
that only a moderate squeezisig (37 (requiring relatively 39 givec,~103). (Recently one of the authors succeeded in
o modaon i i e 1ty e (o S s S W e o
' -factor of 2. and a 9. z wit=1.
=2w, [see Eqgs(40), (41), and(43), and Fig. 3. In contrast, 105, For reasonably realistic paramete(&~ 1072,
an arbitrary strong squeezing is in principle possible for th%wloes, and 7~ 0.3 the productyQ\n=5x 103, therefore
stroboscopic modulation when the measurentant there- o low-temperature squeezisy=13 is possible, and a sig-
fore back-actiopis switched cor_npletely o_ff i_n between mea- nificant squeezing survives up to temperatuFes10w;.
z?rreerggr?;s)lilseusalci)r S?ggodflgjrattr:?s!f ngalzlirnltegaay begelftsto In an experiment it may be convenient to flip every sec-
S 3ry &q ot Yy s /q gE (50)_(535’ ond time the sign of stroboscopic voltage pulse applied to the
V377/ wyét at frequencyw=2wo/n [see Egsi(E detector. Then the information about the average posKjpn
it e et st Ea5a] o o TR b oxtacied o below eery com
V77 Colwg ' onent of the detector currefgomewhat similar to the RF-
for a limited “waiting time” 7, the squeezing cannot exceed gET mixer of Ref. 4 Even though we expect that the high-
S=2n"(Cor,/ To)*? [see Fig. 7 and Eq$58)~(60)]. Finite  frequency component would still be necessary for quantum
Q-factor of the nanoresonator limits the squeezing byfeedback, the results of Sec. VI indicate that the preparation-
S=[(2/n)(wodt/ 2m)CoQ/ cothlfiwy/ 2T) V2 [see Eq.(66)];  detection procedure should work reasonably well even with-
after optimization overét this 1|,§ads to the limitation out feedback if the preparation time is comparable to the
S=(3/4)[VnCoQ/n cothhwy/2T)]'° [see Fig. 8 and Eq. squeezing buildup timéso that the back-action heating is not
(65)]. Notice that this result is consistent with the mentionedyet too strong

in the Introduction condition of quantum beha¥idrz,,/Q Concluding, we hope that the QND squeezing of a nan-
=<#f for a good detector,p~1, and measurement time oresonator can be demonstrated experimentally in a reason-
Tm=4/Cowq corresponding tx-accuracy equal tax,. ably near future and will eventually be useful for the force

While the modulated measurement squeezes the width afetection with sensitivity beyond the standard quantum limit.
the resonator wave packet, the position of its cetiefluc-
tuates due to random back-action from the detector, and may
deviate very far away from the origin. To keep the packet The authors would like to thank D. Averin, A. Doherty, S.
center neak=0 we apply quantum feedback similar to Refs. Habib, K. Jacobs, K. Likharev, I. Martin, A. Matsko, and G.
33 and 3Qthe packet center in momentum space in this cas®ilburn for fruitful discussions and remarks. The work was
will be kept near zero as wellWe have foundsee Fig. 9 supported by NSA and ARDA under ARO Grants Nos.
and Egs.(73) and (74)] that the feedback can keep the de- DAAD19-01-1-0491 and W911NF-04-1-0204R.R. and
viation of (x) from zero at the level much smaller than the A.N.K.) and by NSA(K.S.).
packet width Ax,/yS, which means that the ensemble-
averaged squeezing practically does not differ from the
packet width squeezing.

Verification of the squeezed state can be performed in In this Appendix we generalize the Bayesian equation
essentially the same way as its preparation, the only differ¢18) to the case of a detector with correlation between output
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and back-action noises, and also discuss the contributions For measurement by single-electron transistor the average
from various kinds of the noise. We discuss only the nanback-action force actually depends on the nanoresonator po-

oresonator evolution due to measurement; therefore thsition x in a rather complicated way, and this leads to addi-

terms Hg, Hem and Hy, in the Hamiltonian(1) are ne-

tional potential energy termV,gdX) in the Hamiltonian. In

glected. For simplicity we also do not consider the modula-general this term contributes to unharmonicity of the nan-

tion of measurement parameters.

oresonator, though for small amplitude of oscillations it

Following the logic of Ref. 45, we discuss first the effectsmainly shifts the equilibrium point and renormalizes the
of several additional classical noises. Let us start with addispring constant.

tional classical white nois€;(t) at the output, so that the
total output noise¢=¢&q+¢; consists of the “ideal quantum
contribution” &4 discussed in Sec. [Ilsee Eq.(17)] and &;;
the corresponding spectral densities &eSy+S,. Using

The effects of correlation between the output and back-
action noises are also important for a detector with “asym-
metric” coupling described by nonzero relative pHas®
between complex magnitud& andAM in the Hamiltonian

the “double Bayesian” procedure of Ref. 45 it is simple toterms(4) and(5). Evolution equatior{17) for such a detector

show that averaging ovej; leads to the addition of the de-
coherence term v (x—x")?p(x,x’) with y,=k?S;/4S,S into
Eq. (17). Therefore, the effect of; is the reduction of the
quantum efficiencyy from the ideal valuep=1 down ton
=S4/ S

The second natural noise source is the classical #&i(te
(uncorrelated with¢;) with white spectral densit,, which
leads to the stochastic termésft)X in the Hamiltonian. Av-
eraging overé, gives the extra decoherence termy,tx
-x)%p(x,x") in Eq. (17) with y,=S,/442. Therefore the ef-
fect of &, can still be taken into account by further reduction
of the efficiencyz.

should be complement&d*°by the terms similar to EqA1)

with correlation factorC=e"YAM/M|sifarg AM/M)] but
without dephasing;;=0 (the detector is still ideal in the
sense that a pure state of the nanoresonator remains pure in
the course of measuremerBesides the correlation term, the
oscillator potential is changed by the contributitgx)=
—hKC(1o+kx)?/ 2k+ const.

For completeness let us also consider the noise of the
spring constant described by the stochastic potential energy
&%, Averaging over this noise leads to the termyg(x*
=x'2)2p(x,x') (where ysp=S4/4%%) which has significantly
different form compared to the standard decoherence term

When the nanoresonator is measured by a single-electraim particular, this term makes the density matrix non-
transistor, the back-action force is in general correlated witfGaussian
the output noise. To take this correlation into account, let us Combining all contributions, the nanoresonator evolution

introduce one more stochastic classical fog&)=aé(t)
fully correlated with output noisé; (this obviously accounts
for arbitrary correlation between the total foré¢e+¢&; and
&1). Averaging overé; leads to the terms

C(x=X")p(x,X)E(t) = (y3 + K2S/4) (X~ X')?p(x,X')
(A1)

with correlation factorC=aS;/A#S and decoherenceys

=a’S4S,/442S to be added into Eq17). [Notice that Eq.
(17) is in the Itd form; there is no contributiokt?S /4 to

decoherence in the Stratonovich folfthe correlation term
cannot be described in terms of efficiengyand requires
generalization of the Bayesian equatid®).

due to measurement is described in Itd form as

2 2
:_S + % + 7d>(x - x')%p(x,X")

+ (g(x+ X' = 200) +iK(x - x'))p<x,x'>§(t>

p(X,x") = -(

+ [Vadc(f()rp]x,x’ - 7’5pv(x2 - X/2)2p(xlxr)’ (A2)

wherek is the total correlation factoty, is the total dephas-
ing, ¥spris due to noise of the spring constant, angd{x) is
the renormalization of the resonator potential energy.
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