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Persistent Rabi oscillations probed via low-frequency noise correlation

Alexander N. Korotkov
Department of Electrical Engineering, University of California, Riverside, California 92521, USA

(Received 15 December 2010; published 31 January 2011)

The qubit Rabi oscillations are known to be nondecaying (though with a fluctuating phase) if the qubit is
continuously monitored in the weak-coupling regime. In this Rapid Communication we propose an experiment
to demonstrate these persistent Rabi oscillations via low-frequency noise correlation. The idea is to measure a
qubit by two detectors, biased stroboscopically at the Rabi frequency. The low-frequency noise depends on the
relative phase between the two combs of biasing pulses, with a strong increase of telegraph noise in both detectors
for the in-phase or antiphase combs. This happens because of self-synchronization between the persistent Rabi
oscillations and measurement pulses. Almost perfect correlation of the noise in the two detectors for the in-phase
regime and almost perfect anticorrelation for the antiphase regime indicates a presence of synchronized persistent
Rabi oscillations. The experiment can be realized with semiconductor or superconductor qubits.

DOI: 10.1103/PhysRevB.83.041406 PACS number(s): 85.35.Ds, 85.25.Cp, 03.65.Ta, 03.65.Yz

The puzzle of the quantum state collapse due to
measurement1 is becoming accessible for the experimental
study in solid-state systems. Three experiments on nonpro-
jective collapse2,3 have been recently realized with supercon-
ducting qubits. These experiments (as well as the experiment
proposed in the present Rapid Communication) touch on the
most intriguing property of quantum measurement: the pres-
ence of a “spooky” quantum back-action, which changes the
system to agree with the observation and cannot be explained
in a realistic way, i.e., by using the Schrödinger equation.

The quantum coherent (Rabi) oscillations in solid-state
qubits are usually measured in an ensemble-averaged way4,5

and decay within a short time scale, even though it can be much
longer than the oscillation period. However, for a continuous
weak measurement of a single qubit, the Rabi oscillations are
nondecaying and can in principle be monitored in real time, as
follows, e.g., from the quantum Bayesian formalism,6 which
is generally similar to the formalism of quantum trajectories.7

Persistence of the Rabi oscillations in this case is due to the
quantum back-action, which tends to increase the amplitude of
the oscillations to 100%, thus competing against decoherence.
The persistent Rabi oscillations lead to the spectral peak of
the detector signal at the Rabi frequency,8–10 which has been
recently observed experimentally3 (see also Ref. 11). In the
present Rapid Communication we will discuss another way of
demonstrating these oscillations.

For definiteness let us discuss a “charge” qubit made
of a double quantum dot (DQD) populated by a single
electron, the location of which is continuously measured by a
nearby quantum point contact (QPC). Analogous setups can
be realized with spin-based or superconducting qubits. The
continuous qubit evolution due to the quantum “informational”
back-action can in principle be verified in a direct experiment;6

however, it would require high-bandwidth recording of the
detector signal (including shot noise) and fast qubit manip-
ulation, which is still a big challenge for a real experiment.
A simpler way to study the back-action is to measure the
qubit by two detectors,12 so that the first (short) measurement
causes a partial collapse of the qubit state, and then after a
controllable qubit evolution the second detector measures the
resulting state (a somewhat similar idea has been previously

used in Ref. 13). Performing the experiment many times and
selecting a certain result of the first measurement, it is possible
to find the back-action evolution experimentally and compare it
with the theory. The same idea with a different postprocessing
(selecting the result of the second measurement) has been
recently used to propose an experiment on weak values.14

The proposal of Ref. 12 still suffers from very weak signals
produced by two single-shot measurements. An obvious way
to increase the signal is to average it over a long comb of
measurement pulses, but in this case the selection of a certain
result becomes impossible. Fortunately, there is a way to
overcome this dilemma by combining the ideas of two-detector
measurement,12 persistent Rabi oscillations,6,8–10 stroboscopic
quantum non-demolition (QND) measurement,15,16 and cross-
correlation analysis.10

We propose to use the following setup (Fig. 1). A qubit
is measured by two detectors, which are biased with two
combs of short pulses, so that between the pulses the qubit
undergoes free evolution due to the Rabi oscillations. The
frequency of pulses � coincides with the Rabi frequency
�R (one pulse per period in each detector) to realize the
QND regime.16 When the two combs are not shifted in time
relative to each other, the phase of the Rabi oscillations is
attracted to one of the two stable values, corresponding to the
qubit being in either localized state |1〉 or |2〉 at the time of
measurement. This happens because of the usual collapse in
the QND frame15,16 and is somewhat similar to what happens
with a parametrically excited swing. However, because of
various imperfections (extra decoherence, etc.) there will be
switching between the two stable regimes, which leads to
the telegraph noise in the currents through both detectors.
Even if the experimental measurement bandwidth is not wide
enough to resolve the switching events (which is likely for a
present-day experiment), the telegraph noise is measurable at
low frequency via its spectral density, which greatly exceeds
the shot noise.

The telegraph noise originates from the presence of two
quasistable regimes of oscillations because of the QND
measurement. However, for a significant phase difference
ϕ between the two combs of the measurement pulses, the
measurement is no longer QND, and the telegraph noise
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FIG. 1. (Color online) Analyzed system: a double-quantum-dot
qubit measured by two QPC detectors, which are biased by combs
of short voltage pulses with frequency � coinciding with the Rabi
frequency �R .

disappears, so the low-frequency noise reduces to a much
smaller shot noise. For ϕ ≈ π the QND regime is restored
again and the telegraph noise reappears. So the telegraph
noise is maximum at both ϕ = 0 and ϕ = π ; however, for
ϕ = 0 it is almost fully correlated17 in the two detectors
(because in the stable regime both detectors see the same
qubit state: either |1〉 or |2〉), while for ϕ = π the detector
noises are almost fully anticorrelated (because when one
detector measures state |1〉, the other detector measures
|2〉 half a period later). Experimental observation of such
noise correlation/anticorrelation would show the presence of
persistent Rabi oscillations.

For the quantitative analysis let us use the quantum
Bayesian formalism6 and represent the QPC currents Ia(t)
and Ib(t) as (n = a or n = b)

In(t) = [I0,n + (�In/2) z(t)] fn(t) + ξn(t)
√

|fn(t)|, (1)

where z = Tr(σzρ) is the measured z component of the qubit
Bloch vector, fn(t) is the dimensionless shape of the comb of
measurement pulses for nth detector (f is proportional to the
QPC voltage), I0,n and �In are the detector average current
and response for fn = 1, and ξn(t) is the shot noise with the
(one-sided) spectral density Sn. We assume zero temperature.
For rectangular measurement pulses we use fa(t) = 1 if |t −
lT | < δta/2 and fa(t) = 0 otherwise, where δta is the pulse
duration, T = 2π/� is the comb period, and l is an integer.
Similarly, fb(t) = 1 if |t − lT − ϕ/�| < δtb/2; this describes
the comb of pulses of duration δtb with the same frequency
� but shifted by the phase ϕ. The qubit Hamiltonian Hqb =
(�R/2) σx describes Rabi oscillations with the frequency �R

about the x axis, and we also assume pure dephasing of the
qubit (not related to the measurement) with rate γ . In order to
use the Markovian approximation, we assume sufficiently high
QPC voltages during the pulses6 and also assume |�In| �
|I0,n|.

The spectral densities of two detector noises Saa(ω) and
Sbb(ω), as well as the cross-correlation noise Sab(ω), can be
found via the Fourier transform Snm(ω) = 2

∫ ∞
−∞ Knm(τ,t0)

e−iωτ dτ , where Knm(τ,t0) = 〈Im(t0 + τ )In(t0)〉 − 〈Im(t0 +
τ )〉 〈In(t0)〉 is the correlation function and the averaging
Knm(τ,t0) is over t0 within one period T ; the averaging
is necessary because of periodic time dependence fn(t) in
Eq. (1). To find Knm(τ,t0) for τ > 0 we use the method
developed in Ref. 9, which essentially follows from the
quantum regression theorem.18 Expressing this correlator
as Knm(τ,t0) = (�In�Im/4)fm(t0 + τ )fn(t0)Kzz(τ,t0), we

calculate the operator-symmetrized zz-correlator Kzz(τ,t0) as

Kzz(τ,t0) =
∑
i=1,2

〈i|ρ(t0)|i〉〈i|σz|i〉 Tr[σzρ
|i〉,t0 (t0 + τ )], (2)

where ρ(t0) is the qubit density matrix at time t0 [〈i|ρ(t0)|i〉 =
1/2 because of the symmetry], while ρ|i〉,t0 (t0 + τ ) is the
density matrix at time t0 + τ for the qubit starting at time
t0 in the state |i〉, which is an eigenstate of σz. Here we
should use the ensemble-averaged qubit evolution, for which
the measurement process is represented by pure dephasing
with rates fn(t)γ meas

n , where γ meas
n = (�In)2/4Sn; these rates

are added to γ . Notice that the same technique works also
for two detectors measuring different observables: one of
them defines the starting eigenstates, and the other one enters
into the trace. While so far τ > 0 was assumed, we find
the correlation function at negative τ using the symmetry
Knm(τ,t0) = Kmn(−τ,t0 + τ ), and also add the shot noise
contribution δnmδ(τ )fn(t0)Sn/2 near τ = 0. In addition to this
quantum method, we also use below the language of a simple
semiclassical analysis.

Let us first assume short measurement pulses, δta,b � T =
2π/�, exactly matched frequency, � = �R , almost no phase
shift, |ϕ| � 1, and almost negligible extra dephasing, γ �
�R . Then we have usual stroboscopic QND measurement15,16

insensitive to the free evolution, and therefore the qubit state
eventually collapses to either |1〉 or |2〉 at the measure-
ment moments. This obviously leads to nondecaying Rabi
oscillations with 100% amplitude, which are phase locked
with the measurement combs. The synchronization happens
within the QND collapse time scale t ∼ tcol = T/(Ma + Mb),
where Mn = γ meas

n δtn = δtn(�In)2/4Sn. We assume Mn � 1,
so tcol � T , while γ meas

a,b T are not necessarily small. In the
ideal QND case the phase of the Rabi oscillations is fixed
forever after this gradual collapse; however, in a realistic case
there will be switching between the two regimes (shifted by π )
with a calculated below rate S , the same for both switching
processes because of the symmetry. If we assume rare
switching, S tcol � 1, then the detector current In averaged
over a coarse-graining time scale longer than T and tcol

switches between the two levels, (I0,n ± �In/2)(δtn/T ), thus
producing the telegraph noise. Therefore, the noise spectral
density Snn(ω) at frequencies ω � t−1

col � �, is

Snn(ω) =
(

δtn

T

)2 (�In)2/2S

1 + (ω/2S)2
+ δtn

T
Sn, (3)

where the term (δtn/T )Sn is due to the shot noise. Notice
that at low frequency, ω � S , the ratio of the telegraph and
shot noise contributions (δtn/T )(�In)2/2SSn 	 1/tcolS is
always large in our case.

For the phase shift ϕ ≈ π the QND regime is still realized,
so Eq. (3) for each detector noise is still valid. However, since
the detectors now measure the opposite qubit states, the cross-
correlation noise changes sign,

Sab(ω) = ±δta δtb

T 2

�Ia�Ib/2S

1 + (ω/2S)2
, (4)

where “+” sign is for ϕ ≈ 0 and “−” is for ϕ ≈ π . The noise
correlation factor Sab(0)/

√
Saa(0)Sbb(0) is close to ±1 (almost
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full correlation/anticorrelation) when the shot noise in (3) is
much smaller than the telegraph noise.

To find the switching rate S , we calculate the “prop-
agators” ρ|i〉,t0 (t0 + τ ) in Eq. (2), essentially rederiving
Eqs. (3) and (4) in the fully quantum way. Because of assumed
weak coupling (γ T � Ma,b � 1) these density matrices at
time t = t0 + τ can be represented in the Bloch coordinates as
z = A(t) cos[�t − φ(t)], y = Tr (σyρ) = A(t) sin[�t − φ(t)]
with slowly changing amplitude A(t) and phase φ(t):

Ȧ = −(A/T )[Ma sin2(−φ) + Mb sin2(ϕ − φ)] − γA/2, (5)

φ̇ = (1/2T )[Ma sin(−2φ) + Mb sin(2ϕ − 2φ)], (6)

where we assumed δta,b � T , so periodic instantaneous
dephasings of magnitudes Ma and Mb happen at the phases
−φ and ϕ − φ. Assume now t0 = 0 [so fa(t0) = 1] and
choose |i〉 = |1〉; then A(0) = 1 and φ(0) = 0. For |ϕ| � 1
the solution of Eq. (6) is simple, and φ saturates at φst =
ϕMb/(Ma + Mb) exponentially with time constant tcol. This
value can be inserted into Eq. (5) because evolution of the
amplitude A due to measurement is much slower than t−1

col ;
this gives A(t) = exp [−(t/T )ϕ2MaMb/(Ma + Mb) − γ t/2].
The evolution starting with the state |2〉 leads to φ shifted
by π , but the same A(t), and the same contribution into
Kzz(τ,0) in Eq. (2). Calculating now Saa(ω) via Kzz(τ,0), and
using | cos φst | ≈ 1 since |φst | < |ϕ| � 1, we obtain Eq. (3)
with S = (1/2T )ϕ2MaMb/(Ma + Mb) + γ /4. Calculation
of Sbb(ω) is fully similar, while to obtain Sab(ω) in the
form (4) with the same S we also use | cos(φ − φst )| ≈ 1.

To account for small nonzero pulse widths δta,b, we can
still use Eq. (6), but averaging over φ within the pulse widths
in Eq. (5) leads to the extra factor exp [−(2π )2(Maδt

2
a +

Mbδt
2
b )t/12T 3] in A(t) and corresponding increase of S .

A small frequency mismatch �� = � − �R would lead to
the extra term �� in Eq. (6), so φst becomes shifted by
��T/(Ma + Mb). In the case when the shift between the
measurement combs is close to the half-period, ϕ should
be obviously replaced by ϕ ± π . Taking into account these
changes, we reproduce Eqs. (3) and (4) with the switching rate

S = ϕ̃2MaMb + (��T )2

2T (Ma + Mb)
+ Maδt

2
a + Mbδt

2
b

6T 3/π2
+ γ

4
(7)

for ϕ̃ � 1, where ϕ̃ = min(|ϕ|,|ϕ ± π |). Assuming compara-
ble measurement parameters for both detectors, we see that the
telegraph noise at zero frequency greatly exceeds the shot noise
contribution in Eq. (3) if ϕ̃ � 1, δta,b � T , |��|T � Ma,b,
and γ T � Ma,b. This is the condition for the validity of our
analytical results.

Figure 2 shows zero-frequency spectral densities Saa(0) and
Sab(0) as functions of the phase shift ϕ for several values of
the pulse width δta,b, assuming negligible �� and γ . Solid
lines are the numerical results calculated via Eq. (2), while
the dashed lines show analytical results using Eqs. (3), (4),
and (7). Overall the analytics are very close to the numerical
results (almost coinciding), except for Sab(0) near ϕ = ±π/2,
where the analytics are discontinuous because of the sign
change in (4). We normalize the noise Saa(0) by the shot noise
Sa of constantly biased detector, so the shot noise contribution
in this normalization is δta/T . Similarly, the cross-noise
Sab(0) is normalized by

√
SaSb. The numerical results in
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FIG. 2. (Color online) Numerical (solid lines) and analytical
(dashed lines) dependence of zero-frequency detector noise Saa(0)
and cross-noise Sab(0) on the phase shift ϕ between the bias voltage
combs for several values of the pulse width δta,b and for the harmonic
biasing. Almost complete noise anticorrelation at ϕ = ±π indicates
persistent Rabi oscillations.

Fig. 2 confirm almost full correlation of the detector noises
at ϕ ≈ 0 and almost full anticorrelation at ϕ ≈ ±π .17 The
peaks become higher and narrower for shorter pulse durations
δta,b. The results in the used normalization are practically
insensitive to the qubit-detector coupling γ meas

a,b (assuming
Ma,b � 1). Nonzero detuning �� and/or extra dephasing γ

make the peaks in Fig. 2 lower, while not affecting their width;
this lowering is less significant for stronger coupling γ ms

a,b. We
have also checked numerically that the frequency dependence
of the noises at ω � � is close to the analytical results (3)
and (4); extra peaks as well as significant imaginary component
of Sab(ω) appear at ω ≈ � and overtones of �.

Obviously, the analysis and results change only trivially if
�R/� is an integer or close to an integer. In a real experiment
with QPC detectors the best measurement mode is to apply
two bias voltage pulses with opposite polarity per Rabi period
for each detector. In this case the average bias voltage is zero
that helps to keep zero bias between the pulses. The average
current in each detector is then also zero, simplifying the noise
measurement. For such mode δta,b in Eqs. (3) and (4) should be
replaced by 2δta,b, while in Eq. (7) the measurement strengths
Ma,b should be doubled (no change for δta,b).

Now let us discuss why experimental observation of the
noise dependence of Fig. 2 would indicate persistent Rabi
oscillations. Correlation of the noises for ϕ ≈ 0 could be alter-
natively explained by the qubit localization in either state |1〉 or
|2〉. However, the anticorrelation for ϕ ≈ ±π is possible only
if the qubit oscillates persistently. Moreover, these oscillations
should be synchronized with the measurement combs, because
for persistent Rabi oscillations with a random phase one would
expect dependence Sab(0) ∝ cos ϕ, which differs substantially
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from the peaked dependence in Fig. 2 One may also worry
that the noise dependence of Fig. 2 could be alternatively
explained by the driven Rabi oscillations (between the energy
eigenstates) caused by presence of a voltage with resonant
frequency. However, both energy eigenstates produce no signal
in the detectors; therefore the driven Rabi oscillations could
only reduce the discussed noise correlation and cannot be
used for an alternative explanation (notice also that both
stable phases of the persistent oscillations are insensitive to
the microwave drive ∝ cos �Rt). Unfortunately, measurement
of only zero-frequency noise is insufficient to demonstrate
∼100% amplitude of the persistent Rabi oscillations (observed
in Ref. 3). However, if the switching rate S can be measured
either in frequency or time domain, then by comparing Sab(0)
with Eq. (4) one can check the amplitude of synchronized
oscillations.

If the stroboscopic biasing is replaced by harmonic
biasing:19 fa = cos(�t), fb = cos(�t − ϕ), then Sab(0) still
depends on the phase shift ϕ (see Fig. 2); however, there
are no more peaks and the noise magnitude is relatively
small. The numerical results at weak coupling can be fitted
as Sab(0) = 1.18�Ia�Ib cos ϕ/(γ meas

a + γ meas
b ) (the ϕ depen-

dence is slightly more peaked than cos ϕ).
In our analysis we have neglected the noise from amplifiers,

which can be simply added and is not expected to depend on
ϕ. The main effect of the neglected thermal noise in the QPCs
is a small contribution to the dephasing γ between the pulses.
A weak energy relaxation in the qubit can also be easily taken
into account.

For numerical estimates let us assume QPCs with Ia,b 	
100 nA, �Ia,b/Ia,b 	 0.1, symmetric biasing with δta,b/T 	
0.1, and Rabi frequency �R/2π 	 2 GHz. Then the col-
lapse (“attraction”) time tcol 	 2 ns is few Rabi periods,
while the switching rate is S 	 ϕ̃2/15 ns + 1/120 ns +
(��/�)2/6 ps + γ /4. Therefore we need the dephasing time
T2 = 1/γ to be longer than only a few nanoseconds to
have significant correlated telegraph noise, and its ratio
to the shot noise contribution for ϕ̃ = �� = 0 is crudely
min(60,T2/0.5 ns) (5 times smaller for the normalization of
Fig. 2). These figures show that the experiment is doable using
the present-day semiconductor technology.5,20 The experiment
can also be realized with the superconducting qubit setup of
Ref. 3.

In conclusion, we have proposed and analyzed an ex-
periment, showing persistent Rabi oscillations in a solid-
state qubit measured stroboscopically by two detectors. The
nondecaying oscillations are evidenced by changing sign of
the low-frequency cross-correlation as a function of the phase
shift between the combs of measurement pulses. In comparison
with Ref. 3, this experiment does not require high-frequency
signal pickup, and it also demonstrates partial synchronization
of the persistent Rabi oscillations without use of a much more
complicated quantum feedback.

The author thanks Rusko Ruskov for useful discussions.
This work was supported by NSA/IARPA/ARO Grant No.
W911NF-10-1-0334.
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