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Flying microwave qubits with nearly perfect transfer efficiency
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We propose a procedure for transferring the state a microwave qubit via a transmission line from one resonator
to another resonator, with a theoretical efficiency arbitrarily close to 100%. The emission and capture of the
microwave energy is performed using tunable couplers, whose transmission coefficients vary in time. Using
the superconducting phase qubit technology and tunable couplers with maximum coupling of 100 MHz, the
procedure with theoretical efficiency η = 0.999 requires a duration of about 400 ns (excluding propagation time)
and an ON/OFF ratio of 45. The procedure may also be used for a quantum state transfer with optical photons.
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I. INTRODUCTION

Rapid progress in experiments with superconducting
qubits1 confirms their importance for quantum information
processing. However, all such experiments so far are confined
to one chip inside a dilution refrigerator, without a possibility
to transfer quantum information from chip to chip or over a
longer distance between the refrigerators. In particular, the
superconducting experiment on the Bell inequality violation2

has been done with the locality loophole. A natural way
of passing quantum information from site to site is by
using “flying qubits” represented by single photons (or more
precisely, superpositions of one and zero photons). For a
superconducting qubit we may think about emission of
a microwave photon, which propagates through a lossless
superconducting waveguide and is then “captured” by another
qubit. The technology of superconducting qubits coupled to
microwave resonators based on coplanar waveguides is now
well developed.3 Since the resonators have better coherence
time than the qubits, it may be beneficial to transfer quantum
information between two resonators instead of coupling qubits
to the transmission line directly.

The transfer of quantum information from site to site may
seem much easier in optics; however, this is not the case. Even
though optical photons easily propagate in fibers, it is not
easy to capture a photon for further information processing,
without destroying it. An important idea is to use trapping of
photon states in atomic ensembles.4 In this way entanglement
between remote atomic ensembles can be established and
then used to transfer quantum information; however, general
processing of the quantum information by linear optics means5

is problematic because of its indeterministic nature. Some
other approaches (e.g., Refs. 6) may also be useful for the
transfer of quantum information over large distances, but in
any case such transfer is not simple.

A promising idea for a quantum state transfer between two
identical oscillators of either optical or microwave range of
frequency via a transmission line was put forward by Jahne,
Yurke, and Gavish.7 In their scheme the coupling between
the emitting oscillator and the transmission line changes in
time. It was shown7 that with a specific time dependence
of the coupling, the fidelity F of the transfer can be made
arbitrarily close to 100%. Unfortunately, the required ON/OFF

ratio for the coupler is quite large, ON/OFF � 1/(1 − F ), and
the duration of the procedure T (excluding the propagation

time) is quite long, T � Qem
min/[ω(1 − F )] ln(1 − F )−1, where

ω is frequency of the oscillators and Qem
min � 1 is the minimum

“loaded” quality factor of the emitting oscillator corresponding
to its maximum coupling to the transmission line. These
requirements make this scheme impractical for a high-fidelity
(1 − F � 10−3) transfer between superconducting qubits or
microwave resonators, even though tunable couplers for super-
conducting qubits have been demonstrated experimentally.8,9

A search for practical schemes for such transfer is currently
under way.10,11

In this paper we consider a modification of the above
scheme with the primary difference being the use of tunable
couplers for both the emitting and receiving resonators. This
drastically reduces the required ON/OFF ratio and duration of
the procedure: ON/OFF ∼ 1/

√
1 − F , T ∼ [Qmin/ω] ln(1 −

F )−1, where Qmin � 1 corresponds to the maximum avail-
able coupling of both resonators with the transmission line.
Actually, instead of using the amplitude fidelity F , we will
characterize the transfer by the energy efficiency η = F 2.
In the above formulas F can be replaced with η because
1 − F ≈ (1 − η)/2. With these improved requirements, we
believe the information transfer between superconducting
qubits may become practical.

As a tunable coupler we consider the experimentally
realized inductive coupler of Ref. 9. In the analysis we
assume weak coupling (large Q factors of the resonators)
and slow variation of the coupling compared to the resonator
frequency. This allows us to neglect field propagation within
the resonators and consider evolution of only one standing-
wave mode in each resonator. The main idea of the procedure is
very simple: We tune the couplers to cancel the back reflection
into the transmission line from the receiving coupler.

The next section is an overview of the work: We describe
the system and the procedure, derive main results in a simple
approximate way, and compare our system and results with
those of Ref. 7. In Sec. III we calculate the S parameters
(transmission and reflection amplitudes) for a tunable coupler
of Ref. 9. Section IV presents a quantitative analysis of the
procedure and estimates for the technology of superconducting
phase qubits. Section V is a conclusion. Section III and a part
of Sec. IV assume a particular superconducting qubit system.
Most of results of Secs. II and IV are applicable to any system
with realizable tunable couplers between a resonator and a
transmission line (hopefully, such tunable couplers between
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FIG. 1. (Color online) Our goal is to pass a classical microwave
energy from one resonator to another one via a transmission line.
Conceptually, this is done by varying in time transmission amplitudes
of “barriers” (tunable couplers) separating the resonators (half wave-
length or quarter wavelength in size) and the long transmission line.

an optical cavity and a fiber waveguide will be developed in
future).

II. OVERVIEW: SYSTEM, MAIN IDEA, AND
APPROXIMATE RESULTS

Our goal is to transfer a quantum state between two
microwave resonators via a transmission line (Fig. 1). This
is done by varying in time the coupling between the res-
onators and the transmission line. Assuming sufficiently
slow evolution (high-Q resonators and slow change of the
coupling) we consider only one mode per resonator and
assume the same frequency ω of these modes (the effect
of a frequency mismatch will be discussed in Sec. IV).
Since in our simple case the quantum language essentially
coincides7,12,13 with the classical language (the classical field
amplitudes should be associated with annihilation operators in
the Heisenberg picture), we will basically discuss a classical
field transfer between the resonators. The resulting microwave
phase in the receiving resonator (which corresponds to a qubit
phase) depends on the duration of propagation through the
transmission line. In our procedure we do not attempt to control
this phase and characterize the quality of the procedure by
the energy efficiency η. For simplicity we assume a lossless
and dispersionless transmission line and lossless resonators,
so that the relative energy loss 1 − η is due to an imperfect
transmission/capture of the wave only.

The main idea of our construction for a nearly perfect
transfer is the following. Suppose a microwave (voltage)
wave form A(t) eiωt is incident to the receiving coupler
from the transmission line (Fig. 1). The time dependence of
the receiving coupler parameters is chosen in a way which
eliminates the wave reflected from the receiving coupler back
into the transmission line. This is done by arranging exact
cancellation (destructive interference) between the reflected
wave and the transmitted part of the wave B(t) eiωt from the
receiving resonator. If the reflection back into the transmission
line is canceled, then all of the microwave power is collected
in the receiving resonator—this is exactly our goal. Instead of
varying in time the receiving coupling to achieve a perfect
cancellation of the refection, it is also possible to keep it
fixed, but vary the emitting coupling, designing a specific
A(t) for a perfect cancellation. In a general case both the
emitting and receiving coupler parameters can be varied
in time in accordance with each other to satisfy just one
equation: cancellation of the reflection. Actually, this is a
complex-number equation because of an amplitude and a

0 timets tm te

A(t)

|t|max

|t | |t |

A0

Am

em rec

FIG. 2. (Color online) Sketches of the assumed time dependence
|tem(t)| of the transmission amplitude of the emitting coupler (blue),
transmission amplitude |trec(t)| of the receiving coupler (black), and
the wave amplitude A(t) incident to the receiving coupler from the
transmission line (green). The voltage amplitude A(t) is constant (A0)
during the buildup period 0 < t < ts, then increases exponentially
until time tm at which |tem| reaches the maximum available value
|t|max, and after that A(t) decreases exponentially until the end of
the process te. The receiving coupling |trec| is kept at the maximum
value |t|max at t < tm, while at t > tm the emitting coupling |t|em is
kept at the maximum |t|max. The ratio of couplings |tem/trec| is chosen
to cancel the back reflection into the transmission line at any time
after ts.

phase; however, we will see later that in the case of equal
resonator frequencies and weak coupling the phase relation
is satisfied automatically, so we are left with only one real
equation to be satisfied. In our particular construction we vary
only the emitting coupling in the first part of the procedure,
while keeping maximum the receiving coupling, and do it in
the opposite way in the second part of the procedure: keep the
emitting coupling maximum and vary the receiving coupling.
The durations of the two parts are approximately equal.

The perfect reflection cancellation is obviously impossible
at the beginning of the procedure, because it should take time
to build up the microwave amplitude B(t) in the receiving
resonator. The microwave reflected back into the transmission
line during the buildup time is irrecoverably lost (it may
actually lead to multiple reflections, but we treat it as being
lost—see discussion later). This means that we should design
the wave-form envelope A(t) to be very small during this initial
period (see Fig. 2), while after the buildup is finished, A(t) can
start increasing rapidly. Let us choose it constant, A(t) = A0,
during the buildup and crudely estimate the energy loss. Notice
that we shift the time origins at the emitter and receiver by
the propagation time, so that t means both the emitting and
receiving time. Also notice that A(t) can be assumed real.

During the buildup period the transmission amplitude trec

of the receiving coupler is kept at the maximum available
value tmax, which is still small, |t|max � 1 (boldface is used
for t to distinguish it from time; we will see later that the
phase of complex t is fixed). To start the perfect reflection
cancellation we need the wave amplitude |B| in the resonator
to become |A0/tmax|; this will happen at the “start” time
ts ∼ τbu ≡ τrt/|t|2max, where τbu is the time constant of the
buildup process, ts 	= τbu because the resonator leaks through
the coupler, and τrt is the round-trip time of the wave in the
resonator. For the lowest frequency mode

τrt ≈ 2π/ω or τrt ≈ π/ω (1)
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for a λ/2 (half-wavelength) resonator or a λ/4 resonator,
respectively (these equations are not exact because the coupler
may affect the boundary condition). Notice that our definition
of the buildup time constant τbu has a direct relation to the
resonator Q factor due to the coupler: In the absence of the
incoming wave the fraction |t|2 of resonator energy would be
lost every τrt; therefore Q = ωτrt/|t|2, and so τbu = Qmin/ω

(in this derivation we implicitly assumed the same wave
impedance R in the resonator and in the transmission line).
Since the traveling wave A0 carries the power |A0|2/2R, the
energy loss during the buildup period ts is ∼ |A0|2τbu/R, which
should be later compared with the total transmitted energy.

After ts the transmitted energy is no longer being lost, and
A(t) may increase as fast as A0 exp[(t − ts)/2τbu]. A simple
way to derive this formula is by applying time reversal to
the “no-reflection” procedure, which converts it into a “no
incident wave” case, corresponding to a leaking resonator. In
such a case the wave amplitude in the resonator decreases as
exp(−ωt/2Q) [the energy decreases as exp(−ωt/Q)], and the
leakage amplitude in the transmission line has the same time
dependence. Therefore for the absence of reflection we need
A(t) ∝ exp(ωt/2Q), and for the assumed maximum coupling
(Qmin = ωτbu) we get A(t) ∝ exp(t/2τbu). The application
of time reversal also proves that the wave in the receiving
resonator automatically accumulates with a proper phase for
the reflection cancellation.

Exponentially increasing A(t) requires a strong increase
of the emitting resonator coupling (slightly faster than ex-
ponential), so this process can last only until some time tm,
when the emitting coupling reaches its physical limit (see
Fig. 2). The reflection cancellation can still be achieved after
this time by decreasing the receiving coupling. Assuming
the same maximum transmission |t|max and the same τrt for
the emitting and receiving resonators, we find that after tm
the transmitted amplitude becomes exponentially decreasing,
A(t) ∝ exp(−t/2τbu), with the same time constant as for
the increasing part. To maintain the reflection cancellation,
the receiving coupling trec should then be decreased in time
slightly faster than ∝ exp(−t/2τbu), since the amplitude B(t)
in the receiving resonator continues to grow.

If we end the procedure at a finite time te, then there
will be some energy left untransmitted/unreceived. From the
symmetry, if we choose te − tm ≈ tm − ts, then this energy
loss will be comparable to the energy loss ∼ |A0|2τbu/R

during the buildup period ts. Since the total transmitted energy
is approximately |A0|2 exp[(tm − ts)/τbu] τbu/R, the relative
loss is 1 − η ∼ exp[−(tm − ts)/τbu]. Therefore, for an almost
perfect efficiency η, the total duration of the procedure,
te ≈ 2(tm − ts), should be crudely

te � 2 τbu ln
1

1 − η
, τbu = τrt

|t|2max

= Qmin

ω
. (2)

The required ON/OFF ratio |t|max/|t|min for the receiving coupler
can be estimated as

√
2A(tm)/A(te) = √

2 exp[(te − tm)/2τbu],
where the factor

√
2 is needed because the energy in the

receiving resonator at time tm is approximately half of its
energy at time te. An estimate for the emitting coupler is

similar because A(ts) ∼ A(te). Therefore, the requirement is
crudely

ON/OFF �
√

2√
1 − η

. (3)

Equations (2) and (3) are the main approximate results for
our procedure; the exact results will be presented in Sec. IV.
A quick estimate using |t|2max � 10−2, ω/2π = 6 GHz, τrt =
π/ω, and η = 0.999 gives numbers quite encouraging for
an experiment with superconducting qubits: te � 120 ns and
ON/OFF � 45.

Now let us discuss the differences between our work and
Ref. 7, and the reason why we obtained so much better results
for the duration te and ON/OFF ratio. Most importantly, in Ref. 7
only the emitting coupling tem is modulated in time (receiving
coupling trec is fixed), so that in the language of our Fig. 2
the amplitude A(t) continues to increase exponentially after
tm, until the emitting resonator is practically empty. Then,
since at te the ratio of wave amplitudes in the emitting and
receiving resonators should be ∼√

1 − η (the energy ratio
is ∼1 − η), the ratio of transmissions is trec/tem

max ∼ √
1 − η.

Similarly, at ts there should be the opposite relation of
the wave amplitudes, and therefore tem

min/trec ∼ √
1 − η. As

a result, the required ON/OFF ratio is tem
max/tem

min ∼ 1/(1 − η),
which is much larger than our result (3). Since the receiving
resonator amplitude increases by ∼1/

√
1 − η times between

ts and te, the duration of the procedure can be estimated
as te � (Qrec/ω) ln(1 − η)−1 ∼ [Qem

min/ω(1 − η)] ln(1 − η)−1.
This is ∼1/(1 − η) times longer than our result (2) for the
same Qem

min.
Actually, the requirements for the procedure duration and

ON/OFF ratio reported in Ref. 7 are even stronger: There are
inequalities with “much greater” signs instead of the signs
“comparable” in our estimates. The strategy is also different.
The idea of reflection cancellation is not mentioned in Ref. 7
and our initial buildup period t < ts is absent. Instead, the
result is obtained by a formal optimization of the fidelity
using the Euler-Lagrange equation. In this case the reflection
cancellation is not exact. However, this is a relatively minor
difference between Ref. 7 and our work. Even though the
idea of reflection cancellation is not discussed in Ref. 7, it is
essentially there.

As one more difference, the scheme of Ref. 7 assumes
a circulator placed in between the resonators, so that the
back-reflected wave is diverted and fully absorbed. In our
derivation we essentially analyze the same situation treating
the reflected wave as a loss; however, we do it with a different
reasoning, not assuming a circulator. Formally, we can assume
a very long transmission line, so that the reflected wave does
not play any role. In a real experiment this is impossible, and
the reflected wave leads to multiple reflections from the two
couplers, which greatly complicates the analysis. However,
there is a simple way to show that the multiple reflections
do not change the efficiency η significantly. Let us separate
the wave amplitudes at time ts into two parts: the result of the
simple analysis for which B(ts) = −A0/tmax and the remaining
part. Then using the system linearity we can analyze the further
evolution of both parts separately and add their contributions
at the end time te. Since the reflection is fully canceled in our
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usual procedure after ts, the evolution of this part remains the
same as in the simple analysis. For the remaining part let us use
the energy conservation. If the length of the transmission line
is not resonant with the frequency ω (we assume this case),
then the energy of the remaining wave part cannot be larger
than on the order of |A0|2ts/R ∼ Ein(1 − η), where Ein is the
initial energy of the emitting resonator. The transfer efficiency
is decreased if this wave gives an antiphase contribution at
the receiving resonator at time te. Instead of considering
the receiving resonator at te, it is easier to use conservation
of the total energy and estimate the energy at te in the
emitting resonator and the transmission line. Even if the two
wave contributions (from simple analysis and due to multiple
reflections) are added there in-phase, the energy loss cannot
be larger than twice the sum of the corresponding energies,
so it is still on the order of Ein(1 − η). Therefore even in
the worst-case scenario the inefficiency 1 − η cannot increase
more than few times due to the effect of multiple reflections.
Moreover, such increase requires an unlucky phasing of the
multiple reflections, while on average η is not decreased by
their contribution. This is why we neglect multiple reflections
in our analysis and consider the reflected wave as being lost.

From the above analysis based on linearity and energy
conservation it is clear that the initial period ts is actually not
needed. We can start the procedure of reflection cancellation
from t = 0 just pretending that the needed amplitude A0/tmax

is already in the receiving resonator. The energy loss at the
start of the procedure will be then only few times larger, and
this can be compensated by a slight decrease of A0. The time
dependence of tem, trec, and A on Fig. 2 in this case will be
fully symmetric about the middle point tm. Even though the
initial period ts is not necessary, we keep it in our analysis for
conceptual simplicity.

III. S PARAMETERS FOR INDUCTIVE TUNABLE
COUPLER AND Q FACTOR

The idea described in the previous section can be applied to
various systems which permit realization of tunable “barriers”
between standing-wave modes in resonators and a propagating
mode in a transmission line. However, in this paper we will
focus on a particular technology developed for superconduct-
ing phase qubits,9 which can be used to transfer microwave
qubits between two superconducting coplanar waveguide (or
microstrip) resonators. In particular, in this section we will
calculate the transmission and reflection amplitudes t and
r for the tunable coupler of Ref. 9, assuming that this
coupler connects two coplanar waveguides (or microstrips).
The readers interested in other realization (optical, etc.) can
skip this section and go directly to Sec. IV, in which the transfer
procedure of Sec. II is analyzed in more detail.

Notice that the terminology of S parameters (scattering
matrix elements) is the same in microwave technology and
in quantum mechanics. Instead of the notation S11, S12, etc.,

we use a more transparent notation S = (
r1 t2

t1 r2
), where the

subscript indicates that the incident wave came from the left
(side 1) or from the right (side 2)—see Fig. 3. In the usual case
of equal wave impedances from both sides, R1 = R2 = R, the
S matrix should be unitary because of the energy conservation,

t t2B 1A
r1A
(side 1) (side 2)

r2B
BA

FIG. 3. (Color online) Notations for the scattering matrix.

which means |t1|2 + |r1|2 = |t2|2 + |r2|2 = 1 and r2/r∗
1 =

−t2/t∗1 (so that necessarily |t2| = |t1| and |r2| = |r1|). The
reciprocity condition in the usual case (same for microwaves
and in quantum mechanics) gives t2 = t1 (so we will use t
without a subscript), and therefore the general form is

S =
(

r1 t
t −r∗

1t/t∗

)
, |t|2 + |r1|2 = 1. (4)

Notice that if the coupler is symmetric, then r1 = r2, and
this is possible only if t and r are shifted by ±90 degrees;
in other words the ratio t/r should be purely imaginary. In a
general asymmetric case t2/r1r2 is negative-real, and therefore
t/

√
r1r2 is purely imaginary.

Now let us consider the tunable coupler of Ref. 9 (for other
ideas used for superconducting qubits see Ref. 8), and for
simplicity14 let us describe it as an inductive coupler (Fig. 4)
with inductances L1 and L2, and mutual inductance M . In the
experiment9 L1 and L2 are practically constant, while M is
tunable and small, M2 � L1L2. The actual circuit9 is more
complex than in Fig. 4. The effective coupling inductance
M consists of two contributions: a fixed negative geometrical
mutual inductance and a tunable positive Josephson inductance
of a shared Josephson junction, which is tuned by controlling
a bias current. In spite of simplicity, the model of Fig. 4 is
a good description, as confirmed by the experimental results9

and quantum analysis.14 Parasitic elements such as distributed
stray capacitance surely make the model more complicated;
however, in the assumed weak-coupling limit their possible
effect is only a slight change of the transmission and reflection
amplitudes.

As a reminder, if a microwave transmission line is ter-
minated with a short, then r = −1 (the voltage changes
sign because the voltage is zero at the short), while if it is
terminated with a break, then r = 1 (because then the current is
zeroed). The short (very small impedance) or break (very large
impedance) should be compared with the wave impedance of
the transmission line R � 50 �. We mostly consider the case
of large inductances L1,2 in the coupler, ωL1,2 � R, and weak
coupling, M2 � L1L2, so that r1 ≈ r2 ≈ 1. The transmission

R1 = 50 R2 = 50

L1 L2

M

I1 I2

A V x

FIG. 4. (Color online) The tunable coupler consisting of in-
ductances L1 and L2 coupled by a tunable mutual inductance M .
Incoming wave amplitude is A (voltage), the voltages across the
inductors are V and x, and the transmission amplitude is t = x/A.
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amplitude t is therefore almost purely imaginary. Let us first
find t in this high-impedance weak-coupling approximation,
and then find it in a general case.

Assume that there is a voltage wave Aeiωt incident from the
left, and there is nothing incident from the right. Since r1 ≈ 1,
the voltage across L1 is V = 2Aeiωt (we will often omit eiωt

by using the phasor representation), and the current in L1 is
I1 = V/iωL1. It is important that the voltage across L2 is not
V M/L1 because L2 is loaded by a small resistance R. Let
us denote the voltage across L2 as x; then the current in the
outgoing transmission line is x/R, and the current in L2 is the
same with opposite sign: I2 = −x/R. Then from the standard
equation for coupled inductors (a transformer)

x = M(iωI1) + L2(iωI2) = iωM
V

iωL1
− iωL2

x

R
(5)

we find x = (V M/L1)/(1 + iωL2/R). Since we assume
ωL2 � R, this means x = (V M/L1)(R/iωL2). Finally, us-
ing the relation V = 2A, we find the transmission ampli-
tude t = x/A in the high-impedance weak-coupling approx-
imation:

t = −i
2MR

ωL1L2
, r2 = r1 = 1 − |t|2

2
, (6)

where the term |t|2/2 is included to satisfy |t|2 + |r|2 = 1 in the
leading order (actually, neglected imaginary contributions to
r2 and r1 can be larger than |t|2, but they are not so important).

Now let us consider a general case with arbitrary ra-
tios ωL1/R1, ωL2/R2, and M2/L1L2, and possibly dif-
ferent wave impedances R1 and R2 of the two transmis-
sion lines. In quantum mechanics R1 	= R2 corresponds to
different potential energies or effective masses at the two
sides. In this case the scattering matrix S is no longer

unitary. Instead, the matrix S̃ = (
r1 t2

√
R2/R1

t1
√

R1/R2 r2
) is

unitary; this still follows from the conservation of energy.
The reciprocity condition is now t1

√
R1/R2 = t2

√
R2/R1,

which leads to the following general form of the S

matrix:

S =
(

r1 t1R1/R2

t1 −r∗
1t1/t∗1

)
, |t1|2 R1

R2
+ |r1|2 = 1. (7)

Notice that |r1| = |r2| but |t1| 	= |t2|.
The derivation for t1 and r1 is now slightly different because

the voltage V = A(1 + r1) is unknown, so we have a system
of two equations:

x = iωM
(1 − r1)A

R1
− iωL2

x

R2
, (8)

(1 + r1)A = iωL1
(1 − r1)A

R1
− iωM

x

R2
(9)

(notice that now I1 	= V/iωL1), from which we find t1 = x/A

and r1:

t1 = −i
2MR2

ω(L1L2 − M2)

×
[

1 − i
R2L1 + R1L2

ω(L1L2 − M2)
− R1R2

ω2(L1L2 − M2)

]−1

, (10)

r1 =
1 − i

R2L1 − R1L2

ω(L1L2 − M2)
+ R1R2

ω2(L1L2 − M2)

1 − i
R2L1 + R1L2

ω(L1L2 − M2)
− R1R2

ω2(L1L2 − M2)

. (11)

It is easy to check the relation |t1|2(R1/R2) + |r1|2 = 1
explicitly. The S parameters t2 = t1R1/R2 and r2 = −r∗

1t1/t∗1
are given by Eqs. (10) and (11) with exchanged parameters
R1 ↔ R2, L1 ↔ L2. It is easy to see that t1/(

√
r1

√
r2) is

negative-imaginary if the square root is defined in the natural
way and M is assumed to be positive for definiteness.

An important limiting case of Eqs. (10) and (11) is when
M2/L1L2 � 1 and R1R2/ω

2L1L2 is not too close to 1. Then
the coupling is weak, while the impedance ratios ωL1/R1 and
ωL2/R2 are arbitrary. In this case

t1 = 2iωMR2

(iωL1 + R1)(iωL2 + R2)
, t2 = t1

R1

R2
, (12)

r1 = iωL1 − R1

iωL1 + R1

(
1 − |t1|2

2

R1

R2

)
, (13)

r2 = iωL2 − R2

iωL2 + R2

(
1 − |t1|2

2

R1

R2

)
, (14)

where the factors 1 − |t1|2(R1/R2)/2 are included again to
satisfy the energy conservation in the leading order.

If a wave A is incident from the left, then the transmitted
power is P = |At1|2/2R2. It is useful to express this power
in terms of the voltage V = A(1 + r1) across L1. In the weak
coupling case we find the ratio

P

|V |2 = |t1|2
2R2|1 + r1|2 = M2R2

2ω2L2
1L

2
2[1 + (R2/ωL2)2]

,

(15)

which obviously does not depend on R1.
This formula can be used to find the Q factor (Q � 1)

of a resonator or a lumped-circuit oscillator of frequency ω

connected to the coupler from the left. The energy E of an
oscillator decreases because of the leaking power P , and the
corresponding Q = ωE/P is

Q = E

|V |2
2ω3L2

1L
2
2[1 + (R2/ωL2)2]

M2R2
, (16)

where the ratio E/|V |2 depends on the oscillator type and
parameters.

For example, for a coplanar resonator, in which the energy is
mainly stored “inside,” with negligible contributions from the
lumped elements at the two edges (then ωL1 � R1, r1 ≈ 1),
we have

V = 2A, E = |A|2
2R1

τrt = lCpl|A|2, (17)

where l is the resonator length, Cpl is the capacitance per unit
length, the round-trip time is τrt = 2l/v, and the wave velocity
is v = 1/CplR1 (as follows from the telegraph equations). This
case corresponds to Eq. (1).

If the resonator energy has a significant contribution from
the lumped elements at the edges, then it is meaningful to define
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the round-trip time τrt via the relation between the resonator
energy E and the “traveling” power |A|2/2R1, so that

τrt ≡ 2R1E

|A|2 ,
E

|V |2 = τrt[1 + (R1/ωL1)2]

8R1
, (18)

where we used V/A = 1 + r1. In this case

Q = τrtω
3L2

1L
2
2[1 + (R1/ωL1)2][1 + (R2/ωL2)2]

4M2R1R2
(19)

= ωτrt

|t|21
R2

R1
, (20)

where the last formula can also be easily derived directly as
Q = ωE/P .

If we use a lumped-element LC-oscillator, for example a
superconducting phase qubit with effective parameters Lqb and
Cqb, then

E

|V |2 = Cqb

2
, Q = Cqbω

3L2
1L

2
2[1 + (R2/ωL2)2]

M2R2
. (21)

IV. QUANTITATIVE ANALYSIS OF THE PROCEDURE
AND ESTIMATES

Let us analyze quantitatively the procedure of the wave
transfer discussed in Sec. II. Assume that a voltage wave
A(t) eiωt is incident from the transmission line (from the left,
which is side 1 in our notation) to the tunable coupler of
the receiving resonator (Fig. 1). The wave incident from the
resonator side (side 2) is B(t) eiωt , and we again assume the
same wave impedance from both sides, R1 = R2 = R � 50 �.
As discussed in Sec. II, the idea is to cancel the wave emitted
back into the transmission line. Exact cancellation occurs if

r1A + tB = 0, (22)

so we should vary the receiving coupler parameters and/or
A(t) to satisfy this equation at any time except for the initial
period t < ts. Here t = trec, r1 = rrec

1 ; for brevity of notations
we will mostly omit the superscript for the receiving coupler
parameters, while using the superscript “em” for the emitting
coupler.

The evolution of the receiving resonator amplitude B(t) in
the high-Q small-detuning case can be described as15

Ḃ = r2e
iϕ − 1

τrt
B + eiϕ

τrt
At. (23)

Here τrt is the round-trip time for the wave in the resonator [see
Eq. (1)], which can be defined in general as τrt ≡ 2RE/|B|2,
where E is the resonator energy [see Eq. (18)]. The parameter
ϕ describes deviation of the effective resonator length from
the perfect value, so that the detuning δω = ωrec − ω of the
resonator frequency is δω = (ϕ + arg r2)/τrt. (If r2 ≈ −1, then
ϕ ≈ π ; however, here we focus on the case when r2 ≈ 1, which
requires ϕ ≈ 0.) Nonzero ϕ is needed if the ratio ωL2/R is
finite (then arg r2 	= 0) and we want δω = 0. The detuning can
in principle be varied in time;16 we do not explicitly consider
this possibility below, but our assumption δω = 0 actually
implies slight variation of ϕ, because arg r2 slightly changes
when t is modulated. The resonator Q factor is Q = ωτrt/|t|2,

which follows from Eq. (23) when Q � 1 and |δω| � 1/τrt,
since Re(1 − r2e

iϕ) ≈ 1 − |r2| ≈ |t|2/2.
The easiest case to analyze is the weak-coupling high-

impedance limit for the receiving coupler, when |M| �
L1L2 and ωL1,2 � R (as discussed later, the high-impedance
assumption is actually not important). Then r1 = r2 = 1 −
|t|2/2 ≈ 1, t is negative-imaginary [see Eq. (6); we assume
M > 0 for definiteness], and we also assume ϕ = 0 to get
δω = 0. (Actually, as discussed above, ϕ should slightly vary
in time to compensate the frequency detuning due to the
coupler, since we assume δω = 0.) In this case Eq. (23)
becomes

Ḃ = − |t|2
2τrt

B + t
τrt

A. (24)

Notice that A(t) comes from the emitting resonator having the
same frequency, and it comes through a weak coupler also; this
is why its phase does not change with time, and we can assume
A(t) to be real and positive, A(t) > 0, by a trivial phase shift.
Since A(t) > 0 and t is negative-imaginary, B(t) (which starts
from zero) is also negative-imaginary.

As was discussed in Sec. II, we keep the transmitted
amplitude constant, A(t) = A0 > 0 for the build-up period
(Fig. 2), and keep t at its maximum value t = −i|t|max.
Solution of Eq. (24) which starts with B(0) = 0 is then

B(t) = −2iA0

|t|max
(1 − e−t/2τbu ), (25)

where

τbu = τrt

|t|2max

= Qmin

ω
(26)

is the time constant of the buildup process, corresponding to the
maximum available coupling (minimum available Q factor) of
the receiving resonator. The full reflection compensation can
be started when we reach i|t|maxB = A0, which happens at
time

ts = τbu ln 4. (27)

After that the reflection is kept canceled by satisfying Eq. (22);
therefore

t = −A

B
, Ḃ = −A2

B

1

2τrt
. (28)

Solution of this equation for B(t) corresponds to the energy
conservation:

B(t) = −i

√(
A0

|t|max

)2

+ 1

τrt

∫ t

ts

A2(t ′) dt ′, (29)

where A(t) at t > ts is in general arbitrary, just with the
limitation A(t) � |t|max|B| (notice that since we can vary t, the
ratio A/iB may vary in time). Choosing an increase of A(t) at
the maximum of this limitation [i.e., assuming |t(t)| = |t|max]
we obtain [see Eq. (28)]

A(t) = A0e
(t−ts)/2τbu , B(t) = −iA(t)

|t|max
, t � ts. (30)

The exponential increase (30) of A(t) requires an increase
of the transmission amplitude |tem| of the emitting coupler.
Assuming that at time tm it reaches a physical limitation |t|em

max
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and is then kept constant at this maximum available level, we
obtain the change from the form of Eq. (30) to

A(t) = Ame−(t−tm)/2τ em
bu , |trec(t)| = −iA(t)

B(t)
, t � tm, (31)

where Am = A0e
(tm−ts)/2τbu is the maximum wave amplitude,

B(t) is given by Eq. (29), and τ em
bu ≡ τ em

rt /(|t|em
max)2 = Qem

min/ω.
Even though there is no “buildup” at the emitting resonator,
we use notation τ em

bu because the decay time constant is the
same as the buildup time constant, as is obvious from the time
reversal discussed in Sec. II.

Let us assume that the procedure ends abruptly at time te and
calculate the total energy loss. Since the energy carried by a
traveling wave A(t) is

∫ |A|2dt/2R, the untransmitted energy
is A2

me−(te−tm)/τ em
bu τ em

bu /2R. The energy loss during the initial
buildup time ts is [A2

0ts − (A0/|t|max)2τrt]/2R = A2
0τbu(ln 4 −

1)/2R. Therefore the total relative loss is

1 − η = A2
0τbu(ln 4 − 1) + A2

me−(te−tm)/τ em
bu τ em

bu

A2
0τbu(ln 4 − 1) + A2

mτbu + A2
mτ em

bu

, (32)

where the denominator corresponds to the total (initially
stored) energy. Neglecting the term A2

0τbu(ln 4 − 1) in the
denominator (i.e., assuming e(tm−ts)/τbu � 1) and using Am =
A0e

(tm−ts)/2τbu , we obtain

1 − η = (ln 4 − 1)e−(tm−ts)/τ rec
bu τ rec

bu + e−(te−tm)/τ em
bu τ em

bu

τ rec
bu + τ em

bu

, (33)

where the notation τ rec
bu ≡ τbu is used for symmetry. Notice

that even though in the derivation we used the terminology
applicable to a resonator (for example, the round-trip time), the
result (33) for the efficiency η depends only on the minimum
Q factors of the resonators. If a resonator is replaced by a
phase qubit, then the only difference is a different formula for
the Q factor [see Eqs. (16), (19), and (21)].

To find the shortest duration of the procedure te for a fixed
η, we minimize this expression over tm, which gives

te = (τ em
bu + τ rec

bu ) ln
1

1 − η
+ τ rec

bu ln[4(ln 4 − 1)]. (34)

In particular, in the symmetric case when τ em
bu = τ rec

bu = τbu,
the minimum duration is

te = 2τbu ln
2
√

ln 4 − 1

1 − η
= 2Qmin

ω
ln

2
√

ln 4 − 1

1 − η
, (35)

which is quite close to the estimate (2), since
√

ln 4 − 1 ≈
0.62.

At the minimum duration (34) the ratio of the en-
ergy losses at the buildup and at the end is τ rec

bu /τ em
bu ,

and the relations of the wave amplitudes are Am/A0 =√
ln 4 − 1/

√
1 − η and Am/Ae = 1/

√
1 − η [see Eq. (33)],

where Ae = Ame−(te−tm)/2τ em
bu is the wave amplitude at the end

of the procedure. The ratio of the transmitted energies before
and after tm is τ rec

bu /τ em
bu [see denominator of Eq. (32)]; notice

that the corresponding ratio of energies in the receiving and
emitting resonators at tm is Qrec

min/Q
em
min, so that the same wave

amplitudes are emitted into the transmission line.
The maximum/minimum ratios for the transmission t of the

emitting and receiving couplers can be easily found from the

calculated ratios Am/A0 and Am/Ae, and the energy in each
resonator at tm; this gives

tem
max

tem
min

=
√

Qem
min

Qem
max

=
√

ln 4 − 1
√

1 + τ rec
bu /τ em

bu√
1 − η

, (36)

trec
max

trec
min

=
√

Qrec
min

Qrec
max

=
√

1 + τ em
bu /τ rec

bu√
1 − η

. (37)

These are the ON/OFF ratios for the tunable couplers. In the
symmetric case when τ em

bu = τ rec
bu they are

tem
max

tem
min

=
√

2(ln 4 − 1)√
1 − η

,
trec
max

trec
min

=
√

2√
1 − η

, (38)

so that the required ON/OFF ratio is larger for the receiving
coupler, and it exactly coincides with the estimate (3). In
particular, for η = 0.999 the ON/OFF ratio is 28 for the emitting
coupler and 45 for the receiving coupler.

For the requirements on the ON/OFF ratios of the couplers,
it is instructive to calculate the relative energy loss at
the buildup period and at the end of the process in the
following way. If at the buildup period we use tem

min for the
emitting coupler (constant A0 implies practically constant
tem) and trec

max for the receiving coupler, then the energy
loss is A2

0(ln 4 − 1)τ rec
rt /|trec

max|22R, while the energy stored in
the emitting resonator is (A0/|tem

min|)2τ em
rt /2R. Therefore the

relative energy loss during the buildup is 1 − ηbu = (ln 4 −
1)(|t|em

min/|t|rec
max)2(τ rec

rt /τ em
rt ) independently of what happens

later. Similarly, if at the end of the procedure we use tem
max for

the emitting coupler and stop the procedure when the receiving
coupling needs to go below trec

min, then the relative energy loss is
1 − ηend = (|t|rec

min/|t|em
max)2(τ em

rt /τ rec
rt ). Therefore the minimized

ON/OFF ratios for both couplers for a fixed η = ηbu + ηend − 1
are

tem
max

tem
min

= trec
max

trec
min

=
√

2
√

ln 4 − 1√
1 − η

. (39)

This optimization differs from minimization of the duration
te and assumes a variable ratio |t|em

max/|t|rec
max. However, we see

that the ON/OFF ratio (38) for trec obtained in optimizing te in
the case τ em

bu = τ rec
bu is only 30% larger than the minimum (39).

So far all formulas in this section starting with Eq. (24) were
based on the high-impedance weak-coupling assumption, so
that Eq. (6) can be used. However, the results are essentially
the same in the case when impedances of the couplers are
arbitrary, while the coupling is still weak, so that we can use
Eqs. (12)–(14). This is because the phases of t, r1, and r2 do
not change when the coupling is tuned. Since the effective
frequencies of the emitting and receiving resonators are equal,
then ϕ = − arg r2 in Eq. (23), and therefore arg(B/A) =
arg(t/r2). It is easy to see that this automatically leads to the
proper phase for the reflection cancellation in Eq. (22), since
arg(−tB/Ar1) = arg(−t2/r1r2) = 0. Therefore, all formulas
in this section remain valid, just with some fixed phase shifts
for A(t) and B(t).

Equation (33) can also be used to analyze the case when the
receiving coupler is not controlled, as in Ref. 7. Then te = tm,
and from the second term in the numerator we obtain τ rec

bu >

τ em
bu /(1 − η), assuming 1 − η � 1. For the duration we use the
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first term and find te > (tm − ts) > τ rec
bu ln[(ln 4 − 1)/(1 − η)];

then using the first inequality we obtain te > [τ em
bu /(1 −

η)] ln[(ln 4 − 1)/(1 − η)]. The minimized value of te is close
to this bound, but even its approximate formula is rather
lengthy: te ≈ [τ em

bu (1 + y)/(1 − η)] ln[4(ln 4 − 1)/y(1 − η)],
where y = 1/ ln{4(ln 4 − 1)/[(1 − η) ln(1 − η)−1]}. For the
ON/OFF ratio we notice that A2(t) should increase during
the procedure by the factor e−(te−tm)/τ rec

bu > (ln 4 − 1)/(1 − η),
while the energy of the receiving resonator should decrease
by more than 1/(1 − η) times. Therefore, the ON/OFF ratio for
the emitting coupler should exceed

√
ln 4 − 1/(1 − η). The

minimized ON/OFF ratio can be shown to be twice larger.
Comparing these results with Eqs. (35) and (38), we see
that additional use of a tunable receiving coupler shortens
the procedure crudely by the factor 1/2(1 − η) assuming the
same τ em

bu , while the ON/OFF ratio is decreased crudely by the
factor 1/

√
1 − η.

As mentioned at the end of Sec. II, the initial period ts
is not really needed in our procedure. Let us use ts = 0 and
start the reflection cancellation (30) just pretending that the
needed amplitude B = −A0/tmax is already in the receiving
resonator at t = 0. Then using linearity we see that for such
procedure the initial loss of energy into the transmission line
is A2

0τ
rec
bu /2R, which is 2.6 times larger than the initial loss

A2
0τ

rec
bu (ln 4 − 1)/2R in our usual procedure. Then Eq. (33) is

replaced with

1 − η = e−tm/τ rec
bu τ rec

bu + e−(te−tm)/τ em
bu τ em

bu

τ rec
bu + τ em

bu

, (40)

and minimization of time te for a given η is achieved
when tm/τ rec

bu = (te − tm)/τ em
bu , so that Am/A0 = Am/Ae =

1/
√

1 − η. The total duration of such procedure is

te = (
τ em

bu + τ rec
bu

)
ln

1

1 − η
(41)

instead of Eq. (34), and the emitting coupler ON/OFF ratio is

tem
max/tem

min =
√

1 + τ rec
bu /τ em

bu /
√

1 − η (42)

instead of Eq. (36), while for the receiving coupler Eq. (37)
is still valid. Therefore, cutting out the initial period ts
makes the procedure slightly shorter, and it makes it fully
symmetric in time for a symmetric system. Explicitly, in this
“pretending” procedure the tunable couplers should be varied
in the following way (we still use high-Q approximation):

tem(t) = tem
max

√
τ em

bu /τ rec
bu√(

1 + τ em
bu

τ rec
bu

)
e(tm−t)/τ rec

bu − 1
, 0 < t < tm, (43)

trec(t) = trec
max

√
τ rec

bu /τ em
bu√(

1 + τ rec
bu

τ em
bu

)
e(t−tm)/τ em

bu − 1
, tm < t < te, (44)

tm = τ rec
bu ln

1

1 − η
, te − tm = τ em

bu ln
1

1 − η
. (45)

Notice that the time dependence in Eq. (43) is essentially
the same as in Ref. 7. [For the procedure with the buildup
period ts the corresponding time dependencies tem(t) and trec(t)

are similar, just with different formulas for tm and te, and
practically constant tem(t) at t < ts.]

The neglected effect of multiple reflections can be easier
analyzed in the “pretending” procedure with ts = 0 than in our
usual procedure. Then the reflected waves carry the energy
A2

0τ
rec
bu /2R, and in the worst-case scenario this wave is added

in-phase with the unreceived wave with energy A2
eτ

em
bu /2R. The

corresponding increase of the energy loss is at most a factor
of 2 because max[|x + y|2]/(|x|2 + |y|2) = 2. Therefore the
inefficiency 1 − η cannot increase more than twice due to the
neglected effect of multiple reflections.

Now let us estimate parameters for a possible experiment
based on the present-day technology of superconducting
phase qubits. The tunable coupler of the kind considered
in Sec. III was used by R. Bialczak et al.9 to create
σ

(1)
X σ

(2)
X coupling between two phase qubits. The coupling

frequency �XX/2π was tunable between 0 and 100 MHz.
By comparing Eq. (6) for t with the corresponding two-qubit
coupling frequency9,14 �XX = −M/L1L2ωCqb where Cqb

is the qubit capacitance, we find t = 2i�XXRCqb. Using
the values |�XX|/2π = 100 MHz and Cqb = 1 pF from the
experiment9 and R = 50 �, we obtain |t| = 0.063. A more
accurate way is to use Eq. (12) for t, which gives |t| =
2|�XX|RCqb/

√
[1 + (R/ωL1)2][1 + (R/ωL2)2]. Then for the

experimental values9 L1 = L2 = 3 nH and ω/2π = 6 GHz,
we obtain a more accurate value |t| = 0.053. Using this
value as |t|max, assuming λ/4 resonators (so that τrt ≈ π/ω)
and ω/2π = 6 GHz, we find τbu = 30 ns from Eq. (26);
correspondingly, the minimum duration of the procedure [see
Eq. (35)] for η = 0.999 is te = 420 ns.

If we replace the two resonators with two phase qubits,
then the formalism is essentially the same, but we need to use
Eq. (21) for the Q factor and corresponding τbu. Then express-
ing τbu via �XX coupling in the experiment of Ref. 9, we get
τbu = [1 + (R/ωL1)2]/�2

XXRCqb, which gives τbu = 60 ns
for �XX/2π = 100 MHz. This is accidentally very close to τbu

for a λ/2 resonator, because π [1 + (R/ωL1,2)2]/(2ωRCqb) =
0.996, which is accidentally very close to 1. Therefore, it will
take twice as long for a transmission between two phase qubits
than in our estimate for a λ/4 resonator: te for η = 0.999 will
be 850 ns. The same duration is needed for a transfer between
two λ/2 resonators.

For completeness, let us write te in terms of �XX explicitly,
assuming identical couplers at both sides. For a transmission
between two identical resonators the needed duration is

te = τrt[1 + ( R
ωL1

)2][1 + ( R
ωL2

)2]

2�2
XXR2C2

qb

ln
2
√

ln 4 − 1

1 − η
, (46)

while for a transmission between two phase qubits the duration
is

te = 2
1 + (R/ωL1)2

�2
XXRCqb

ln
2
√

ln 4 − 1

1 − η
. (47)

The formulas are different because of different relations be-
tween the stored energy and corresponding voltage amplitude
at the coupler. The twice as long time te for λ/2 resonators
compared with te for λ/4 resonators can be understood either
as because of the twice as long round-trip time [see Eq. (1)]
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or because of the twice as large stored energy for the same
amplitude of the standing wave.

From the linear relation between t and �XX we see that the
ON/OFF ratio discussed in this section is the same as the ON/OFF

ratio for �XX :|t|max/|t|min=|�max
XX /�min

XX |. In the experiment9 this ratio
was demonstrated to be ∼103; therefore the ON/OFF ratio of
45 needed for η = 0.999 [see Eq. (38)] is easily realizable
experimentally.

In the derivation we assumed exactly equal frequen-
cies of the two resonators. Let us very crudely estimate
the effect of a small detuning δω. Assuming exact can-
cellation of the reflected wave at time tm and τ em

bu =
τ rec

bu , we estimate the amplitude of the back-reflected wave
at t 	= tm as Ame−|t−tm|/2τbuδω|t − tm|, so that the cor-
responding energy loss is

∫ ∞
−∞ A2

m(δω)2t2e−|t |/τbudt/2R =
4A2

m(δω)2τ 3
bu/2R. Comparing it with the total transmitted

energy 2A2
mτbu/2R we obtain the relative loss 1 − ηδω =

2(δω τbu)2. Therefore for the required total efficiency η we
can tolerate detuning of about

|δω|/2π �
√

1 − η

10 τbu
. (48)

For the above example with λ/4 resonators and η = 0.999
this gives a tolerable detuning of only 0.1 MHz. Such a strict
requirement on the detuning means that in an experiment at
least one resonator should be slightly tunable in frequency.
Moreover, as follows from Eqs. (10)–(11), modulation of the
transparency t leads to a slight change of the reflection phase
and therefore a slight change of the resonator frequency, which
is nevertheless sufficient to violate the requirement (48). A
compensation for this effect by a slight tuning of the resonator
frequency is necessary for a high-fidelity transfer, at least for
the physical scheme considered in Sec. III.

Since our formalism assumes high-Q resonators, let us
estimate the limitation on the maximum transparency |tmax|
needed for validity of our theory to achieve an efficiency η. In
the theory we assume an instantaneous change of a resonator
amplitude, while physically it takes time of about τrt. This
leads to a relative error of about |t|2 for the amplitude of
the emitted wave. Therefore the reflection cancellation may
be imperfect up to an amplitude |A(t)|[|tem(t)|2 + |trec(t)|2],
and the corresponding energy dissipation can be estimated
as |Am|2|t|4maxτbu/2R, leading to additional inefficiency 1 −
ηQ ∼ |t|4max. This means that our high-Q theory becomes in-
valid when |t|4max � 1 − η. A similar estimate can be obtained
when taking into account multiple reflections of amplitude
∼A0. Then extra energy loss is ∼ |A0Am| |t|2maxτbu/2R, lead-
ing to 1 − ηQ ∼ |t|2max

√
1 − η, which also makes the theory

invalid when |t|4max � 1 − η. Therefore, for the couplers with
|t|max < 0.1 our theory should remain valid up to efficiencies
of about η � 0.9999.

V. CONCLUSION

In this paper we have proposed and analyzed a method to
transmit classical microwave energy as well as a logical qubit
between two same-frequency resonators with an efficiency
η arbitrarily close to 100%. This is done using two tunable
couplers at both ends of the transmission line (Fig. 1), which
modulate the coupling in a specific way (Fig. 2). In the first

half of the procedure the receiving coupling is kept maximum
while the emitting coupling increases in time, and in the
second half the emitting coupling is kept maximum, while
the receiving coupling decreases. The main idea is to cancel
the wave reflected back into the transmission line from the
receiving end at any time except for the initial period ts.

The required ON/OFF ratios for the couplers and duration te
of the procedure excluding the propagation time depend on the
desired efficiency η. The main results for these requirements
in the symmetric case are given by Eqs. (35) and (38).
Compared with the proposal of Ref. 7 in which only the
emitting coupler is modulated, our procedure requires much
shorter duration [crudely by the factor 1/(1 − η)] and much
smaller ON/OFF ratio (crudely by the factor 1/

√
1 − η). This

hopefully makes realistic an experiment on flying qubits using
the superconducting phase qubit technology.

Our results show that a transfer with η = 0.999 (excluding
losses due to dissipation) can be performed using the tunable
coupler of Ref. 9 with parameters corresponding to varying the
two-qubit coupling frequency between �max

XX /2π � 100 MHz
and �min

XX/2π � 2.2 MHz (this was already demonstrated9),
and the transfer procedure requires duration te � 420 ns if
λ/4 resonators are used. This experiment would tolerate only
a very small detuning between the resonator frequencies; a
crude estimate is δω/2π � 0.1 MHz for ω/2π = 6 GHz and
η = 0.999. The transfer can also be made between two phase
qubits directly connected to a transmission line; however this
would require approximately twice longer duration (almost the
same as for λ/2 resonators) and would significantly suffer from
the qubit decoherence. The results are practically the same for
a somewhat modified (more symmetrical) procedure described
by Eqs. (43)–(45). While in this paper we focused on the su-
perconducting phase qubit technology, the general procedure
of the quantum state transfer is applicable to other realizations
(including optical photons), in which tunable couplers can be
realized. For such realizations the results of Sec. III for the
transmission and reflection amplitudes of the coupler should
be replaced by the corresponding results for a different tunable
coupler, while other results remain unchanged.

We emphasize that our analysis was essentially classical,
but following the formalism of Ref. 7 we do not expect that
the results of a fully quantum analysis could be significantly
different. Nevertheless, such work would definitely be useful
in future, especially taking into account a weak nonlinearity
of resonators due to coupling with qubits. There are also
other interesting questions for further study. In particular,
it is important to study numerically the effects of the
procedure imperfections, including weak detuning, imperfect
timing, and deviations from the ideal time dependence of the
coupling modulation. Also, we have analyzed only the weak-
coupling case and used an assumption of fixed frequency,
while it would be interesting to do a numerical analysis for
tunable couplers with moderate coupling using Eqs. (10)
and (11), which take into account the phase modulation
of the S parameters. Another important issue is the effect
of multiple reflections in a short transmission line. Explicit
account for the energy dissipation in the resonators and
transmission line would also be relevant to an experiment
on flying microwave qubits, which can hopefully be realized
soon.
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