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Purcell effect with microwave drive: Suppression of qubit relaxation rate
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We analyze the Purcell relaxation rate of a superconducting qubit coupled to a resonator, which is coupled
to a transmission line and pumped by an external microwave drive. Considering the typical regime of the
qubit measurement, we focus on the case when the qubit frequency is significantly detuned from the resonator
frequency. Surprisingly, the Purcell rate decreases when the strength of the microwave drive is increased. This
suppression becomes significant in the nonlinear regime. In the presence of the microwave drive, the loss of
photons to the transmission line also causes excitation of the qubit; however, the excitation rate is typically much
smaller than the relaxation rate. Our analysis also applies to a more general case of a two-level quantum system
coupled to a cavity.
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I. INTRODUCTION

The spontaneous emission rate of an atom depends on the
environment with which it is coupled. Changing the atom
environment substantially alters the density of states, leading
to suppression or enhancement of the spontaneous emission
rate. This phenomenon was first predicted by Purcell in his
seminal work [1]. When the atom is coupled on-resonance with
a cavity, its relaxation rate is enhanced [1,2] due to increased
vacuum fluctuations at the atom frequency. On the other hand,
if the atom is off-resonant from the cavity frequency, the spon-
taneous emission rate can be significantly suppressed [3–5].

A very similar effect [6] (thus often called the Purcell effect)
occurs in circuit quantum electrodynamics (QED) systems
[7,8] when a superconducting qubit (artificial atom) is coupled
to a microwave resonator, which in turn is coupled to a
transmission line. The qubit energy relaxation via the resonator
is one of the main processes limiting the qubit lifetime. As
demonstrated experimentally [9], even coupling with resonator
modes that are far detuned from the qubit frequency can
significantly reduce the qubit lifetime. The Purcell effect is also
one of the limiting factors in achieving a high-fidelity qubit
readout. Several proposals have been put forward to reduce or
eliminate the resonator-induced qubit relaxation rate (Purcell
rate) either by designing a Purcell filter [10,11], engineering
a Purcell-protected qubit [12], or using a tunable coupler [13]
that decouples the transmission line from the resonator during
the qubit-resonator interaction, thereby avoiding the Purcell
effect altogether [14].

In this work, we analyze the effect of an external microwave
drive on the qubit relaxation rate caused by the loss of photons
to the resonator environment. It is known [15,16] that the
external drive can increase the qubit relaxation rate (and
also cause qubit excitation) due to the “dressed dephasing”
effect, which essentially converts pure dephasing into photon-
number-dependent energy relaxation (the dressed dephasing
was observed experimentally [17]). In our analysis we assume
the absence of pure dephasing, so that there is no dressed
dephasing, and we can focus on the question of how the
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standard Purcell effect changes in the presence of an additional
drive. In spite of the general importance of this question, we are
not aware of any direct discussion of the Purcell effect in the
presence of drive, except for an indirect analysis in Ref. [16].

We consider a superconducting qubit coupled to a resonator,
which can leak photons into a transmission line (Fig. 1). The
resonator is driven on resonance by an external microwave
field, while the qubit is significantly detuned from the resonator
frequency, so that there is no direct effect of the drive on
the qubit. Nevertheless, the presence of microwave photons
in the resonator (with average number n̄) may affect the
qubit relaxation rate. Naively, we might expect that the qubit
relaxation rate should scale approximately as n̄ + 1 with
increasing drive, because the effective interaction between the
qubit and resonator scales as

√
Ne, where Ne is the number

of excitations in the system. However, this is not correct: the
Purcell rate does not increase with n̄. It is easy to understand
this fact using a picture of an almost linear interaction between
the qubit and resonator, so that the photons at the resonator
frequency do not affect the evolution of the qubit excitation,
which is at the qubit frequency. Our calculations confirm that
the Purcell rate does not increase with n̄ even in the strongly
nonlinear regime (when n̄ � ncrit, where ncrit is the so-called
critical photon number [7]—see later).

In fact, somewhat surprisingly, we find the opposite effect:
the qubit decay rate decreases with increasing n̄. This follows
from an analytic formula, obtained in a simple intuitive
approach. In the slightly nonlinear regime (when n̄ � ncrit)
this formula is confirmed using a formal approach based on
a dispersive expansion of the interaction Hamiltonian; the
formula is also confirmed by a numerical simulation in a wider
range of nonlinearity. The suppression of the relaxation rate
becomes significant (it may exceed an order of magnitude)
when increasing n̄ brings the interaction into the strongly
nonlinear regime (n̄ � ncrit). We have also found that besides
the energy relaxation, in the presence of the microwave
drive, the qubit may experience excitation as a result of photon
loss to the resonator environment. In the moderately nonlinear
regime the excitation rate grows with n̄, but remains much
smaller than the relaxation rate. The simple analytics and
formal analysis for the relaxation as well as the excitation
rate agree well with the numerical results.
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FIG. 1. (Color online) (a) Schematic of the considered system
with (b) the energy-level diagram. The qubit is off-resonantly
(� = ωq − ωr ) coupled to the resonator, with coupling constant
g. The resonator decays with the rate κ , which causes the energy
relaxation (Purcell relaxation) of the qubit. In a circuit QED qubit
measurement setup, a microwave (rf) drive with resonant frequency
ωr and normalized amplitude ε is applied to the resonator. We show
that the qubit relaxation rate decreases with increasing strength of
this drive, and that there exists a relatively weak qubit excitation.

The paper is organized in the following way. In Sec. II
we start with reviewing the standard Purcell effect in the
absence of a microwave drive. Then, in Sec. III, we calculate
the Purcell rate in the presence of the drive analytically
in two ways: using a simple approach and using a formal
master equation approach. The analytical results are compared
with the numerical results in Sec. IV. Finally, Sec. V is the
conclusion.

II. PURCELL EFFECT WITHOUT DRIVE

We begin with a discussion of the Purcell rate calculation
[18] by considering a qubit coupled to a resonator in the
absence of a microwave drive. In this case, there are only three
(bare) states involved in the evolution: |e〉 = |e〉|0〉 = |e,0〉,
|1〉 = |g〉|1〉 = |g,1〉, and |g〉 = |g〉|0〉 = |g,0〉, where |e〉 and
|g〉 denote the qubit states, while |0〉 or |1〉 represents the
resonator state with 0 or 1 photon. We assume that the system
is initially in the state |e〉 or a superposition of |e〉 and |1〉.
Then the qubit-resonator coupling causes coherent oscillations
between the states |e〉 and |1〉; however, leakage of the photon
to the resonator environment eventually causes irreversible
relaxation to the system ground state |g〉 (note that in some
cases the Purcell relaxation can be considered as a coherent
process [19]).

The qubit-resonator system is described by the usual
Jaynes-Cummings (JC) Hamiltonian (� = 1)

H = ωra
†a + 1

2ωqσz + g (a†σ− + aσ+), (1)

where ωr and ωq are the resonator and the qubit frequencies,
respectively, and g is the qubit-resonator coupling, assumed
to be real for simplicity of notations. Here σ± are the
qubit raising and lowering operators, σz = |e〉〈e| − |g〉〈g| =
σ+σ− − σ−σ+, and a (a†) is the annihilation (creation)
operator for the resonator field.

Let us use the rotating frame, which rotates with frequency
ωr for both the resonator and qubit. Formally, this is introduced
by using the interaction picture, based on separating the
Hamiltonian into two parts, H = H0 + V , with

H0 = ωra
†a + 1

2ωrσz, (2)

V = �

2
σz + g (a†σ− + aσ+), (3)

where � = ωq − ωr , H0 is the free Hamiltonian, and V

is the remaining interaction part. Note however that in the
interaction picture the Hamiltonian does not depend on time,
VI = exp(iH0t)V exp(−iH0t) = V , because V commutes
with H0. Even though the resonator and qubit operators now
formally depend on time, a(t) = a(0) exp(−iωr t), a†(t) =
a(0) exp(iωr t), and σ±(t) = σ±(0) exp(±iωr t/2), they always
come in pairs, so that the time dependence is canceled out. This
is why we can still use the time-independent operators a, a†,
and σ±, which simplifies calculations. This trick is possible
because the JC Hamiltonian (1) is only the rotating-wave
approximation of the actual physical Hamiltonian.

The evolution of the qubit-resonator system that accounts
for the photon loss from the resonator can be described by a
master equation in Lindblad form [18],

ρ̇ = −i[V,ρ] + κD[a]ρ, (4)

κD[a]ρ = κ(aρa† − a†aρ/2 − ρa†a/2), (5)

where κ is the resonator decay rate. Note that as discussed
above, all operators here (except the density matrix ρ) do
not depend on time, even though we are using the interaction
picture. Also note that in this master equation we assumed that
coupling between the resonator and the bath (transmission
line) is frequency independent; this assumption is no longer
valid in the case of the Purcell filter [10,11], when κ becomes
frequency dependent.

Since we are only interested in quantifying the qubit
relaxation through the resonator, we do not take into account
the intrinsic qubit relaxation and pure dephasing. Using Eq. (4),
one easily obtains the equations for the density matrix elements
in the single-excitation subspace (in the bare-state basis of |e〉
and |1〉), which are decoupled from the elements containing
state |g〉,⎛

⎜⎜⎜⎜⎝
ρ̇ee

ρ̇11

ρ̇−
e1

ρ̇+
e1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 ig 0

0 −κ −ig 0
2ig −2ig − κ

2 −i�

0 0 −i� − κ
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρee

ρ11

ρ−
e1

ρ+
e1

⎞
⎟⎟⎟⎟⎠ , (6)

where ρ±
e1 = ρe1 ± ρ1e. Here the bare-state populations ρee and

ρ11 are coupled to the coherences ρ±
e1 via terms proportional

to g, while the damping term proportional to κ contributes
to the decay of ρ11, but does not affect ρee. Note that the
coherences ρ±

e1 decay with the rate κ/2. The population of
the state |g〉 obviously increases as ρ̇gg = κρ11. Equation (6)
can be used in numerical as well as in analytical calculations.
In particular, the eigenvalues of the evolution can be found
analytically from the corresponding quartic equation, which
in this case has a relatively simple solution. Below we will
obtain these eigenvalues in a different way.

Instead of using the density matrix language for the
description of the Purcell effect, it is also possible to use the
simpler language of wave functions, even in the presence of
the decay κ . Physically, this is because in the single-excitation
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subspace unraveling of the Lindblad equation (see, e.g., [20])
corresponds to only one scenario with no relaxation, and
therefore the wave-function evolution is nonstochastic. More
formally, we can rewrite the master equation (4) as [21,22]
ρ̇ = −i[Heff,ρ] + κaρa†, where Heff = V − iκa†a/2 is an
effective non-Hermitian Hamiltonian. The term κaρa† can be
neglected because in the single-excitation subspace it produces
a contribution only from higher-excitation subspaces, which
are not populated. Therefore, in the single-excitation subspace
we have ρ̇ = −i[Heff,ρ] or equivalently |ψ̇〉 = −iHeff|ψ〉,
which describes the evolution of the decaying wave function
|ψ(t)〉 = α(t)|e〉 + β(t)|1〉:

α̇ = −i
�

2
α − igβ, (7)

β̇ = i
�

2
β − igα − κ

2
β. (8)

(Another way to derive these equations is by consider-
ing only the no-relaxation scenario when unraveling the
evolution [20].) These are the usual equations for a two-
level system, but with complex energy −�/2 − iκ/2 of the
bare state |1〉. Using the standard diagonalization procedure,
we can find two eigenstates with energies Ẽ = −iκ/4 ±√

−κ2/16 + g2 + �2/4 + iκ�/4, which can be written as

Ẽe = �

2
− i

�

2
, Ẽ1 = −�

2
− i

κ − �

2
, (9)

with

� = κ

2
−

√
2

2

√
−A +

√
A2 + (κ�)2, (10)

� =
√

2

2

√
A +

√
A2 + (κ�)2 sgn(�), (11)

A = �2 + 4g2 − κ2/4. (12)

Here Ẽe is the complex energy of the eigenstate (“dressed”
state, which includes decay), corresponding to the excited
qubit, while Ẽ1 corresponds to the dressed resonator photon
(notice the sign of � in the formula for �). Since Im(Ẽe) =
−�/2, the population of the qubit dressed state decays with the
rate �. Therefore � is the qubit relaxation rate, i.e., the Purcell
rate, while the photon relaxation rate is κ − �. If the initial
state is not one of these eigenstates, then the evolution also
includes oscillations with beating frequency �, decaying with
the rate −Im(Ẽe + Ẽ1) = κ/2. We have checked that the same
rates can be obtained by diagonalizing the evolution matrix
in Eq. (6), which has four eigenvalues: −�, −(κ − �), and
−κ/2 ± i�, as expected from Eq. (9). Note that for small κ the
frequency |�| is close to the usual Rabi frequency

√
�2 + 4g2,

but large κ may change it significantly.
The eigenstates (dressed states with decay) |ẽ〉 = α̃e|e〉 +

β̃e|1〉 and |1̃〉 = α̃1|e〉 + β̃1|1〉 corresponding to the ener-
gies Ẽe and Ẽ1 can be found in the standard way, via
the ratio β̃e,1/α̃e,1 = (Ẽe,1 − �/2)/g and the normalization
condition. However, note that these eigenstates are not
mutually orthogonal, so finding the expansion of an initial
state in the eigenbasis, |ψin〉 = c̃e|ẽ〉 + c̃1|1̃〉, is somewhat
more involved: c̃1 = 〈ẽ⊥|ψin〉/〈ẽ⊥|1̃〉, where |ẽ⊥〉 is the vector

orthogonal to |ẽ〉 (similarly for c̃e). The evolution in the single-
excitation subspace is then |ψ(t)〉 = c̃ee

−i�t/2e−�t/2|ẽ〉 +
c̃1e

i�t/2e−(κ−�)t/2|1̃〉, and it is easy to find the density matrix
elements; for example the bare-state qubit occupation is
ρee(t) = |c̃eα̃ee

−i�t/2e−�t/2 + c̃1α̃1e
i�t/2e−(κ−�)t/2|2.

Now let us consider several special cases starting with the
case usually discussed for optical systems (e.g., [18]), in which
the resonator damping rate is much larger than the coupling:
κ � |g|, while � is arbitrary. Expanding Eqs. (10) and (11) in
g/κ and keeping the first two leading terms produces

� = κg2

�2 + (κ/2)2
, (13)

� = �

(
1 + 2g2

�2 + (κ/2)2

)
. (14)

This formula for the Purcell rate � can be interpreted as Fermi’s
golden rule for the transition from the state |e〉 to the relaxation-
widened state |1〉 with width κ . Note that at resonance, � =
0, the Purcell rate (13) reduces to � = 4g2/κ , while in the
case |�| � κ it becomes � = κg2/�2; also note that � � κ

because of the assumption |g| � κ . If the evolution starts with
the bare state |e〉, then the probability to find the qubit in the
excited state decays as

ρee(t) ≈ e−�t

[
1 + 8g2(κ2 − 4�2)

(κ2 + 4�2)2

]
− 8g2e−κt/2

(κ2 + 4�2)2

× [4κ|�| sin(|�|t) + (κ2 − 4�2) cos(�t)]. (15)

In this formula the oscillation amplitude is always small
because of the assumption |g| � κ (the amplitude of the
neglected term e−(κ−�)t is even smaller), so that in the leading
order ρee(t) ≈ e−�t . We have obtained Eq. (15) from the
density matrix evolution (6) by using the method of Laplace
transform, in which ρ(t) → ρ(s) and ρ̇(t) → sρ(s) − ρ(t =
0). The solution is then obtained by taking the inverse Laplace
transform of ρ(s).

In circuit QED experiments the typical regime is different
from what is usually considered in optics. Most importantly,
instead of the above assumption κ � |g|, in the circuit QED
systems the relation is usually the opposite: κ � |g| or even
κ � |g|. Therefore, the result (13) for the Purcell rate is
inapplicable in the way we derived it, but we can still use the
exact formula (10). [Note that Eq. (13) can actually be derived
from Eq. (10) using a weaker assumption: |g| � max(κ,|�|).]
The formula for the Purcell rate that is most widely used in the
circuit QED is the strong-dispersive-regime formula [7]

�d = κg2

�2
, (16)

which can be derived from Eq. (10) by assuming |�| �
max(|g|,κ), keeping the relation between |g| and κ arbitrary.
This formula has a simple interpretation: the fraction (g/�)2

of the dressed qubit state (i.e., the eigenstate) is in the form of
the resonator photon, and this part decays with the rate κ .

Now let us derive the expression for the Purcell rate using
the weaker assumption κ �

√
�2 + 4g2, which is usually

well satisfied in the circuit QED experiments. The detuning
|�| may be much larger or comparable to the coupling |g|.
In this case it is physically natural to use the basis of the
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single-excitation eigenstates (dressed states without decay)
|e,0〉 and |g,1〉 besides the basis of the bare states |e〉 = |e,0〉
and |1〉 = |g,1〉. (Note the difference from the eigenbasis
{|ẽ〉,|1̃〉}, which includes decay.) If the initial state is |e,0〉,
then the system would remain in this state if κ = 0. However,
nonzero (but still small) κ causes the rare jumps |g,1〉 → |g,0〉.
Therefore, the rate of jumps should be proportional to the
occupation of the bare state |g,1〉 and the Purcell rate can be
approximated as

�P = κ|〈g,1|e,0〉|2 = κ

2

(
1 − �√

�2 + 4g2

)
, (17)

where we used the exact formula for the overlap between the
states |e,0〉 and |g,1〉. Numerical comparison between this
formula and exact result (10) shows that it is a very good
approximation for small κ; in particular, the relative error is
less than 0.25κ2/(�2 + 4g2) for κ/g < 4. We will be using
Eq. (17) in the following sections. It is easy to see that in the
regime |�| � |g| the rate �P reduces to �d in Eq. (16).

If the evolution starts with the bare state |e,0〉, then in the
dispersive regime, |�| � |g| � κ , its population evolves as

ρee(t) ≈ e−�P t

(
1 − 2g2

�2

)
+ 2g2

�2
cos(�t) e−κt/2, (18)

where |�| ≈
√

�2 + 4g2. The oscillation amplitude is small,
but still noticeable for moderate values of �/g. In contrast,
if the evolution starts with the eigenstate |e,0〉, then the
population of this eigenstate decays almost without oscillation,

ρee ≈ e−�P t

(
1 + g2κ2

2�4

)
− g2κ2

2�4
cos(�t)e−κt/2 ≈ e−�P t .

(19)

The small remaining oscillation amplitude g2κ2/2�4 is due
to the difference between |e,0〉 and |ẽ〉, while the amplitude
2g2/�2 in Eq. (18) is due to the much larger difference between
|e,0〉 and |e,0〉 (the factor of 2 comes from two conversions:
from the bare basis to the eigenbasis and then back).

III. PURCELL EFFECT WITH MICROWAVE DRIVE

So far we have only considered one excitation in the
system. This situation is relevant to the qubit decay during
coherent operations in circuit QED systems. However, the
qubit measurement [7,23–25] requires adding a microwave
drive in resonance (or close to resonance) with the resonator
frequency; see Fig. 1. This is the main motivation here to
analyze qubit relaxation through the resonator in the presence
of additional excitations in the system. To this end, we consider
a dispersive qubit-resonator interaction (but not necessarily
strongly dispersive, say |�/g| � 5) with an external mi-
crowave drive. The Hamiltonian for the qubit-resonator system
with a coherent microwave drive is given by

H = ωra
†a + 1

2ωqσz + g (a†σ− + aσ+)

+ ε(aeiωd t + a†e−iωd t ), (20)

where ωd is the drive frequency and ε, assumed to be real and
constant, is the normalized amplitude of the microwave drive.

Following the same line of reasoning as was used to derive
Eq. (4), we introduce the frame rotating at ωr via the free
Hamiltonian (2), so that the interaction part of the Hamiltonian
in this frame has the form

HI = �

2
σz + g (a†σ− + aσ+)

+ ε
(
ei(ωd−ωr )t a + e−i(ωd−ωr )t a†), (21)

where all operators are time independent. For simplicity we
assume the drive to be exactly on resonance with the resonator
frequency, ωd = ωr , though this assumption is not critical
for our analysis. The master equation, including the loss of
photons through the resonator [see Eq. (5)], is given by

ρ̇ = −i[HI ,ρ] + κD[a]ρ. (22)

We focus on the experimentally important regime of
sufficiently small resonator damping rate, κ � |�|. More
precisely, we assume κ �

√
�2 + 4g2(n̄ + 1), where n̄ is

the average number of photons in the resonator, induced by
the drive. In this case the Jaynes-Cummings ladder of levels
[26] (Fig. 2) is affected by an interaction (between |e,n〉 and
|g,n + 1〉) with the strength

√
Ne g, but the effect of κ is

relatively small. Here Ne is the total number of excitations,

| ,  

| , 0  

| , 2  

| , 1  
+ 4  | ,  

| , + 1  

| ,  

| , + 1  

| , 1  

| ,   

| , 0  

| , 1  
 

| , 1  

| , 0  
 

 

 

| , 2  
 

| , 1  

| , 1  
 

 

FIG. 2. (Color online) The Jaynes-Cummings ladder in the bare-
state basis (black solid lines) and the eigenstate basis (red dashed
lines). Here transitions (“jumps”) from the right set to the left set
of eigenstates correspond to qubit relaxation with rate �R , while
transitions from the left to the right set of eigenstates give rise to
qubit excitation with rate γE .
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Ne = n for the bare state |g,n〉 and Ne = n + 1 for the state
|e,n〉. Therefore, it is natural to introduce the basis of the
pairwise eigenstates represented by red dashed lines in Fig. 2
and denoted by the overline:

|e,n〉 = cos θn+1|e,n〉 − sin θn+1|g,n + 1〉, (23)

|g,n〉 = cos θn|g,n〉 + sin θn|e,n − 1〉, (24)

tan(2θn) = 2g
√

n/�. (25)

The level splitting between the eigenstates is

Ee,n−1 − Eg,n =
√

�2 + 4ng2sgn(�) = �
√

1 + 4Neg2/�2,

(26)

and in the rotating frame, which we use, both energies are
symmetric about zero, Eg,n = −Ee,n−1. Note that the level
splitting changes significantly when the number of photons
n becomes comparable with the so-called critical photon
number [7],

ncrit = �2

4g2
. (27)

The use of eigenstates as logical states in quantum computing
applications is more natural than the use of the bare states
[27], and in most practical cases the dynamics is sufficiently
adiabatic to be naturally represented in the eigenbasis [14].
Therefore, when we will consider the qubit being initially
in the excited state, we will actually assume that the initial
state is the (coherent-state) superposition of eigenstates (23)
corresponding to the excited state of the qubit (right set of red
dashed lines in Fig. 2). Accordingly, the relaxation process
corresponds to increasing occupation of the |g〉 eigenstates
(24) (left set of red dashed lines in Fig. 2). The use of
eigenstates allows us to avoid oscillations in the evolution,
caused by the difference between the bases [see, e.g., Eqs. (18)
and (19) for the single-excitation case].

In the following, we present two ways to derive an
approximate analytical formula for the Purcell rate in the
presence of a microwave drive. We first use a simple intuitive
approach applicable for an arbitrary nonlinearity (arbitrary
ratio n̄/ncrit) and then use a formal perturbative approach
applicable in the slightly nonlinear regime (n̄ � ncrit). The
results of the two approaches are shown to coincide in the
validity range of the formal approach.

A. Purcell rate with drive: Simple approach

The damping of the resonator state is described by the
Lindblad form (5). We can think of this process by unraveling
it into “jump” and “no jump” scenarios (see, e.g., [20]),
so that the first term in Eq. (5) describes random jumps
due to the action of the operator a, which occur with the rate
κTr(a†aρ) = κn̄, while the remaining two terms describe the
state evolution due to absence of jumps. Without the qubit the
driven resonator would reach a steady coherent state, for which
the jump produces no change (because the coherent state is an
eigenstate of the operator a), while the photon-number decay
due to the no-jump evolution [20] is compensated by the drive.

In the presence of the qubit there are two sets of eigenstates
(Fig. 2; we will refer to them as two ladders) and within each
ladder the process is approximately the same as without the
qubit (up to a factor, accounting for the overall population of
each ladder). However, the jumps between the ladders lead to
Purcell-effect relaxation (or excitation).

1. Qubit relaxation rate

If the system is in the eigenstate |e,n〉 (see Fig. 2), then the
(random) action of the operator a gives the unnormalized state
a|e,n〉. This state is a superposition of bare states |e,n − 1〉
and |g,n〉. Expanding the state a|e,n〉 in the eigenbasis, we
see that most of it contributes to |e,n − 1〉, which belongs
to the set of excited eigenstates. However, there is a nonzero
overlap between a|e,n〉 and |g,n〉, which leads to the qubit
energy relaxation (transition from the right to left ladder of
eigenstates in Fig. 2). The rate of this relaxation process [28]
(Purcell rate from the state |e,n〉) is therefore

�R(n) = κ|〈g,n|a|e,n〉|2, (28)

where the subscript R means relaxation. Note that �R(0) = �P

[see Eq. (17)]. Using explicit expressions (23) and (24) for the
eigenstates, we find

�R(n) = κ(
√

n + 1 sin θn+1 cos θn − √
n sin θn cos θn+1)2,

(29)

where θn is given by Eq. (25).
It is important that there is a significant energy shift (
√

�2 + 4g2n̄) between the two ladders of eigenstates, so that
the contribution to |g,n〉 due to the next jump from |e,n〉
is incoherent with the previous jump contribution (it brings
a different random phase), which allows us to characterize
the relaxation process by a rate �R . However, when different
eigenstates |e,n〉 are populated, then the jumps from these
states occur in a mutually coherent way (the operator a acts on
the superposition), resulting in a mutual coherence within the
set of eigenstates in the left ladder in Fig. 2. Nevertheless, this
does not affect the jumps between the left and right ladders
of states, and therefore the rate �R(n) can be simply averaged
over the population P (n) of the states |e,n〉,

�R =
[ ∞∑

n=0

P (n) �R(n)

]/ ∞∑
n=0

P (n). (30)

A natural assumption is that P (n) is close to the coherent-state
distribution (the normalization is not important),

P (n) = e−n̄n̄n/n!. (31)

Actually, this coherent-state assumption becomes invalid at
sufficiently large n̄, when nonlinearities (like squeezing)
become significant; however, this is not important because
at n̄ � 1 the averaging (30) is not really needed as long as
the spread of occupied values of n is much smaller than n̄.
For n̄, it is natural to use the value in the absence of qubit,
n̄ ≈ 4|ε|2/κ2, or a more accurate value, which accounts for the
shift of the resonator frequency by the qubit; see Eq. (71) later.
Note that here n̄ is the average number of photons in the ladder
of “excited” eigenstates (it would be better to use a different
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FIG. 3. (Color online) The Purcell relaxation rate �R normalized
by the no-drive value �P , as a function of the mean photon number n̄

induced by the drive for several values of normalized detuning �/g:
15, 10, and 5. The dashed red lines show �R(n̄) calculated using
Eq. (29), the blue solid lines show �R averaged over the coherent-state
distribution using Eq. (30). For the upper curve we also show the
truncated expansion [up to λ8, Eq. (33)] by the green dot-dashed line.
The blue dots on the lines indicate ncrit.

notation, n̄e, for this meaning—see the next subsection—but
we will use n̄ here for brevity).

The blue solid lines in Fig. 3 show the n̄ dependence of
the Purcell rate �R (normalized by the no-drive value �P ) for
several values of the normalized detuning �/g. As we see, the
Purcell rate decreases with increasing n̄, and the suppression
(compared with the no-drive case) can be strong at large n̄.
The dashed red lines show �R(n̄) calculated using Eq. (29),
in which a noninteger n̄ is introduced in the natural way via
a noninteger n̄ in Eq. (25). As expected, the dashed and solid
lines almost coincide at n̄ � 10, while there is a noticeable
difference between them for n̄ � 10 when �/g is not very
large.

In the experimentally interesting regime when � � g, the
rate �R can be expanded in powers of

λ = g/�. (32)

(We will need this expansion for comparison with the results
of the formal approach in the next subsection.)
Expanding Eq. (29) in powers of λ, we obtain �R(n) =
κλ2[1 − 3λ2(2n + 1) + λ4(31n2 + 31n + 10) − λ6 (150n3 +
225n2 + 145n + 35) + · · · ]. The averaging (30) then gives
n2 = n̄2 + n̄, n3 = n̄3 + 3n̄2 + n̄, etc., thus resulting in a series

�R = κλ2[1 − 3λ2(2n̄ + 1) + λ4(31n̄2 + 62n̄ + 10)

− λ6(150n̄3 + 675n̄2 + 520n̄ + 35) + · · · ]. (33)

This truncated series is shown by the green dot-dashed line in
Fig. 3.

The first term in the expansion (33) gives the standard
Purcell rate �d = κg2/�2 in the strong dispersive regime
(λ � 1)—see Eq. (16). The negative sign of the second term
means that the Purcell rate decreases with increasing number of
photons in the resonator. In the leading order of the correction
(assuming 1 � n̄ � ncrit) Eq. (33) becomes

�R ≈ �d

(
1 − 3

2

n̄

ncrit

)
, (34)

g 5

g 10

n ncrit

n ncrit
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0.0

0.2

0.4
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0.8

1.0

n ncrit

R
P

FIG. 4. (Color online) The Purcell relaxation rate �R [Eq. (30)]
normalized by the no-drive value �P [Eq. (17)] vs n̄/ncrit for several
values of �/g: 5, 10, 15, and 20 (blue solid lines). The curves for
�/g � 10 are practically indistinguishable from each other. The
dashed red lines show the approximations (34) and (36) for n̄ �
ncrit and n̄ � ncrit, respectively. The dot-dashed black line (almost
indistinguishable from the lowest blue line) shows the approximation
(35). In the approximations we assume large �/g, so that �P ≈ �d .

where ncrit is given by Eq. (27). Note that Eq. (34) gives a
slightly inaccurate value for n̄ � 1 since at n̄ = 0 the expansion
(33) gives �R(0) = �P [see Eq. (17)]; however, the difference
between �d with �P is small when |g/�| � 1.

When n̄ � 1, we do not need the summation in Eq. (30) and
can use approximation �R ≈ �R(n̄) if the effective spread of n

values is much smaller than n̄, i.e.,
√

n2 − n̄2 � n̄ (therefore,
moderate nonlinear effects still allow this simplification). In
this case |θn̄+1 − θn̄| � 1 in Eq. (29), and using the first-order
expansion of this equation we obtain the approximation

�R ≈ κg2

4�2

(
1

1 + n̄/ncrit
+ 1√

1 + n̄/ncrit

)2

, (35)

which is valid when n̄ � 1 with arbitrary ratio n̄/ncrit. (This is
in contrast to the truncated perturbative expansion in powers
of λ, which works well only for n̄/ncrit � 1.)

From Eq. (35) we see that the Purcell rate �R decreases
significantly when n̄ becomes comparable to ncrit, and it con-
tinues to decrease with increasing n̄, eventually approaching
zero. Figure 4 illustrates the dependence of the Purcell rate
�R (normalized by the no-drive value �P ) on the ratio n̄/ncrit

for several values of the normalized detuning �/g. We see
that the different curves shown in Fig. 3 now collapse onto
practically the same line for |�/g| � 10, with a significant
deviation starting only when |�/g| � 5. The approximation
(35) is shown by the black dot-dashed line for large �/g.
This approximation also works well (not shown) for the upper
curve, �/g = 5, except for the range n̄ � 3 (correspondingly
n̄/ncrit � 0.5), because of the difference between �d and
�P . From Eq. (35), the suppression at n̄ = ncrit is �R/�P ≈
(3 + 2

√
2)/16 = 0.36 for large �/g.

In the strong suppression limit when n̄ � ncrit, the rate (29)
[or (35)] can be approximated as

�R ≈ �d

ncrit

4n̄

[
1 + 2

√
ncrit

n̄

]
. (36)
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This approximation and the opposite-limit approximation (34)
are shown by red dashed lines in Fig. 4.

2. Qubit excitation rate

Similar to the calculation of the qubit energy relaxation rate
(28), we can calculate the qubit excitation rate. Now the initial
state is assumed to be |g,n〉, and the jump due to the action of
the operator a yields the unnormalized state a|gn〉, which has
a nonzero overlap with the eigenstate |e,n − 2〉, corresponding
to the excited state of the qubit. Therefore, the qubit excitation
rate is

γE(n) = κ|〈e,n − 2|a|g,n〉|2, (37)

which can be written as [see Eqs. (23)–(25)]

γE(n) = κ(
√

n − 1 sin θn cos θn−1 − √
n sin θn−1 cos θn)2.

(38)

Similar to Eq. (30) this rate should be averaged,

γE =
[ ∞∑

n=0

P (n) γE(n)

] / ∞∑
n=0

P (n), (39)

over the probability distribution P (n) for the states |g,n〉, for
which we will use the coherent-state approximation (31) with
mean photon number n̄ (a better notation used in the next
subsection is n̄g). The dependence of γE on n̄ is shown in
Fig. 5 by blue solid lines (γE is normalized by �P and n̄ is
normalized by ncrit).

Expanding γE(n) in powers of g/� and carrying out the
summation (39) produces the series

γE = κn̄2λ6[1 − 5λ2(2n̄ + 3)λ4(69n̄2 + 276n̄ + 159) + · · · ],

(40)

which has the leading-order approximation

γE ≈ �d

16

(
n̄

ncrit

)2

(41)

g 10

g 5

n ncrit

n ncrit
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0.020

n ncrit

Γ E
P

FIG. 5. (Color online) The qubit excitation rate γE [Eq. (39)]
normalized by the no-drive relaxation rate �P vs n̄/ncrit for several
values of �/g: 5, 10, 15, and 20 (blue solid lines). The curves for
�/g � 15 are practically indistinguishable from each other. The
red dashed lines show the approximations (41) and (42) for n̄ �
ncrit and n̄ � ncrit, respectively. The dot-dashed black line (barely
distinguishable) shows the approximation (43). In the approximations
we assume large �/g.

at 1 � n̄ � ncrit. This dependence is shown by the left dashed
red line in Fig. 5; it works well only when n̄/ncrit � 0.1.
[The truncated expansion (40) works well until n̄/ncrit � 0.2.]
Approximating Eq. (38) in the opposite limit, n̄ � ncrit, gives

γE ≈ �d

ncrit

4n̄

[
1 − 2

(
ncrit

n̄

)1/2

+ 3

(
ncrit

n̄

)3/2
]

, (42)

which is shown by the right dashed red line in Fig. 5. The
approximation for arbitrary n̄/ncrit, which assumes n̄ � 1 and
ncrit � 1 [derived similar to Eq. (35)] is

γE ≈ κg2

4�2

(
1

1 + n̄/ncrit
− 1√

1 + n̄/ncrit

)2

. (43)

Note that for n̄ � ncrit the excitation rate is much smaller than
the relaxation rate, γE/�R � (n̄/4ncrit)2 � 1. However, for
n̄ � ncrit the relaxation and excitation rates become identical
in the leading order, as follows from Eqs. (36) and (42) (we
were not able to reach this regime in numerical simulations
discussed in Sec. IV). The dependence γE(n̄) has a maximum
(Fig. 5), which for |�/g| > 3 occurs at n̄ ≈ 3ncrit [this
value follows from Eq. (43)]. Even at this maximum the
excitation rate is much smaller than the no-drive relaxation
rate, γE/�P < 0.02, as seen in Fig. 5 [the maximum value
which follows from the approximation (43) is γE = �d/64].

Our derivation for the relaxation and excitation rates �R and
γE was based on considering only the “jump” processes caused
by the operator a and finding their contribution to transitions
between the two ladders of eigenstates in Fig. 2. The remaining
(nonunitary) “no jump” evolution and the unitary evolution
due to the drive with amplitude ε also contribute to transitions
between the two ladders of eigenstates. However, since these
transitions are nonstochastic, the energy shift between the two
ladders suppresses the transitions (as expected for a coherent
off-resonant process) and prevents the linear-in-time increase
of the “wrong” ladder population. This is why these processes
are not expected to contribute directly to the relaxation and
excitation rates. Nevertheless, the evolution due to the drive
and due to the absence of jumps effectively changes the ladders
of eigenstates. Thus, at very large n̄ our results (29) and (38)
for the relaxation and excitation rates are expected to become
invalid.

B. Purcell rate with drive: Formal approach

The results of the previous subsection were based on a
physical intuition, leading to Eqs. (28) and (37). Here we
present a formal derivation of the analytical expression for the
Purcell rate with the microwave drive. In the formal approach
we need to assume the slightly nonlinear dispersive regime:
|�/g| � 1 and n̄/ncrit � 1. The derivation essentially follows
the formalism developed in Ref. [16].

We first transform the master equation (22) to the frame
where the JC Hamiltonian is diagonal. While it is simple for
wave functions [see Eqs. (23) and (24)], it is not so simple
for the operator form of the Hamiltonian. This can be done by
introducing the transformation D of the form

D = e−�(Ne)I− , (44)
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where

I± = σ+a ± σ−a†, Ne = a†a + |e〉〈e|, (45)

Ne is the number operator for total excitations in the system,
and the function �(Ne) still has to be determined. After this
transformation the master equation reads

ρ̇D = −i
[
H D

I ,ρD] + κD[aD]ρD, (46)

where

ρD = D†ρD,aD = D†aD,H D
I = D†HI D, (47)

and HI is given by Eq. (21) (in our notation the wave functions
are transformed with D† rather than with D). The JC part of the
transformed Hamiltonian, H D

JC = (�/2)σ D
z + gID

+ , can then
be written as [16]

H D
JC =

[
�

2
cos(2�

√
Ne) − g

√
Ne sin(2�

√
Ne)

]
σz

+
[

�

2
√

Ne

sin(2�
√

Ne) + g cos(2�
√

Ne)

]
I+, (48)

where � = �(Ne). Note that here we treated the operator Ne

in the square root as a c number. This is possible because Ne

is a positive operator and its square root is defined via taking
the square root of the eigenvalues in the diagonalizing basis.
Also note that � commutes with

√
Ne, and that the

√
Ne in

denominator is canceled when the sine function is expanded.
Since we want to diagonalize the JC Hamiltonian, we

need to eliminate the second line of Eq. (48) by zeroing the
coefficient of I+, which can be done by choosing

� = − 1

2
√

Ne

arctan(
√

4λ2Ne). (49)

Then the transformed JC Hamiltonian is only the first line of
Eq. (48), which using Eq. (49) can be written as

HD
JC = �

2

√
1 + 4λ2Neσz = �

2

√
1 + Ne/ncritσz. (50)

This is exactly the desired Hamiltonian for the qubit-resonator
system in the eigenbasis; see Eq. (26).

Next, we find explicit form of the D-transformed annihi-
lation operator a, which enters the drive Hamiltonian and the
Lindblad term of the master equation (46). Calculating D†aD
by expanding the exponent in the definition of D, we obtain

aD = a − [a,�I−] + 1

2!
[[a,�I−],�I−] + · · · . (51)

Then by expanding �(Ne) [using Eq. (49)] in powers of√
4λ2Ne with the assumption that

√
4λ2Ne < 1 (i.e., Ne <

ncrit) and explicitly computing the resulting commutation
relations, we obtain after a lengthy algebra the following
expression:

aD = aD
1 + aD

2 + aD
3 , (52)

with

aD
1 =

{
1 + λ2

2
σz − λ4

8
[12(n̂ + 1)σz + 1]

+ λ6

[(
5n̂2 + 10n̂+73

16

)
σz + n̂ + 1

4

]
+ · · ·

}
a, (53)

aD
2 = λ

{
1 − 3

2
λ2(2n̂ + 1) + λ4

(
11n̂2 + 11n̂ + 31

8

)

− λ6

(
42n̂3 + 63n̂2 + 355

8
n̂ + 187

16

)
+ · · ·

}
σ−, (54)

aD
3 = λ3

{
1 − 5λ2

2
(2n̂ + 3) + λ4

(
22n̂2 + 66n̂ + 411

8

)

+ · · · .

}
a2σ+, (55)

where n̂ = a†a is the photon number operator. Note that in
the transformed frame the field operator aD acquires a qubit
part (aD

2 is proportional to σ− and aD
3 is proportional to

a2σ+). Equation (52) has the following interpretation. Each
term describes an “annihilation” process, which reduces the
number of excitations by 1. The first term aD

1 (proportional
to a) describes annihilation of a photon in the eigenbasis,
which is modified due to the presence of the qubit. The second
term aD

2 , which describes qubit relaxation, also reduces the
number of excitations by 1. Thus the photon annihilation
process is partly converted into qubit relaxation: this second
term eventually leads to the Purcell relaxation. The last term
aD

3 , which describes annihilation of two photons and qubit
excitation, also reduces the number of excitations by 1. This
process leads to qubit excitation as a result of leakage of
photons through the resonator. There are no more groups of
terms because qubit cannot absorb or emit more than one
excitation, and thus there are no more processes decreasing
the total number of excitations by 1.

It is interesting to relate the terms in Eq. (52) with the
matrix elements of a in the eigenbasis, considered in the
previous subsection. Since aD is essentially the operator
a in the eigenbasis, we would expect that aD sandwiched
between two bare states should be equal to the operator
a sandwiched between the corresponding eigenstates so
that

〈e,n − 1|a|e,n〉 = 〈e,n − 1|aD
1 |e,n〉, (56)

〈g,n|a|e,n〉 = 〈g,n|aD
2 |e,n〉, (57)

〈e,n − 2|a|g,n〉 = 〈e,n − 2|aD
3 |g,n〉. (58)

We have checked these relations explicitly using the trun-
cated expansions (53)–(55) and corresponding expansions
of the eigenstates (23)–(25). These relations give us an
insight why the formal-approach results which we will obtain
later are essentially equivalent to the results of the simple
approach.

The next step in the derivation is to use the polaron-type
transformation described below.

Polaron-type transformation

We expect that in the eigenbasis the quasistationary state
is close to a coherent state within the subspace of “excited”
eigenstates (right ladder of red dashed lines in Fig. 2) and also
close to a (possibly different) coherent state within the sub-
space of “ground state” eigenstates (left ladder of dashed lines).
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Therefore, it is natural to apply displacement transformations
within these (eigen)ladders, which transform the coherent
states to the lowest levels in the ladders. In this way the case
with the microwave drive should, to a considerable extent,
be reduced to the case without the microwave drive, thus
simplifying the analysis.

Formally, we apply the polaron-type [29] transformation
P to the master equation (46), so that the density operator
transforms as ρDP = P†ρDP with

P = |e〉〈e|D(αe) + |g〉〈g|D(αg), (59)

where D(α) is the usual displacement operator and αe(g) are
resonator field amplitudes corresponding to the qubit state |e〉
or |g〉. Note that Eq. (59) formally uses the bare states, but
the conversion between bare states and eigenstates is already
performed by the transformation D. Also note that we apply
P† (not P) to the wave functions, so this is a displacement
by −αe(g). So far the amplitudes αe(t) and αg(t) are arbitrary
and in general time dependent. The master equation after the
polaron-type transformation becomes

ρ̇DP = −i
[
H DP

JC + ε(aDP + a†DP),ρDP] + κD[aDP]ρDP

+ i
[
Im(TαṪ ∗

α ),ρDP] + [
aṪ ∗

α − a†Ṫα,ρDP]
, (60)

where Tα = αe|e〉〈e| + αg|g〉〈g| and the second line in this
equation is due to time dependence of αe(t) and αg(t). The
explicit form of the master equation (60) is very lengthy and
we do not present it here. Its perturbative form can be obtained
by first expanding the Hamiltonian H D

JC in powers of Ne/ncrit

[see Eq. (50)] and then applying the P transformation to the
field and qubit operators,

P†aP = a + Tα, (61)

σ P
z = σz,P†σ−P = D(αg)†D(αe)σ−, (62)

while the transformation of higher-order terms for field
operators can be obtained using sequential application of (61),
for example,

P†n̂P = n̂ + aT ∗
α + a†Tα + |Tα|2, (63)

P†n̂2P = [(1 + 2|Tα|2)T ∗
α a + a2T ∗2

α + 2n̂aT ∗
α + H.c.]

+ |Tα|2(4n̂ + 1) + n̂2 + |Tα|4. (64)

Now we want to find “good” values of αe and αg , which
correspond to the quasistationary state. This can be done
using the following trick. Let us impose the condition that
the total coefficient for the operator a† in the transformed
master equation (60) is zero (then the coefficient for a

also vanishes automatically). This would correspond to the
situation without drive (in the effective frame), and then
because of the relaxation due to κ , the lowest state within
each ladder will be eventually reached, independent of the
initial state. [This will not be exact because of nonzero terms
(a†)2, (a†)3, etc., but this is good as an approximation.]
Imposing this condition and keeping terms up to λ4, we obtain

equations

α̇j (t) ≈ −κ

2
[1 ± λ2(1 − 6λ2n̄j )]αj

+ iχ{λ2 ∓ [1 − 2λ2(n̄j + 1)]}αj

− iε

{
1 − λ4

8
± λ2

2
[1 − 3λ2(2n̄j + 1)]

}
, (65)

with the top sign for j = e and the bottom sign for j = g; here
n̄j = |αj |2 is the corresponding mean photon number and χ =
g2/� is the resonator frequency shift in the strong dispersive
regime (λ � 1, n̄j � ncrit). In Eq. (65) the term proportional
to κ is a contribution from the Lindblad master equation, the
term proportional to χ is a contribution from JC Hamiltonian,
and the last term is due to the microwave drive. It is easy to
see that Eq. (65) is essentially the equation for classical field
amplitudes αe(g)(t), as expected. The stationary solution of this
equation, α̇j (t) = 0, gives the steady-state values αe and αg ,
which are then substituted into the master equation (60).

With these “good” values of αe and αg , we expect a
significant population of only two states in the DP-transformed
frame: |e,0〉 and |g,0〉. We also expect that these populations,
ρDP

e0,e0 and ρDP
g0,g0, are close to the total occupation of the right

and left ladders of eigenstates in Fig. 2. Therefore the transition
rates between the states |e,0〉 and |g,0〉 in the DP-transformed
frame should give the relaxation and excitation rates for the
qubit; these rates can now be found from Eq. (60). The
expansion form of the equation for ρ̇DP

e0,e0 is very lengthy and
we do not show it here, but if we keep only the terms with
ρDP

e0,e0 and ρDP
g0,g0, we then obtain

ρ̇DP
e0,e0 ≈ −�RρDP

e0,e0 + γEρDP
g0,g0, (66)

where (to order λ8) we find

�R = κλ2
[
1 − 3λ2(2n̄e + 1) + λ4

(
31n̄2

e + 62n̄e + 10
)

− λ6
(
150n̄3

e + 675n̄2
e + 520n̄e + 35

)]
, (67)

and (to order λ10)

γE = κn̄2
gλ

6
[
1 − 5λ2(2n̄g + 3) + λ4

(
69n̄2

g + 276n̄g + 159
)]

.

(68)

These results for the relaxation and excitation rates �R and
γE are in exact agreement with Eqs. (33) and (40), obtained
using the simple intuitive approach. Note however that since
our formal derivation was based on the expansion in λ, it can
be used only for relatively small values of the nonlinearity
parameter n̄e(g)/ncrit (see, e.g., the green dashed line in Fig. 3),
in contrast to the simple approach.

Thus the results (67) and (68) of the formal approach
confirm that the Purcell relaxation rate decreases with in-
creasing strength of the microwave drive, and there exists a
relatively weak qubit excitation due to resonator damping.
The results of the formal approach are essentially an extension
of the previous work [16], where only the leading order was
considered, and hence the photon-number-dependent Purcell
rate and the excitation rate were not obtained.
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FIG. 6. (Color online) Four neighboring levels of the Jaynes-
Cummings ladder of Fig. 2, redrawn in a slightly different way.
The shown energy is relative to the energy of the state |g,n〉.
Assuming n ≈ n̄ � 1, the level splitting in both pairs of eigenstates
is approximately |�S | = √

�2 + 4g2n̄. The level splitting increases
with n̄. There are four possible transitions marked by down arrows;
two of them have frequencies almost coinciding with ωr (neglecting
the dispersive shift), and two of them are at frequencies ωr ± �S .
These transitions can be thought of as the Mollow triplet [30] at
nonzero detuning.

C. Physical interpretation

We do not have a compete physical interpretation of
the Purcell relaxation suppression due to additional photons
induced by the microwave drive, so we may say that this is just
the mathematical property of the matrix element 〈g,n|a|e,n〉
[see Eq. (28)], which decreases with n. However, we have a
crude physical interpretation. The idea is that the additional
drive changes the effective qubit frequency due to the ac
(dynamic) Stark shift, which increases the detuning |�|. Then
if we use the formula for the single-excitation Purcell rate
[Eqs. (16) or (17)], we find the suppression of the rate with
increasing mean photon number n̄.

More quantitatively, the effective detuning with n̄ � 1
photons is the level splitting between the eigenstates of the
JC ladder (see Figs. 2 and 6),

�S =
√

�2 + 4n̄g2 sgn(�) = �
√

1 + n̄/ncrit. (69)

(Note that the resonator frequency changes by less than
g2/� = �/4ncrit, so the change of effective detuning is mostly
due to the qubit frequency change.) In the regime n̄ � ncrit,
this gives the effective detuning �(1 + n̄/2ncrit). Therefore, if
we use the dispersive single-excitation formula �d = κg2/�2

[Eq. (16)] with increased |�|, we would expect the Purcell
rate suppression as �R ≈ �d (1 − n̄/ncrit), which is different
from the actual result [Eq. (34)] by the missing factor 3/2. The
additional suppression could in principle be explained by the
change of effective κ (due to decreasing overlap); however,
we did not find a reasonable quantitative explanation of this
kind. Besides the difficulty with quantitative explanation of
the suppression, a natural question is why we can still use
the no-drive formula (16), essentially mixing the linear and
nonlinear approaches to the dynamics. Thus we cannot call
the physical interpretation based on the ac Stark shift a perfect
interpretation.

Note that it is also possible to discuss the reduction of the
qubit relaxation rate and appearance of the nonzero excitation

rate in terms of the Mollow triplet physics [30] at nonzero
detuning � (Fig. 6). In our case the triplet is transformed
into a quadruplet (neglecting the “fine structure” due to n

dependence of the transition frequencies). The two central
“peaks” correspond to the qubit-state-dependent resonator
frequency ωr ± g2/�S ; the difference between them is used
for the qubit readout [7,23–25] (the quadruplet becomes a
triplet if the dispersive shift ±g2/�S is neglected, as in Fig. 6).
The two side peaks correspond to the qubit relaxation and
excitation (Fig. 6). In the case of relaxation the qubit emits
the photon with frequency approximately ωr + �S . In the
case of excitation the qubit absorbs this energy, which is
taken from two photons in the resonator, so that the photon
emitted into the transmission line has frequency ωr − �S . With
increasing drive (increasing n̄) the side peaks move further
away from the central peaks (ac Stark shift). As discussed
above, this leads to the suppression of the relaxation rate �R

(at least qualitatively). The excitation rate γE first increases
with increasing n̄, as expected for a two-photon process, but
eventually the suppression due to increasing detuning becomes
the dominating effect, and γE starts to decrease.

IV. NUMERICAL RESULTS

Besides developing the analytical approaches discussed
in the previous section, we have also solved the full master
equation (22) for the qubit-resonator system numerically and
thus computed the qubit relaxation and excitation rates. In this
section we present the numerical results and compare them
with analytical results.

A. Qubit relaxation rate

Since we do not consider intrinsic qubit relaxation as well
as dressed dephasing (a process which converts pure dephasing
into photon-number-dependent qubit relaxation), the decay
rate obtained from the numerical solution is only due to the
Purcell effect. To calculate the relaxation rate we start with
an initial state that is the coherent-state superposition of the
eigenstates corresponding to the excited state of the qubit [14]
(right ladder of red dashed lines in Fig. 2),

|ψin〉 = e−|αin|2/2
∞∑

n=0

αn
in√
n!

|e,n〉, (70)

where αin is the initial amplitude of the resonator field.
For αin we use the value αin = −iε/[i(g2/� + ωr − ωd ) +
κ/2], obtained classically by assuming that the resonator
frequency is increased by g2/� due to the qubit in the excited
state (recall that the driving frequency ωd is exactly ωr ).
The corresponding mean photon number is n̄in = |αin|2 =
4|ε|2/[4(g2/� + ωr − ωd )2 + κ2]. However, this initial value
of αin is good only in the linear regime when n̄ � ncrit. In the
nonlinear regime the effective resonator frequency becomes
(see Fig. 2) ωr + �[

√
1 + n̄/ncrit − √

1 + (n̄ − 1)/ncrit] ≈
ωr + g2/�S , where the level splitting �S is given by
Eq. (69). Therefore the quasisteady state is expected
to have αe ≈ −iε/[i(g2/�S + ωr − ωd ) + κ/2] and the
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corresponding mean photon number is expected to be

n̄ = |ε|2
(g2/

√
�2 + 4g2n̄ + ωr − ωd )2 + (κ/2)2

. (71)

This equation allows easy calculation of ε for a desired n̄. Note
that for the qubit in the ground state, the frequency shift g2/�S

is replaced with −g2/�S . However, since we use ωd = ωr ,
the mean photon number n̄ given by Eq. (71) does not change.
Therefore, n̄ is not affected by the Purcell relaxation. Also note
that Eq. (71) does not show bistability when ωd = ωr , though
the bistability occurs for a range of detuning ωd − ωr �= 0 if
κ < 4g4n̄/�3

S . In simulations we first find ε for a desired n̄

analytically, but then calculate the actual n̄ numerically. We
have checked that Eq. (71) works quite well for the parameters
we used, but still not perfectly.

We use the bare basis to compute the evolution using
the master equation (22), but then convert the results into
the eigenbasis; in particular, we monitor the population
of the exited qubit state in the eigenbasis,

ρee(t) =
∑

n

Tr[ρ(t) |e,n〉〈e,n| ]. (72)

The use of the initial condition (70) allows us to mostly avoid
initial oscillations of ρee(t) (decaying on the time scale ∼ κ−1),
so that the decay of ρee is smooth in time, and therefore the
Purcell rate �R can be relatively easily defined numerically as
the slope of the dependence − ln[ρee(t)], which is close to a
straight line for a sufficiently long duration. Note that because
of a nonzero excitation rate, the dependence ρee(t) eventually
saturates at a nonzero value; therefore it is necessary to restrict
the time duration, making sure that ρee remains much larger
than the saturation value.

Red dots in Fig. 7 show the numerically calculated Purcell
rate �R [normalized by the no-drive value �P given by
Eq. (17)] as a function of the steady-state mean photon number
n̄ in the resonator, for κ = g and several values of �/g
(the calculations have been done for g/2π = 50 MHz, but
the results do not depend on g because of the linear overall
scaling). The solid lines show the approximate analytical
result, obtained in the simple approach, Eq. (30). We see a
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FIG. 7. (Color online) Normalized Purcell rate �R/�P vs the
mean photon number for κ = g = 2π × 50 MHz and several values
of detuning: �/g = 5, 10, 15, and 20. The red dots show the results
obtained numerically, blue solid lines are calculated using Eq. (30).
The large blue dots indicate the critical photon number ncrit.
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FIG. 8. (Color online) Numerical results for the normalized Pur-
cell rate �R/�P as a function of n̄ for κ/g = 0.1 (blue diamonds)
and κ/g = 1 (red dots); the detuning parameter is �/g = 5, 10, 15,
and 20 (as in Fig. 7).

very good agreement between the analytics and numerics. It is
important that the Purcell rate continues to decrease when n̄ is
significantly larger than ncrit, and agreement with analytics is
still very good in this regime. The numerical results confirm
that the Purcell rate suppression can be more than an order of
magnitude.

The analytics [Eqs. (28)–(30)] predict that the Purcell rate
�R scales linearly with κ (keeping the same n̄). In Fig. 8 we
check this scaling numerically by comparing the results for
κ/g = 1 (red dots, same as in Fig. 7) and for κ/g = 0.1 (blue
diamonds). (Note that κ/g = 0.1 and even lower values are
typical in circuit QED experiments). We see that the numerical
results confirm, at least in this regime, the simple scaling of
�R with κ (so that �R/�P does not depend on κ) for the same
value of n̄. Note however that decreasing κ assumes decreasing
drive amplitude ε to keep n̄ fixed.

B. Qubit excitation rate

We have also calculated numerically the qubit excitation
rate due to the resonator decay. For that we start with the
initial state, which is the superposition of the eigenstates
corresponding to the ground state of the qubit:

|ψin〉 = e−|αin|2/2
∞∑

n=0

αn
in√
n!

|g,n〉, (73)

where αin now corresponds to the ground state of the
qubit, αin = −iε/[i(−g2/� + ωr − ωd ) + κ/2] or in a bet-
ter approximation αg = −iε/[i(−g2/�S + ωr − ωd ) + κ/2].
Since we use ωd = ωr , only the phase of αin is different from
what was used in Eq. (70), while n̄in is still the same. Note
that the initial value αin is not very important because the
system converges to the quasisteady-state value of α within
few resonator lifetimes κ−1. Similar to what was discussed
in the previous subsection, we calculate the quasisteady-state
value of n̄ numerically.

Following the same procedure as for computing the qubit
relaxation rate, we calculate the qubit excitation rate γE .
The only difference is that now we monitor the decrease of
ρgg(t) = 1 − ρee(t), and the qubit excitation rate γE is defined
numerically as the negative slope of ln[ρgg(t)] during a time
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FIG. 9. (Color online) The qubit excitation rate γE (normalized
by the no-drive relaxation rate �P ) as a function of n̄ for κ = g (we
used g/2π = 50 MHz) and several values of detuning, �/g = 5, 10,
15, and 20. The red dots show the numerical results, the blue solid
lines are obtained analytically using Eq. (39). The large blue dots
indicate ncrit.

range when this dependence is linear (this time range should
be much shorter than �−1

R ).
Figure 9 shows the excitation rate γE normalized by the

no-drive Purcell rate �P [Eq. (17)], as a function of the mean
photon number n̄. The excitation rate is quite weak and first
increases with the strength of the microwave field. The rate also
depends on the detuning: the smaller the detuning, the larger
the excitation rate becomes. The rate calculated numerically
agrees well with the analytical result given by Eqs. (39). As
discussed in Sec. III A, the dependence γE(n̄) should reach
maximum at n̄ ≈ 3ncrit (when �/g > 3). Figure 9 confirms
this behavior for �/g = 5. Even at the maximum, the value of
γE remains much smaller than �P (over 50 times), and at this
point it is ∼8 times smaller than �R .

V. CONCLUSION

We have analyzed the Purcell relaxation rate of a super-
conducting qubit coupled to a leaking microwave resonator,
which is pumped on-resonance by an external microwave
drive. The main result is that the Purcell rate �R is suppressed
due to the presence of photons in the resonator, with the strong
suppression obtained in the nonlinear regime. The presence of
photons in the resonator also leads to qubit excitation, but the
excitation rate γE is always much smaller than the no-drive
Purcell relaxation rate �P . We have derived approximate
analytical formulas for the relaxation and excitation rates [e.g.,
Eqs. (29), (35), (38), and (43)], which agree well with the
numerical results.

In this work we assumed a time-independent drive ampli-
tude ε. It is rather simple to introduce a time-dependent drive
ε(t) to describe experiments with short measurement time,
as long as the dynamics is sufficiently adiabatic (which is
almost always the case in experiments; see Ref. [14]). Using
the simple intuitive approach (Sec. III A), we first solve the
classical equations for the field with account of nonlinearity
to find n̄(t) and then obtain the corresponding time-dependent
Purcell rate �R(t) and the excitation rate γE(t). In the formal
perturbative approach (Sec. III B) the evolution of the field can
be taken into account automatically via Eq. (65).

To experimentally observe the Purcell rate suppression
with increasing microwave drive predicted in this work, it is
important to make sure that other mechanisms do not increase
the qubit relaxation rate faster than the obtained suppression.
One such mechanism for superconducting qubits is the dressed
dephasing [15–17], which increases the relaxation rate as
�↓,dd 
 γϕn̄/2ncrit, where γϕ is the pure dephasing rate
(this formula assumes a similar noise spectrum at the qubit
frequency ωq and at low frequency). This increase is weaker
than the first-order Purcell rate suppression −3n̄�P /2ncrit [see
Eq. (33)] if the no-drive Purcell rate �P ≈ �d = κg2/�2

exceeds the pure dephasing, �P > γϕ/3. Therefore, to ob-
serve the Purcell rate suppression experimentally, it may
be necessary to deliberately increase the Purcell rate by
decreasing the detuning � and/or increasing the resonator
damping rate κ and coupling g. Note an indication of possible
Purcell rate suppression in a recent experiment; see Fig. S7 in
Ref. [24].

In this paper we treated the qubit as a two-level system.
In reality, most of present-day superconducting qubits are
essentially only slightly nonlinear oscillators, with almost
equidistant energy spectrum. The anharmonicity A = 2E|e〉 −
E|g〉 − E|f 〉 (with |f 〉 being the next excited level) is typically
much smaller than the qubit frequency (A/ωq 
 0.03–0.05)
and only a few times larger than the coupling |g|. The presence
of the level |f 〉 does not affect the no-drive Purcell rate �P ;
however, it affects the qubit relaxation and excitation rates
when the microwave drive is applied. The analysis of this effect
is beyond the scope of this paper, but we have done preliminary
calculations based on the natural extension of Eqs. (28) and
(37), assuming that they are still applicable. These calculations
show that the Purcell rate is still suppressed with increasing
photon number n̄ in the typical regime (A > 0, ωq < ωr ),
though the suppression is weaker than in the two-level model.
We have also found that the suppression can still be crudely
(not quantitatively) described as being due to the ac Stark shift
of the qubit frequency.

In the slightly nonlinear regime the repulsion of the level
|e,n〉 from the level |f,n − 1〉 (which is added to the repulsion
between the levels |e,n〉 and |g,n + 1〉) leads to the ef-
fective detuning �eff = � + 2(n + 1)g2/� − n(

√
2 g)2/(� −

A), where
√

2 g is the approximate coupling constant for the
transitions between |e〉 and |f 〉. This can be rewritten as

�eff = �

(
1 + n

2ñcrit

)
, ñcrit = �2

4g2

A − �

A , (74)

where ñcrit is the appropriately redefined critical photon
number (27), which takes into account the third level, and
we assumed 1 � n � ncrit × min[1,(� − A)2/2�2] (so that
both level repulsions are in almost linear regimes). Note that
the effective qubit-state-dependent change of the resonator
frequency (which is used for the qubit measurement) is
governed by the similar factor ωeff

r,|e〉 − ωeff
r,|g〉 = d�eff/dn =

�/(2ñcrit) for the same range of n. Now crudely estimating the
Purcell rate as �R 
 κ(g/�eff)2, we obtain the crude estimate
of the Purcell rate suppression as �R/�P 
 1 − n/ñcrit when
1 � n � ncrit × min[1,(� − A)2/2�2]. This has the same
form as Eq. (34), with ncrit replaced by ñcrit and with absent
factor 3/2, which cannot be obtained in this crude derivation
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(preliminary numerical results indicate that this factor, describ-
ing the difference between the numerical suppression and the
Stark-shift model becomes closer to 1). Note that for positive
A and negative � (i.e., ωq < ωr , which is the more typical
situation for transmon qubits) the effective critical photon
number (74) is increased, ñcrit > ncrit (strongly increased
if −� � A), and therefore the Purcell rate suppression is
weaker than in the two-level model. (For large ratios −�/A
preliminary numerical results indicate that the suppression is
not as weak as follows from strongly increased ñcrit.) A more
complete analysis of the effect of the third and higher levels
on the Purcell rate (including the numerical simulations as in
Sec. IV) is the subject of further research.
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