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We apply the method of compressed sensing (CS) quantum process tomography (QPT) to characterize quantum
gates based on superconducting Xmon and phase qubits. Using experimental data for a two-qubit controlled-Z
gate, we obtain an estimate for the process matrix χ with reasonably high fidelity compared to full QPT, but
using a significantly reduced set of initial states and measurement configurations. We show that the CS method
still works when the amount of used data is so small that the standard QPT would have an underdetermined
system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with numerically
added noise, and similarly show that the method works well for a substantially reduced set of data. For the CS
calculations, we use two different bases in which the process matrix χ is approximately sparse, and show that
the resulting estimates of the process matrices match each other with reasonably high fidelity. For both two-qubit
and three-qubit gates, we characterize the quantum process by not only its process matrix and fidelity, but also
by the corresponding standard deviation, defined via variation of the state fidelity for different initial states.
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I. INTRODUCTION

An important challenge in quantum information science and
quantum computing is the experimental realization of high-
fidelity quantum operations on multiqubit systems. Quantum
process tomography (QPT) [1–3] is a procedure devised to
fully characterize a quantum operation. The role of QPT in
experimental characterization of quantum gates is twofold.
First, it allows us to quantify the quality of the gate; that is, it
tells us how close the actual and desired quantum operations
are. Second, QPT may aid in diagnosing and correcting errors
in the experimental operation [4–8]. The importance of QPT
has led to extensive theoretical research on this subject (e.g.,
see Refs. [9–14]).

Although conceptually simple, QPT suffers from a fun-
damental drawback: the number of required experimental
configurations scales exponentially with the number of qubits
(e.g., see Ref. [15]). An N -qubit quantum operation can be
represented by a 4N × 4N process matrix χ [1] containing
16N independent real parameters (or 16N − 4N parameters
for a trace-preserving operation), which can be determined
experimentally by QPT. Therefore, even for few-qubit systems,
QPT involves collecting large amounts of tomographic data
and heavy classical postprocessing. To alleviate the problem
of exponential scaling of QPT resources, alternative meth-
ods have been developed, e.g., randomized benchmarking
[16–18] and Monte Carlo process certification [19,20]. These
protocols, however, find only the fidelity of an operation
instead of its full process matrix. Both randomized bench-
marking and Monte Carlo process certification have been
demonstrated experimentally for superconducting qubit gates
(see Refs. [21–23] and references therein). Although these
protocols are efficient tools for the verification of quantum
gates, their limitation lies in the fact that they do not provide
any description of particular errors affecting a given process
and therefore they cannot be used directly to improve the
performance of the gates.

Recently, a new approach to QPT, which incorporates ideas
from signal processing theory has been proposed [24,25].
The basic idea is to combine standard QPT with compressed
sensing (CS) theory [26–29], which asserts that sparse signals
may be efficiently recovered even when heavily undersampled.
As a result, compressed sensing quantum process tomography
(CS QPT) enables one to recover the process matrix χ from
far fewer experimental configurations than standard QPT. The
method proposed in Refs. [24,25] is hoped to provide an
exponential speed-up over standard QPT. In particular, for
a d-dimensional system the method is supposed to require
only O(s log d) experimental probabilities to produce a good
estimate of the process matrix χ , if χ is known to be s

compressible [30] in some known basis. (For comparison,
standard QPT requires at least d4 probabilities, where d =
2N for N qubits.) Note that there are bases in which the
process matrix describing the target process (the desired
unitary operation) is maximally sparse, i.e., containing only
one nonzero element; for example, this is the case for the
so-called singular-value-decomposition (SVD) basis [24] and
the Pauli-error basis [8]. Therefore, if the actual process is
close to the ideal (target) process, then it is plausible to expect
that its process matrix is approximately sparse when written
in such a basis [25]. The CS QPT method was experimentally
validated in Ref. [25] for a photonic two-qubit controlled-Z
(CZ) gate. In that experiment, sufficiently accurate estimates
for the process matrix were obtained via CS QPT using
much fewer experimental configurations than the standard
QPT.

The CS idea also inspired another (quite different) algo-
rithm for quantum state tomography (QST) [31,32], which
can be generalized to QPT [32,33]. This matrix-completion
method of CS QST estimates the density matrices of nearly
pure (low rank r) d-dimensional quantum states from expec-
tation values of only O(rd poly log d) observables, instead of
d2 observables required for standard QST. It is important to
mention that this method does not require any assumption
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about the quantum state of a system, except that it must be
a low-rank state (in particular, we do not need to know the
state approximately). The CS QST method has been used
to reconstruct the quantum states of a four-qubit photonic
system [34] and cesium atomic spins [35]. In Ref. [32], it
has been shown that using the Jamiołkowski process-state
isomorphism [36] the formalism of CS QST can also be applied
to the QPT, requiring O(rd2 poly log d) measured probabilities
(where r is the rank of the Jamiołkowski state) to produce
a good estimate of the process matrix χ . Therefore there is
crudely a square-root speedup compared with standard QPT.
Note that this algorithm requires exponentially more resources
than the CS QPT method of Ref. [25], but it does not require
to know a particular basis in which the matrix χ is sparse.
The performance of these two methods has been compared
in the recent paper [33] for a simulated quantum system with
dimension d = 5; the reported result is that the method of
Ref. [32] works better for coherent errors, while the method
of Ref. [25] is better for incoherent errors.

In this paper, we apply the method of Ref. [25] to the two-
qubit CZ gate realized with superconducting qubits. Using the
experimental results, we find that CS QPT works reasonably
well when the number of used experimental configurations is
up to ∼7 times less than for standard QPT. Using simulations
for a three-qubit Toffoli gate, we find that the reduction factor
is ∼40, compared with standard QPT. In the analysis, we
calculate two fidelities: the fidelity of the CS QPT-estimated
process matrix χCS compared with the matrix χfull from the
full data set and compared with χideal for the ideal unitary
process. Besides calculating the fidelities, we also calculate
the standard deviation of the fidelity, defined via the variation
of the state fidelity for different initial states. We show that
this characteristic is also estimated reasonably well by using
the CS QPT.

Our paper is structured as follows. Section II is a brief
review of standard QPT and CS QPT. In Sec. III, we discuss
the set of measurement configurations used to collect QPT
data for superconducting qubits, and also briefly discuss our
way to compute the process matrix χ via compressed sensing.
In Sec. IV, we present our numerical results for the CS QPT
of a superconducting two-qubit CZ gate. In this section we
also compare numerical results obtained by applying the CS
QPT method in two different operator bases, the Pauli-error
basis and the SVD basis. In Sec. V, we study the CS QPT of
a simulated three-qubit Toffoli gate with numerically added
noise. Then, in Sec. VI, we use the process matrices obtained
via compressed sensing to estimate the standard deviation of
the state fidelity, with varying initial state. Section VII is a
conclusion. In the appendices, we discuss the Pauli-error basis
(Appendix A), SVD basis (Appendix B), and calculation of
the average square of the state fidelity (Appendix C).

II. METHODS OF QUANTUM PROCESS TOMOGRAPHY

A. Standard quantum process tomography

The idea behind QPT is to reconstruct a quantum operation
ρ in �→ ρfin = E(ρ in) from experimental data. The quantum
operation is a completely positive map, which for an N -qubit
system prepared in the state with density matrix ρ in can be

written as

E(ρ in) =
d2∑

α,β=1

χαβEαρ inE
†
β, (1)

where d = 2N is the dimension of the system, χ ∈ Cd2×d2

is the process matrix and {Eα ∈ Cd×d} is a chosen basis of
operators. We assume that this basis is orthogonal, 〈Eα|Eβ〉 ≡
Tr(E†

αEβ) = Qδαβ , where Q = d for the Pauli basis and Pauli-
error basis, while Q = 1 for the SVD basis (see Appendices A
and B). Note that for a trace-preserving operation Tr(χ ) = 1 if
Q = d, while Tr(χ ) = d if Q = 1. In this paper, we implicitly
assume the usual normalization Q = d, unless mentioned
otherwise. The process matrix χ is positive semidefinite
(which implies being Hermitian), and we also assume it to
be trace-preserving:

χ � 0 (positive semidefinite), (2)

d2∑
α,β=1

χαβE
†
βEα = Id (trace-preserving). (3)

These conditions ensure that ρfin = E(ρ in) is a legitimate
density matrix for an arbitrary (legitimate) input state ρ in.
The condition (3) reduces the number of real independent
parameters in χ from d4 to d4 − d2. Hence the number
of parameters needed to fully specify the map E scales as
O(16N ) with the number of qubits N . Note that the set of
allowed process matrices χ defined by Eqs. (2) and (3) is
convex [24,37].

The essential idea of standard QPT is to exploit the linearity
of the map (1) by preparing the qubits in different initial
states, applying the quantum gate, and then measuring a set
of observables until the collected data allows us to obtain the
process matrix χ through matrix inversion or other methods.
More precisely, if the qubits are prepared in the state ρ in

k , then
the probability of finding them in the (measured) state |φi〉
after applying the gate is given by

Pik = Tr
(
�iE

(
ρ in

k

)) =
∑
α,β

Tr
(
�iEαρ in

k E
†
β

)
χαβ, (4)

where �i = |φi〉 〈φi |. By preparing the qubits in one of the
linearly independent input states {ρ in

1 , . . . ρ in
Nin

} and performing
a series of projective measurements {�1, . . . ,�Nmeas} on the
output states, one obtains a set of m = NinNmeas probabilities
{Pik} which, using Eq. (4), may be written as

	P (χ ) = 	 	χ, (5)

where 	P (χ ) ∈ Cm×1 and 	χ ∈ Cd4×1 are vectorized forms of
{Pik} and χαβ , respectively. The m × d4 transformation matrix
	 has entries given by 	ik,αβ = Tr(�iEαρ in

k E
†
β).

In principle, for tomographically complete sets of
input states {ρ in

1 , . . . ρin
Nin

} and measurement operators
{�1, . . . ,�Nmeas}, one could invert Eq. (5) and thus uniquely
find χ by using the experimental set of probabilities 	P exp.
In practice, however, because of experimental uncertainties
present in 	P exp, the process matrix thus obtained may be
nonphysical, that is, inconsistent with the conditions (2)
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and (3). In standard QPT, this problem is remedied by
finding the physical process matrix [satisfying (2) and (3)]
that minimizes (in some sense) the difference between the
probabilities 	P (χ ) and the experimental probabilities 	P exp.

Two popular methods used to estimate a physical process
matrix χ compatible with the experimental data are the maxi-
mum likelihood (ML) method [38–40] (see also Refs. [41,42])
and the least-squares (LS) method [21,43,44]. The ML method
minimizes the cost function [38]

CML = −
∑

j
P

exp
j ln Pj (χ ), (6)

where the index j labels the measured probabilities, while
the LS method (often also called maximum likelihood)
minimizes the difference between 	P (χ ) and 	P exp in the

2-norm sense [45], so the minimized cost function is

CLS = || 	P (χ ) − 	P exp||2
2
=

∑
j

[
P

exp
j − Pj (χ )

]2
. (7)

In both methods, the conditions (2) and (3) should be satisfied
to ensure that χ corresponds to a physical process. This can
be done in a number of ways, for example, using the Cholesky
decomposition, or Lagrange multipliers, or just stating the
conditions (2) and (3) as a constraint (if an appropriate software
package is used). The ML method (6) is natural when the
inaccuracy of 	P exp is dominated by the statistical error due to
a limited number of experimental runs. However, this method
does not work well if a target probability Pj is near zero, but
P

exp
j is not near zero due to experimental imperfections (e.g.,

“dark counts”); this is because the cost function (6) is very
sensitive to changes in P

exp
j when Pj (χ ) ≈ 0. Therefore the

LS method (7) is a better choice when the inaccuracy of 	P exp

is not due to a limited number of experimental runs.
Note that other cost functions can also be used for mini-

mization in the procedure. For example, by replacing ln Pj (χ )
in Eq. (6) with ln[Pj (χ )/P exp

j ] (this obviously does not affect
optimization), then expanding the logarithm to second order,
and using condition

∑
j Pj (χ ) = ∑

j P
exp
j (which cancels the

first-order term), we obtain [41] CML ≈ const + ∑
j [P exp

j −
Pj (χ )]2/2P

exp
j . This leads to another natural cost function

C =
∑

j

[
Pj (χ ) − P

exp
j

]2

P
exp
j + a

, (8)

where we phenomenologically introduced an additional pa-
rameter a, so that for a � 1 the minimization reduces to the
LS method, while for a � 1, it is close to the ML method
(the parameter a characterizes the relative importance of
nonstatistical and statistical errors). One more natural cost
function is similar to Eq. (8), but with P

exp
j in the denominator

replaced by P
exp
j (1 − P

exp
j ) (see Ref. [38]), which corresponds

to the binomial distribution variance.
In this paper, we use the LS method (7) for the standard

QPT. In particular, we find the process matrix χfull for the full
data set 	P exp

full by minimizing || 	P (χfull) − 	P exp
full ||
2 , subject to

conditions Eqs. (2) and (3). Note that such minimization is a
convex optimization problem and therefore computationally
tractable.

B. Compressed sensing quantum process tomography

If the number of available experimental probabilities is
smaller than the number of independent parameters in the pro-
cess matrix (i.e., m < d4 − d2), then the set of linear equations
Eq. (5) for the process matrix χ becomes underdetermined.
Actually, the LS method may still formally work in this case
for some range of m, but, as discussed in Secs. IV E and V, it
is less effective.

As a natural alternative, the methodology of compressed
sensing [26–29] is applicable to an underdetermined set
of equations where the unknown “signal” is known to
be sparse with an unknown sparsity pattern. This method
is now an already well-developed mathematical field with
numerous applications in signal processing, including medical
magnetic resonance tomography [46], photography [47], face
recognition [48], holography [49], seismic imaging [50], etc.
Compressed sensing typically involves forming a convex
optimization involving the 
2-norm of the measurement error
and the 
1-norm [45] of the estimation variable, the latter
being a convex heuristic for sparsity. The estimate is obtained
by solving a convex optimization, where under suitable
measurement conditions the underdetermined measurements
plus the sparsity heuristic yield a very accurate solution.
Perfect recovery of a sparse signal is achieved with no
measurement noise, and the errors grow gracefully with noise
and near-sparsity of the signal.

By using the ideas of compressed sensing [26–29], the
method of CS QPT requires a significantly smaller set of exper-
imental data to produce a reasonably accurate estimate of the
process matrix. Let us formulate the problem mathematically
as follows: we wish to find the physical process matrix 	χ0

satisfying the equation

	P exp = 	 	χ0 + 	z, (9)

where the vector 	P exp ∈ Cm (with m < d4 − d2) and the
matrix 	 ∈ Cm×d4

are given, while 	z ∈ Cm is an unknown
noise vector, whose elements are assumed to be bounded (in the
root-mean-square sense) by a known limit ε, ||	z||
2/

√
m � ε.

While this problem seems to be ill-posed since the available
information is both noisy and incomplete, in Ref. [26] it
was shown that if the vector χ0 is sufficiently sparse and
the matrix 	 satisfies the restricted isometry property (RIP),
χ0 can be accurately estimated from Eq. (9). Note that the
CS techniques of Ref. [26] were developed in the context
of signal processing; to adapt [24] these techniques to QPT
we also need to include the positivity and trace-preservation
conditions, Eqs. (2) and (3).

The idea of CS QPT [25] is to minimize the 
1 norm [45] of
	χ in a basis where χ is assumed to be approximately sparse.
Mathematically, the method is solving the following convex
optimization problem:

minimize || 	χ ||
1
, (10)

subject to || 	P (χ ) − 	P exp||
2

/√
m � ε

and conditions (2) and (3). (11)

As shown in Refs. [25,28], a faithful reconstruction recovery
of an approximately s-sparse process matrix χ0 via this
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optimization is guaranteed (see below) if (i) the matrix 	

satisfies the RIP condition,

1 − δs �
||	 	χ1 − 	 	χ2||2
2

|| 	χ1 − 	χ2||2
2

� 1 + δs, (12)

for all s-sparse vectors (process matrices) 	χ1 and 	χ2, (ii) the
isometry constant δs is sufficiently small, δs <

√
2 − 1, and

(iii) the number of data points is sufficiently large,

m � C0s log(d4/s) = O(sN ), (13)

where C0 is a constant. Quantitatively, if χCS is the solution
of the optimization problem [Eqs. (10) and (11)], then the
estimation error ||χCS − χ0||
2

is bounded as

||χCS − χ0||
2√
m

� C1||χ0(s) − χ0||
1√
ms

+ C2 ε, (14)

where χ0(s) is the best s-sparse approximation of χ0, while
C1 and C2 are constants of the order O(δs). Note that in the
noiseless case (ε = 0) the recovery is exact if the process
matrix χ0 is s-sparse. Also note that while the required number
of data points m and the recovery accuracy depend on the
sparsity s, the method itself [Eqs. (10) and (11)] does not
depend on s, and therefore s need not be known.

The inequality (13) and the first term in the inequality (14)
indicate that the CS QPT method is supposed to work well
only if the actual process matrix χ0 is sufficiently sparse.
Therefore it is important to use an operator basis {Eα} [see
Eq. (1)], in which the ideal (desired) process matrix χideal is
maximally sparse, i.e., it contains only one nonzero element.
Then it is plausible to expect the actual process matrix χ0 to be
approximately sparse [25]. In this paper, we will use two bases
in which the ideal process matrix is maximally sparse. These
are the so-called Pauli-error basis [8] and the SVD basis of the
ideal unitary operation [24]. In the Pauli-error basis {Eα}, the
first element E1 coincides with the desired unitary U , while
other elements are related via the N -qubit Pauli matrices P ,
so that Eα = UPα . In the SVD basis, E1 = U/

√
d, and other

elements are obtained via a numerical SVD procedure. More
details about the Pauli-error and SVD bases are discussed in
Appendices A and B.

As mentioned previously, the method of CS QPT involves
the RIP condition (12) for the transformation matrix 	. In
Ref. [25], it was shown that if the transformation matrix 	 in
Eq. (5) is constructed from randomly selected input states ρ in

k

and random measurements �i , then 	 obeys the RIP condition
with high probability. Notice that once a basis {Eα} and a
tomographically complete (or overcomplete) set {ρ in

k ,�i} have
been chosen, the matrix 	full corresponding to the full data set
is fully defined, since it does not depend on the experimental
outcomes. Therefore the mentioned above result of Ref. [25]
tells us that if we build a matrix 	m by randomly selecting
m rows from 	full, then 	m is very likely to satisfy the RIP
condition. Hence the submatrix 	m ∈ Cm×d4

, together with
the corresponding set of experimental outcomes 	P exp ∈ Cm

can be used to produce an estimate of the process matrix via
the 
1-minimization procedure (10) and (11).

III. STANDARD AND CS QPT OF MULTIQUBIT
SUPERCONDUCTING GATES

There are several different ways to perform standard
QPT for an N -qubit quantum gate realized with supercon-
ducting qubits [51–58]. The differences are the following.
First, it can be performed using either nin = 4 initial states
for each qubit [52–55], e.g., {|0〉 , |1〉 ,(|0〉 + |1〉)/√2,(|0〉 +
i |1〉)/√2}, or using nin = 6 initial states per qubit [56,57],
{|0〉 , |1〉 ,(|0〉 ± |1〉)/√2,(|0〉 ± i |1〉)/√2}, so that the total
number of initial states is Nin = nN

in . (It is tomographi-
cally sufficient to use nin = 4, but the set of six initial
states is more symmetric, so it can reduce the effect of
experimental imperfections.) Second, the final measurement
of the qubits can be realized in the computational basis
after one out of nR = 3 rotations per qubit [52,54], e.g.,
Rmeas = {I,R−π/2

y ,R
π/2
x }, or nR = 4 rotations [21,53,57], e.g.,

Rmeas = {I,Rπ
y ,R

π/2
y ,R

π/2
x }, or nR = 6 rotations [51,56,58],

e.g., Rmeas = {I,Rπ
y ,R

±π/2
y ,R

±π/2
x }. This gives NR = nN

R mea-
surement “directions” in the Hilbert space. Third, it may
be possible to measure the state of each qubit simultane-
ously [51,52,54], so that the probabilities for all 2N outcomes
are measured, or it may be technically possible to measure the
probability for only one state (say, |0...0〉) or a weighed sum of
the probabilities [53,55,56]. Therefore the number of measured
probabilities for each configuration is either Nprob = 2N (with
2N − 1 independent probabilities, since their sum is equal 1) or
Nprob = 1. Note that if Nprob = 2N , then using nR = 6 rotations
per qubit formally gives the same probabilities as for nR = 3,
and in an experiment this formal symmetry can be used to
improve the accuracy of the results. In contrast, in the case
when Nprob = 1, the use of nR = 4 or nR = 6 are natural for
the complete tomography.

Thus the number of measurement configurations (including
input state and rotations) in standard QPT is Mconf = NinNR =
nN

inn
N
R , while the total number of probabilities in the data set

is M = MconfNprob. This number of probabilities can be as
large as M = 72N for nin = 6, nR = 6, and Nprob = 2N (with
72N − 36N independent probabilities). Since only 16N − 4N

independent probabilities are necessary for the standard QPT,
a natural choice for a shorter experiment is nin = 4, nR = 3,
and Nprob = 2N ; then M = 24N , with 24N − 12N independent
probabilities. If Nprob = 1 due to the limitations of the
measurement technique, then the natural choices are nin = 4
and nR = 4, giving M = 16N or nin = 4 and nR = 6, giving
M = 24N .

In this paper, we focus on the case nin = 4, nR = 3, and
Nprob = 2N . Then for a two-qubit quantum gate there are
Mconf = 12N = 144 measurement configurations and M =
24N = 576 probabilities (432 of them independent). For a
three-qubit gate, there are Mconf = 1728 configurations and
M = 13824 probabilities (12096 of them independent).

The main experimental data used in this paper are for
the two-qubit CZ gate realized with Xmon qubits [59]. The
data were obtained with nin = 6, nR = 6, and Nprob = 2N .
However, since the main emphasis of this paper is analysis of
the QPT with a reduced data set, we started by reducing the
data set to nin = 4 and nR = 3 by using only the corresponding
probabilities and removing other data. We will refer to these
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data as “full data” (with Mconf = 144 and M = 24N = 576).
For testing the CS method, we randomly choose mconf � Mconf

configurations, with corresponding m = 4mconf experimental
probabilities (3mconf of them independent). Since the process
matrix χ is characterized by 16N − 4N = 240 independent
parameters, the power of the CS method is most evident when
mconf < 80, so that the system of equations (5) is underdeter-
mined. [For a three-qubit gate, the system of equations be-
comes underdetermined for mconf < (16N − 4N )/(2N − 1) =
576.]

The data used for the analysis here were taken on a different
device from the one used in Ref. [60]. For the device used
here the qubits were coupled via a bus, and the entangling
gate between qubits A and B was implemented with three
multiqubit operations: (1) swap state from qubit B to bus,
(2) CZ gate between qubit A and bus, and (3) swap back
to qubit B. The swap was done with the resonant Strauch
gate [61], by detuning the frequency of qubit A with a
square pulse. Generating a square pulse is experimentally
challenging, moreover this gate has a single optimum in
pulse amplitude and time. We also note that the qubit
frequency control was not optimized for imperfections in the
control wiring, as described in Ref. [62] (see also Fig. S4
in Supplementary Information of Ref. [60]). The combination
of device, nonoptimal control, and multiple operations, lead
to the experimental process fidelity Fχ = 0.91 of the CZ
gate used for the analysis here to be significantly less than
the randomized benchmarking fidelity FRB = 0.994 reported
in [60]. Moreover, QPT necessarily includes state preparation
and measurement (SPAM) errors [18], while randomized
benchmarking does not suffer from these errors. This is why
we intentionally used the data for a not-well-optimized CZ
gate so that the gate error dominates over the SPAM errors.
(Note that we use correction for the imperfect measurement
fidelity [51]; however, it does not remove the measurement
errors completely.) It should also be mentioned that in the ideal
case 1 − Fχ = (1 − FRB) × (1 + 2−N ), so the QPT fidelity is
supposed to be slightly less than the randomized benchmarking
fidelity.

For the full data set, we first calculate the process matrix
χfull by using the least-squares method described at the end of
Sec. II A. For that we use three different operator bases {Eα}:
the Pauli basis, the Pauli-error basis, and the SVD basis. The
precomputed transformation matrix 	 in Eq. (5) depends on
the choice of the basis, thus giving a basis-dependent result
for χfull. We then check that the results essentially coincide
by converting χfull between the bases and calculating the
fidelity between the corresponding matrices (the infidelity is
found to be less than 10−7). The fidelity between two process
matrices χ1 and χ2 is defined as the square of the Uhlmann
fidelity [63,64],

F (χ1,χ2) =
(

Tr
√

χ
1/2
1 χ2 χ

1/2
1

)2
, (15)

so that it reduces to F (χ1,χ2) = Tr(χ1χ2) [65] when at least
one of the process matrices corresponds to a unitary operation.
Since 0 � F � 1, we refer to 1 − F as the infidelity.

After calculating χfull for the full data set, we can calculate
its fidelity compared to the process matrix χideal of the desired
ideal unitary operation, Fχ = Ffull = F (χfull,χideal). This is the

main number used to characterize the quality of the quantum
operation.

Then we calculate the compressed-sensing process matrix
χCS by solving the 
1-minimization problem described by
Eqs. (10) and (11), using the reduced data set. It is ob-
tained from the full data set by randomly selecting mconf

configurations out of the full number Mconf configurations.
We use the fidelity F (χCS,χfull) to quantify how well the
process matrix χCS approximates the matrix χfull obtained from
full tomographic data. Additionally, we calculate the process
fidelity F (χCS,χideal) between χCS and the ideal operation, to
see how closely it estimates the process fidelity Ffull, obtained
using the full data set.

Since both the least-squares and the 
1-norm minimiza-
tion are convex optimization problems [24,66], they can
be efficiently solved numerically. We used two ways for
MATLAB-based numerical calculations: (1) using the package
CVX [67], which calls the convex solver SEDUMI [68]; or (2)
using the package YALMIP [69], which calls the convex solver
SDPT3 [70]. In general, we have found that for our particular
realization of computation, CVX with the solver SEDUMI works
better than the combination YALMIP-SDPT3 (more details are
below).

IV. RESULTS FOR TWO-QUBIT CZ GATE

In this section, we present results for the experimental CZ
gate realized with superconducting Xmon qubits [59,60]. As
explained above, the full data set consists of M = 576 mea-
sured probabilities (432 of them independent), corresponding
to Mconf = 42 × 32 = 144 configurations, with four probabil-
ities (three of them independent) for each configurations. The
LS method using the full data set produces the process matrix
χfull, which has the process fidelity F (χfull,χideal) = 0.907
relative to the ideal CZ operation. Note that our full data set is
actually a subset of an even larger data set (as explained in the
previous section), and the χ matrix calculated from the initial
set corresponds to the process fidelity of 0.928; the difference
gives a crude estimate of the overall accuracy of the procedure.

The CS method calculations were mainly done in the Pauli-
error basis, using the CVX-SEDUMI combination for the 
1-
norm minimization. This is what is implicitly assumed in this
section, unless specified otherwise. Note that the CS-method
optimization is very different from the LS method. Therefore,
even for the full data set we would expect the process matrix
χCS to be different from χfull. Moreover, χCS depends on the
noise parameter ε [see Eq. (11)], which to some extent is
arbitrary. To clarify the role of the parameter ε, we will first
discuss the CS method applied to the full data set, with varying
ε, and then discuss the CS QPT for a reduced data set, using
either near-optimal or nonoptimal values of ε.

A. Full data set, varying ε

We start with calculating the process matrix χCS by solving
the 
1-minimization problem, Eqs. (10) and (11), using the full
data set and varying the noise parameter ε. The resulting matrix
is compared with the LS result χfull and with the ideal matrix
χideal. Figure 1 shows the corresponding fidelities F (χCS,χfull)
and F (χCS,χideal) as functions of ε. We see that χCS coincides
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FIG. 1. (Color online) The CS QPT procedure, applied to the full
data set, with varying noise parameter ε. The red (upper) line shows
the fidelity F (χCS,χfull) between the process matrix χCS obtained
using the compressed-sensing method and the matrix χfull obtained
using the least-squares method. The blue (lower) line shows the
process fidelity F (χCS,χideal), i.e., compared with the matrix χideal of
the ideal unitary process. The vertical dashed brown line corresponds
to the noise level εopt = || 	P exp

full − 	 	χfull||
2/
√

M = 0.0199 obtained
in the LS procedure. The inset shows εnum = || 	P exp

full − 	 	χCS||
2/
√

M

as a function of ε (green line); for comparison, the dashed line shows
the expected straight line, εnum = ε. The numerical calculations have
been carried out in the Pauli-error basis using CVX-SEDUMI package.

with χfull [so that F (χCS,χfull) = 1] at the optimal value
εopt = 0.0199. This is exactly the noise level corresponding
to the LS procedure, || 	P exp

full − 	 	χfull||
2/
√

M = 0.0199. With
ε increasing above this level, the relative fidelity between χCS

and χfull decreases, but it remains above 0.95 for ε < 0.028.
Correspondingly, the process fidelity reported by χCS, i.e.
F (χCS,χideal), also changes. It starts with F (χCS,χideal) =
F (χfull,χideal) = 0.907 for ε = 0.0199, then increases with
increasing ε, then remains flat above ε = 0.025, and then
decreases at ε > 0.032. We note that for another set of
experimental data (for a CZ gate realized with phase qubits)
there was no increasing part of this curve, and the dependence
of F (χCS,χideal) on ε remained practically flat for a wide range
of ε; one more set of experimental data for phase qubits again
had the increasing part of this curve.

To check how close the result of 
1 optimization (10) is
to the upper bound of the condition (11), we calculate the
numerical value εnum = || 	P exp

full − 	 	χCS||
2/
√

M as a function
of ε. The result is shown in the inset of Fig. 1, we see that εnum

is quite close to ε. The CVX-SEDUMI package does not solve
the optimization problem for values of the noise parameter ε

below the optimal value εopt.
Finding a proper value of ε to be used in the CS method is

not a trivial problem, since for the reduced data set we cannot
find εopt in the way we used. Therefore the value of ε should be
estimated either from some prior information about the noise
level in the system or by trying to solve the 
1-minimization
problem with varying value of ε. Note that the noise level
|| 	P exp − 	 	χideal||
2/

√
M defined by the ideal process is not a

good estimate of εopt; in particular, for our full data, it is 0.035,
which is significantly higher than εopt = 0.0199.
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FIG. 2. (Color online) The CS method results using a reduced
data set with randomly chosen mconf configurations. The red (upper)
line shows the fidelity F (χCS,χfull) between the CS-estimated process
matrix χCS and the matrix χfull obtained from the full data set. The blue
(lower) line shows the estimated process fidelity Fχ = F (χCS,χideal).
The procedure of randomly choosing mconf out of 144 configurations
is repeated 50 times; the error bars show the calculated standard
deviations. The noise parameter ε = 0.002015 is chosen slightly
above εopt. The calculations are carried out in the Pauli-error basis
using CVX-SEDUMI. The experimental data are for the CZ gate realized
with Xmon qubits; the process fidelity is F (χfull,χideal) = 0.907.

B. Reduced data set, near-optimal ε

Now we apply the CS method to a reduced data set, by
randomly choosing mconf out of Mconf = 144 configurations,
while using all four probabilities for each configuration.
(Therefore the number of used probabilities is m = 4mconf

instead of M = 4Mconf in the full data set.) For the noise
level ε, we use a value slightly larger than εopt [25]. If a
value too close to εopt is used, then the optimization procedure
often does not find a solution; this happens when we choose
configurations with a relatively large level of noise in the
measured probability values. For the figures presented in this
section, we used ε = 0.02015, which for the full data set
corresponds to the fidelity of 0.995 compared with χfull and to
the process fidelity of 0.910 (see Fig. 1).

Figure 2 shows the fidelities F (χCS,χfull) (upper line) and
F (χCS,χideal) (lower line) versus the number mconf of used
configurations. For each value of mconf we repeat the procedure
50 times, choosing different random configurations. The error
bars in Fig. 2 show the standard deviations (±σ ) calculated
using these 50 numerical experiments, while the central points
correspond to the average values.

We see that the upper (red) line starts with fidelity
F (χCS,χfull) = 0.995 for the full data set (mconf = 144) and
decreases with decreasing mconf . It is important that this
decrease is not very strong, so that we can reconstruct the
process matrix reasonably accurately, using only a small
fraction of the QPT data. We emphasize that the system
of equations (5) in the standard QPT procedure becomes
underdetermined at mconf < 80; nevertheless, the CS method
reconstructs χfull quite well for mconf � 40 and still gives
reasonable results for mconf � 20. In particular, for mconf

between 40 and 80, the reconstruction fidelity F (χCS,χfull)
changes between 0.96 and 0.98.
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FIG. 3. (Color online) (a) The process matrix χfull based on the
full data set (144 configurations) and [(b) and (c)] the CS-estimated
matrices χCS using a reduced data set: 72 configurations (b) and 36
configurations (c). The process matrices are shown in the Pauli-error
basis. The main element χII,II (process fidelity) is off the scale and
therefore is cut; its height is 0.907, 0.918, and 0.899 for (a), (b),
and (c), respectively. All other peaks characterize imperfections. The
fidelity F (χCS,χfull) for the matrices in (b) and (c) is equal to 0.981
and 0.968, respectively. The middle and lower panels use the data set,
corresponding to underdetermined systems of equations.

The lower (blue) line in Fig. 2 shows that the process fidelity
Fχ = F (χCS,χideal) can also be found quite accurately, using
only mconf � 40 configurations (the line remains practically
flat), and the CS method still works reasonably well down to
mconf � 20. Even though the blue line remains practically flat
down to mconf � 40, the error bars grow, which means that in
a particular experiment with substantially reduced set of QPT
data, the estimated process fidelity Fχ may noticeably differ
from the actual value. It is interesting that the error bars become
very large at approximately the same value (mconf � 20), for
which the average values for the red and blue lines become
unacceptably low.

Figure 3 shows examples of the CS estimated process
matrices χCS for mconf = 72 (middle panel) and mconf = 36
(lower panel), together with the full data process matrix
χfull (upper panel). The process matrices are drawn in the
Pauli-error basis to display the process imperfections more
clearly. The peak χII,II is off the scale and is cut arbitrarily. We
see that the CS estimated process matrices are different from
the full-data matrix; however, the positions of the main peaks
are reproduced exactly, and their heights are also reproduced
rather well (for a small number of selected configurations the
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FIG. 4. (Color online) Similar to Fig. 2, but for the CZ gate
realized with superconducting phase qubits. The process fidelity
F (χfull,χideal) = 0.51 is much lower than that for the Xmon qubit gate.
As we see, CS QPT works significantly better for this lower-fidelity
gate than for the better gate presented in Fig. 2.

peaks sometimes appear at wrong positions). It is interesting
to see that the CS procedure suppressed the height of minor
peaks. Note that both presented χCS are based on the data sets
corresponding to underdetermined system of equations.

The computer resources needed for the calculation of results
presented in Fig. 2 are not demanding. The calculations require
about 30 MB of computer memory and 2–4 seconds time for a
modest PC per individual calculation (smaller time for smaller
number of configurations).

Besides the presented results, we have also performed
analysis for the CS QPT of two CZ gates based on phase
qubits. The results are qualitatively similar, except the process
fidelity for phase-qubit gates was significantly lower: 0.62 and
0.51. The results for one of these gates are presented in Fig. 4.
Comparing with Fig. 2, we see that CS QPT works better for
this lower-fidelity gate. In particular, the blue line in Fig. 4
is practically flat down to mconf � 20 and the error bars are
quite small. We think that the CS QPT works better for a
lower-fidelity gate because experimental imperfections affect
the measurement error relatively less in this case than for a
higher-fidelity gate. Thus our results show that for a CZ gate
realized with superconducting qubits CS QPT can reduce the
number of used QPT configurations by up to a factor of 7
compared with full QPT, and up to a factor of 4 compared
with the threshold at which the system of equations for the
standard QPT becomes underdetemined.

C. Reduced data set, nonoptimal ε

As mentioned above, in a QPT experiment with a reduced
data set, there is no straightforward way to find the near-
optimal value of the noise parameter ε (which we find here
from the full data set). Therefore it is important to check how
well the CS method works when a nonoptimal value of ε is
used. Figure 5 shows the results similar to those in Fig. 2,
but with several values of the noise parameter: ε/εopt = 1.01,
1.2, 1.4, 1.6, and 1.8. The upper panel shows the fidelity
between the matrix χCS and the full-data matrix χfull; the lower
panel shows the process fidelity F (χCS,χideal). We see that
the fidelity of the χ matrix estimation, F (χCS,χfull), becomes
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FIG. 5. (Color online) (a) Fidelity F (χCS,χfull) of the process
matrix estimation and (b) the estimated process fidelity F (χCS,χideal)
as functions of the data set size for several values of the noise
parameter ε used in the CS optimization: ε/εopt = 1.01, 1.2, 1.4,
1.6, and 1.8. Error bars show the standard deviations calculated using
50 random selections of reduced data sets. The red lines are the same
as the lines in Fig. 2.

monotonously worse with increasing ε, while the estimated
process fidelity, F (χCS,χideal), may become larger when a
nonoptimal ε is used.

Similar results (not presented here) for the CZ gate based
on phase qubits (see Fig. 4) have shown significantly better
tolerance to a nonoptimal choice of ε; in particular, even for
ε = 3εopt, the process fidelity practically coincides with the
blue line in Fig. 4 (obtained for ε ≈ εopt). We believe the lower
gate fidelity for phase qubits is responsible for this relative
insensitivity to the choice of ε.

D. Comparison between Pauli-error and SVD bases

So far, for the CS method, we have used the Pauli-error
basis, in which the process matrix χ is expected to be
approximately sparse because the ideal process matrix χideal

contains only one nonzero element, χideal,I I,I I = 1. However,
there are an infinite number of the operator bases with this
property: for example, the SVD basis (see Appendix B)
suggested in Refs. [24] and [25]. The process matrix is
different in the Pauli-error and SVD bases, therefore the CS
optimization should produce different results. To compare the
results, we do the CS optimization in the SVD basis, then
convert the resulting matrix χ into the Pauli-error basis, and
calculate the fidelity F (χCS-SVD,χCS) between the transformed
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FIG. 6. (Color online) Comparison between the CS results ob-
tained in the SVD and Pauli-error bases. The green line shows the
relative fidelity F (χCS-SVD,χCS) as a function of the number mconf

of randomly selected configurations. We also show the fidelities
F (χCS-SVD,χfull) (brown line), F (χCS,χfull) (red dashed line), and
process fidelities F (χCS-SVD,χideal) (magenta line) and F (χCS,χideal)
(blue dashed line). The dashed lines have been shown in Fig. 2. The
results using the SVD basis are somewhat more accurate than those
for the Pauli-error basis when mconf < 40.

process matrix and the matrix χCS obtained using optimization
in the Pauli-error basis directly.

The green line in Fig. 6 shows F (χCS−SVD,χCS) as a
function of the selected size of the data set for the CZ gate
realized with Xmon qubits, similar to Fig. 2 (the same ε

is used). We also show the fidelity between the SVD-basis-
obtained matrix χCS-SVD and the full-data matrix χfull as well as
the ideal process matrix χideal. For comparison we also include
the lines shown in Fig. 2 (dashed lines), obtained using the
Pauli-error basis. As we see, the results obtained in the two
bases are close to each other, though the SVD basis seems
to work a little better at small data sizes, mconf < 40. The
visual comparison of χ -matrices obtained in these bases (as
in Fig. 3, not presented here) also shows that they are quite
similar. It should be noted that the calculations in the SVD
basis are somewhat faster (∼2 seconds per point) and require
less memory (∼6 MB) than the calculations in the Pauli-error
basis. This is because the matrix 	 defined in Eq. (5) for the
CZ gate contains about half the number of nonzero elements
in the SVD basis than in the Pauli-error basis.

All results presented here are obtained using the CVX-
SEDUMI package. The results for the CZ gate obtained using
the YALMIP-SDPT3 package are similar when the same value of
ε is used. Surprisingly, in our realization of computation, the
YALMIP-SDPT3 package still finds reasonable solutions when
ε is significantly smaller than εopt (even when ε is zero
or negative), so that the problem cannot have a solution;
apparently in this case the solver increases the value of ε

until a solution is found. This may seem to be a good feature
of YALMIP-SDPT3. However, using ε < εopt should decrease
the accuracy of the result (see the next section). Moreover,
YALMIP-SDPT3 does not work well for the Toffoli gate discussed
in Sec. V. Thus we conclude that CVX-SEDUMI package is better
than YALMIP-SDPT3 package for our CS calculations. (Note that
this finding may be specific to our system.)
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FIG. 7. (Color online) Comparison between the results obtained
by the LS and CS methods. The solid lines are for the LS method,
the dashed lines (same as in Fig. 2) are for the CS method. The CS
method is more accurate for a substantially reduced data set.

E. Comparison with least-squares minimization

Besides using the CS method for reduced data sets, we
also used the LS minimization [with constraints (2) and (3)]
for the same reduced sets. Solid lines in Fig. 7 show the
resulting fidelity F (χLS,χfull) compared with the full-data
process matrix and the estimated process fidelity F (χLS,χideal).

Somewhat surprisingly, the LS method still works (though
less well) in a significantly underdetermined regime. Naively,
we would expect that in this case Eq. (5) can be satisfied
exactly, and there are many exact solutions corresponding to
the null space of the selected part of the matrix 	. However,
numerical results show that in reality Eq. (5) cannot be satisfied
exactly unless the selected data set is very small. The reason
is that the matrix χ has to be positive, and the (corrected)
experimental probabilities can be close to the limits of the
physical range or even outside it.

The problem is that the experimental probabilities are not
directly obtained from the experiment, but are corrected for
imperfect measurement fidelity [51]. As a result, they may
become larger than one or smaller than zero. This happens
fairly often for high fidelity gates because for an ideal operation
the measurement results are often zeros and ones, so the
experimental probabilities should also be close to zero or one.
Any additional deviation due to imperfect correction for the
measurement fidelity may then push the probabilities outside
of the physical range. It is obvious that in this case Eq. (5)
cannot be satisfied exactly for any physical χ . To resolve
this problem one could consider rescaling the probabilities in
such instances, so that they are exactly one or zero instead of
lying outside the range. However, this also does not help much
because a probability of one means that the resulting state is
pure, so this strongly reduces the number of free parameters
in the process matrix χ . As a result, Eq. (5) cannot be satisfied
exactly, and the LS minimization is formally possible even in
the underdetermined case.

Another reason why Eq. (5) may be impossible to satisfy in
the underdetermined case, is that the randomly selected rows of
the matrix 	 can be linearly dependent. Then mathematically
some linear relations between the experimental probabilities

must be satisfied, while in reality they are obviously not
satisfied exactly.

These reasons make the LS minimization a mathematically
possible procedure even in the underdetermined regime. How-
ever, as we see from Fig. 7, in this case the procedure works
less well than the compressed sensing, estimating the process
matrix and process fidelity with a lower accuracy. Similar
calculations for the CZ gate realized with phase qubits (not
presented here) also show that the LS method does not work
well at relatively small mconf . The advantage of the compressed
sensing in comparison with the LS minimization becomes even
stronger for the three-qubit Toffoli gate considered in the next
section. Note though that when the selected data set is large
enough to give an overdetermined system of equations (5),
the LS method works better than the CS method. Therefore
the compressed sensing is beneficial only for a substantially
reduced (underdetermined) data set, which is exactly the
desired regime of operation.

V. THREE-QUBIT CS QPT FOR TOFFOLI GATE

In this section, we apply the compressed sensing method to
simulated tomographic data corresponding to a three-qubit
Toffoli gate [1,51,55,71,72]. As discussed in Sec. III, the
process matrix of a three-qubit gate contains 163 − 43 = 4032
independent real parameters, while the full QPT requires
Mconf = 123 = 1728 measurement configurations yielding a
total of M = 123 × 23 = 13824 experimental probabilities, if
we use nin = 4 initial states and nR = 3 measurement rotations
per qubit, with all qubits measured independently. If we work
with a partial data set, the system of equations (5) becomes
underdetermined if the number mconf of used configurations
is less than 4032/7 = 576. In such a regime, the traditional
maximum likelihood or LS methods are not expected to
provide a good estimate of the process matrix. In this
section, we demonstrate that for our simulated Toffoli gate
the compressed sensing method works well even for a much
smaller number of configurations, mconf � 576.

For the analysis, we have simulated experimental data
corresponding to a noisy Toffoli gate by adding truncated
Gaussian noise with a small amplitude to each of M = 13824
ideal measurement probabilities P ideal

i . We assumed the set of
experimental probabilities in Eq. (5) to be of the form P

exp
i =

P ideal
i + �Pi , where �Pi are random numbers sampled from

the normal distribution with zero mean and a small standard
deviation σ . By choosing different values of the standard
deviation σ we can change the process fidelity of the simulated
Toffoli gate: a smaller value of σ makes the process fidelity
closer to 1. After adding the Gaussian noise �Pi to the ideal
probabilities P ideal

i , we check whether the resulting simulated
probabilities P

exp
i are in the interval [0,1]. If a P

exp
i happens to

be outside the interval [0,1], we repeat the procedure until the
condition P

exp
i ∈ [0,1] is satisfied. Finally, we renormalize

each set of eight probabilities corresponding to the same
measurement configuration so that these probabilities add
up to 1.

Thus the simulated imperfect quantum process is defined
by M = 13824 probabilities, corresponding to Mconf = 1728
configurations; the process fidelity for a particular realization
(used here) with σ = 0.01 is Fχ = F (χfull,χideal) = 0.959. We
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FIG. 8. (Color online) CS QPT for a simulated Toffoli gate. Red
line: fidelity F (χCS,χfull) of the process matrix estimation, blue line:
the estimated process fidelity F (χCS,χideal), both as functions of the
data set size, expressed as the number mconf of randomly selected
configurations. The full QPT corresponds to 1728 configurations. The
system of equations becomes underdetermined when mconf < 576.

then test efficiency of the compressed sensing method by
randomly selecting mconf � 1728 configurations, finding the
corresponding process matrix χCS, and comparing it with the
full-data matrix χfull by calculating the fidelity F (χCS,χfull).
We also calculate the process fidelity F (χCS,χideal) given
by χCS.

The red line in Fig. 8 shows the fidelity F (χCS,χfull)
as a function of the number mconf of randomly selected
configurations. The value of ε is chosen to be practically
equal to εopt = ||( 	P exp

full − 	 	χfull)||
2/
√

M = 0.01146 (the rel-
ative difference is less than 10−3). The 
1 minimization is
done using the CVX-SEDUMI package. The error bars are
calculated by repeating the procedure of random selection
seven times. We see a reasonably high fidelity F (χCS,χfull)
of the reconstructed process matrix even for small numbers of
selected configurations. For example, F (χCS,χfull) = 0.95 for
only mconf = 40 configurations, which represents a reduction
by more than a factor of 40 compared with the full QPT and
approximately a factor of 15 compared with the threshold of
the underdetermined system of equations.

The blue line in Fig. 8 shows the process fidelity
F (χCS,χideal) calculated by the CS method. We see that it
remains practically flat down to mconf � 40, which means
that χCS can be used efficiently to estimate the actual process
fidelity.

Figure 9 shows similar results calculated using the LS
method (for comparison the lines from Fig. 8 are shown
by dashed lines). We see that the LS method still works in
the underdetermined regime (mconf < 576); however, it works
significantly worse than the CS method. As an example, for
mconf = 40 the fidelity of the process matrix estimation using
the LS method is F (χLS,χfull) = 0.86, which is significantly
less than F (χCS,χfull) = 0.95 for the CS method. Similarly, for
mconf = 40 the process fidelity obtained via the CS method,
F (χCS,χideal) = 0.96 is close to the full-data value of 0.959,
while the LS-method value, F (χLS,χideal) = 0.85, is quite
different.

Besides using the Pauli-error basis for the results shown
in Fig. 8, we have also performed the calculations using the

CS
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FIG. 9. (Color online) Comparison between the calculations us-
ing CS and LS methods for the simulated Toffoli gate. Solid lines are
for the LS method, dashed lines (the same as in Fig. 8) are for the CS
method. In the underdetermined regime the CS-method results are
much better than the LS-method results.

SVD basis. The results (not shown) are very close to those
in Fig. 8, and the relative fidelity F (χCS-SVD,χCS) is above
0.98 for mconf > 200 and above 0.95 for mconf > 40. We have
also performed the calculations using nonoptimal values of the
noise parameter ε. In comparison with the results for CZ gate
shown in Fig. 5, the results for the Toffoli gate (not shown) are
more sensitive to the variation of ε. In particular, the fidelity
F (χCS,χfull) is about 0.93 for ε = 1.2εopt (not significantly
depending on mconf for mconf > 40) and the process fidelity
F (χCS,χideal) for ε = 1.2εopt is approximately 0.93 instead of
the actual value 0.96.

Compared with the two-qubit case, it takes signifi-
cantly more computing time and memory to solve the 
1-
minimization problem for three qubits. In particular, our
calculations in the Pauli-error basis took about 8 hours per
point on a personal computer for mconf � 1500 and about
1.5 hours per point for mconf � 40; this is three orders of
magnitude longer than for two qubits. The amount of used
computer memory was 3–10 GB, which is two orders of
magnitude larger than for two qubits. (The calculations in the
SVD basis for the Toffoli gate took 1–3 hours per point and
∼2 GB of memory.) Such a strong scaling of required computer
resources with the number of qubits seems to be the limiting
factor in extending the CS QPT beyond three qubits, unless a
more efficient algorithm is found. (Note that LS calculations
required similar amount of memory, but the computation time
was much shorter.)

The presented results have been obtained using the CVX-
SEDUMI package. We also attempted to use the YALMIP-SDPT3

package. However, in our realization of computation the
calculation results were very unreliable for mconf < 200 using
the SVD basis, and even worse when the Pauli-error basis
was used. Therefore we decided to use only the CVX-SEDUMI

package for the three-qubit CS procedure.

VI. STANDARD DEVIATION OF STATE FIDELITY

As shown in previous sections, the process matrices χCS

obtained via the CS method allow us to estimate reliably the
process fidelity Fχ = F (χ,χideal) of a gate using just a small
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fraction of the full experimental data. While Fχ is the most
widely used characteristic of an experimental gate accuracy,
it is not the only one. An equivalent characteristic (usually
used in randomized benchmarking) is the average state fidelity,
defined as Fst = ∫

Tr(ρactualρideal) d|ψin〉/
∫

d|ψin〉, where the
integration is over the initial pure states |ψin〉 (using the Haar
measure; it is often assumed that

∫
d|ψin〉 = 1), while the

states ρideal and ρactual are the ideal and actual final states for
the initial state |ψin〉. The average state fidelity Fst is sometimes
called the “gate fidelity” [18] and can be naturally measured
in the randomized benchmarking (FRB = Fst); it is linearly
related [73,74] to the process fidelity, Fst = (Fχd + 1)/(d +
1), where d = 2N is the Hilbert space dimension.

Besides the average state fidelity, an obviously important
characteristic of a gate operation is the worst-case state fidelity
Fst,min, which is minimized over the initial state. Unfortunately,
the minimum state fidelity is hard to find computationally
even when the process matrix χ is known. Another natural
characteristic is the standard deviation of the state fidelity,

�Fst =
√

F 2
st − Fst

2
, (16)

where F 2
st = ∫

[Tr(ρactualρideal)]2 d|ψin〉/
∫

d|ψin〉 is the av-
erage square of the state fidelity. The advantage of �Fst

in comparison with Fst,min is that F 2
st and �Fst can be

calculated from χ in a straightforward way [75,76]. Our way
of calculating F 2

st is described in Appendix C [see Eq. (C10)].
We have analyzed numerically how well the CS QPT

estimates �Fst from the reduced data set, using the previously
calculated process matrices χCS for the experimental CZ gate
and the simulated Toffoli gate (considered in Secs. IV and V).
The results are presented in Figs. 10 and 11. We show the
average state infidelity, 1 − Fst, and the standard deviation
of the state fidelity, �Fst, as functions of the number of
selected configurations, mconf . The random selection of used
configurations is repeated 50 times for Fig. 10 (seven times for
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FIG. 10. (Color online) Blue (upper) line: average state infidelity
1 − Fst for the CS-estimated process matrix χCS as a function of the
selected data set size for the experimental CZ gate (this line is linearly
related to the blue line in Fig. 2). Brown (lower) line: the standard
deviation of the state fidelity �Fst, defined via variation of the initial
state, Eq. (16), using the same χCS. The error bars are computed by
repeating the procedure 50 times with different random selections of
used configurations.
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FIG. 11. (Color online) The same as in Fig. 10, but for the
simulated Toffoli gate. The random selection of configurations is
repeated 7 times for each point. The results for the standard deviation
�Fst are multiplied by the factor of 5 for clarity.

Fig. 11), the error bars show the statistical variation, while the
dots show the average values.

As seen from Figs. 10 and 11, the CS method estimates
reasonably well not only the average state fidelity Fst (which
is equivalent to Fχ presented in Figs. 2 and 8), but also its
standard deviation �Fst. It is interesting to note that �Fst is
significantly smaller than the infidelity 1 − Fst, which means
that the state fidelity Tr(ρacualρideal) does not vary significantly
for different initial states [the ratio �Fst/(1 − Fst) is especially
small for the simulated Toffoli gate, though this may be
because of our particular way of simulation].

VII. CONCLUSION

In this paper, we have numerically analyzed the efficiency
of compressed sensing quantum process tomography (CS
QPT) [24,25] applied to superconducting qubits (we did not
consider the CS method of Refs. [31,32]). We have used
experimental data for two-qubit CZ gates realized with Xmon
and phase qubits, and simulated data for the three-qubit Toffoli
gate with numerically added noise. We have shown that CS
QPT permits a reasonably high fidelity estimation of the
process matrix from a substantially reduced data set compared
to the full QPT. In particular, for the CZ gate (Fig. 2) the
amount of data can be reduced by a factor of ∼7 compared to
the full QPT (which is a factor of ∼4 compared to the threshold
of underdetermined system of equations). For the Toffoli gate
(Fig. 8), the data reduction factor is ∼40 compared to the full
QPT (∼15 compared to the threshold of underdeterminacy).

In our analysis, we have primarily used two characteristics.
The first characteristic is the comparison between the CS-
obtained process matrix χCS and the matrix χfull obtained from
the full data set; this comparison is quantitatively represented
by the fidelity F (χCS,χfull). The second characteristic is how
well the CS method estimates the process fidelity Fχ , i.e.,
how close F (χCS,χideal) is to the full-data value F (χfull,χideal).
Besides these two characteristics, we have also calculated
the standard deviation of the state fidelity �Fst [Eq. (16)]
and checked how well the CS method estimates �Fst from a
reduced data set (Figs. 10 and 11). Our compressed sensing
method depends on the choice of the basis, in which the process
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matrix should be approximately sparse, and also depends on
the choice of the noise parameter ε [see Eq. (11)]. We have used
two bases: the Pauli-error basis and the SVD basis. The results
obtained in both bases are similar to each other, though the
SVD basis required less computational resources. The issue of
choosing proper ε is not trivial. In our calculations, we have
used a value slightly larger than the noise level calculated from
the full data set. However, in an experiment with a reduced data
set this way of choosing ε is not possible, so its value should be
chosen from an estimate of the inaccuracy of the experimental
probabilities. We have shown that the CS method tolerates
some inaccuracy of ε (up to ∼60% for the results shown in
Fig. 5); however, finding a proper way of choosing ε is still an
open issue.

We have also compared the performance of the CS method
with the least squares optimization. Somewhat surprisingly,
the LS method can still be applied when the systems of
equations (5) is underdetermined (unless the data set size is too
small). This is because the condition of a process matrix being
physical (positive, trace-preserving) usually makes satisfying
Eq. (5) impossible. However, even though the LS method
formally works, it gives a less accurate estimate of χ than
the CS method in the significantly underdetermined regime
(although it does give a better estimate in the overdetermined
regime). The advantage of the CS method over the LS method
is more pronounced for the Toffoli gate (Fig. 9).

Thus the CS QPT is useful for two-qubit and three-qubit
quantum gates based on superconducting qubits. The method
offers a very significant reduction of the needed amount
of experimental data. However, the scaling of the required
computing resources with the number of qubits seems to
be prohibitive: in our calculations it took three orders of
magnitude longer and two orders of magnitude more memory
for the three-qubit-gate calculation than for two qubits. Such
a scaling of computing resources seems to be a limiting factor
in the application of our implementation of the CS method
for QPT of four or more qubits. Therefore the development
of more efficient numerical algorithms for the CS QPT is an
important task for future research.

Similar to standard QPT, CS QPT also suffers from
SPAM errors, which are a significant problem for high-fidelity
quantum operations. This is particularly the case for tracking
certain kinds of gate errors. Development of efficient ways
to use QPT and CS QPT for long sequences of high-fidelity
operations is an important future task.
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APPENDIX A: PAULI-ERROR BASIS

In this Appendix, we discuss the definition of the Pauli-error
basis used in this paper. The detailed theory of the QPT in the
Pauli-error basis is presented in Ref. [8].

Let us start with description of a quantum process E in the
Pauli basis {Pα},

ρ in �→ E(ρ in) =
d2∑

α,β=1

χαβPαρ inP†
β, (A1)

where for generality P is not necessarily Hermitian (to include
the modified Pauli basis, in which Y = −iσy). Recall that
d = 2N is the dimension of the Hilbert space for N qubits.

In order to compare the process E with a desired unitary
rotation U [i.e., with the map U(ρ in) = Uρ inU †], let us
formally apply the inverse unitary U−1 = U † after the process
E . The resulting composed process

Ẽ = U−1 ◦ E (A2)

characterizes the error: if E is close to the desired U , then Ẽ is
close to the identity (memory) operation. The process matrix χ̃

of Ẽ in the Pauli basis is what we call in this paper the process
matrix in the Pauli-error basis.

The process matrix χ̃ obviously satisfies the relation

∑
α,β

χ̃αβPαρ inP†
β = U−1

( ∑
α,β

χαβPαρ inP†
β

)
U, (A3)

which can be rewritten as∑
α,β

χ̃αβ(UPα)ρ in(UPβ)† =
∑
α,β

χαβPαρ inP†
β. (A4)

Therefore the error matrix χ̃ is formally the process matrix of
the original map E , expressed in the operator basis

Eα = UPα. (A5)

This is the Pauli-error basis used in our paper. (Another
obvious way to define the error basis is to use Eα = PαU [8];
however, we do not use this second definition here.) The
Pauli-error basis matrices Eα have the same normalization
as the Pauli matrices,

〈Eα|Eβ〉 = Tr(E†
αEβ) = d δαβ. (A6)

The matrices χ and χ̃ (in the Pauli and Pauli-error bases) are
related via unitary transformation,

χ̃ = V χV †, Vαβ = Tr(P†
αU †Pβ)/d. (A7)

The matrix χ̃ has a number of convenient properties [8]. It
has only one large element, which is at the upper left corner and
corresponds to the process fidelity, χ̃II = Fχ = F (χ,χideal).
All other nonzero elements of χ̃ describe imperfections. In
particular, the imaginary elements in the left column (or
upper row) characterize unitary imperfections (assuming the
standard nonmodified Pauli basis), other off-diagonal elements
are due to decoherence, and the diagonal elements correspond
to the error probabilities in the Pauli-twirling approximation.
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APPENDIX B: SVD BASIS

The SVD basis used in this paper is introduced following
Ref. [24]. Let us start with the so-called natural basis for d × d

matrices, which consists of matrices Enat
α , having one element

equal to one, while other elements are zero. The numbering
corresponds to the vectorized form obtained by stacking the
columns: for α = (d − 1)i + j the matrix is (Enat

α )lk = δilδjk .
For a desired unitary rotation U , the process matrix χnat in
the natural basis can be obtained by expanding U in the
natural basis, U = ∑

α uαEnat
α , and then constructing the outer

product,

χnat
αβ = uαu∗

β. (B1)

For example, for the ideal CZ gate, the components uα are
(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,−1), and χnat has 16 nonzero
elements, equal to ±1. Note that χnat is a rank-1 matrix with
Tr(χnat) = ∑

α |uα|2 = d.
We then apply numerical procedure of the SVD decomposi-

tion, which diagonalizes the matrix χnat for the desired unitary
process,

χnat = V diag(d,0, . . . ,0)V †, (B2)

where V is a unitary d2 × d2 matrix and the only nonzero
eigenvalue is equal to d because Tr(χnat) = d. The columns
of thus obtained transformation matrix V are the vectorized
forms of thus introduced SVD-basis matrices ESVD

α ,

ESVD
α =

d2∑
β=1

Vβα Enat
β . (B3)

Note that the notation V used in Appendix A has a different
meaning.

The matrices of the SVD basis introduced via Eqs. (B2)
and (B3) have the different normalization compared with the
Pauli basis,

Tr
(
ESVD†

α ESVD
β

) = δαβ. (B4)

Correspondingly, the normalization of the process matrix
χSVD in the SVD basis is TrχSVD = d (for a trace-preserving
process). For the ideal unitary process the matrix χSVD has
one nonzero (top left) element, which is equal to

√
d. For an

imperfect realization of the desired unitary operation the top
left element is related to the process fidelity as χSVD

11 = Fχd.
Note that when the numerical SVD procedure (B2) is

applied to χnat of ideal CZ and/or Toffoli gates, many (most)
of the resulting SVD-basis matrices ESVD

α coincide with the
matrices of the natural basis Enat

α . Since these matrices contain
only one nonzero element, the matrix 	 in Eq. (5) is simpler
(has more zero elements) than for the Pauli or Pauli-error basis.
(The number of nonzero elements of 	 in the SVD basis is
crudely twice less for the CZ gate and four times less for the
Toffoli gate.) As a result, from the computational point of view,
it is easier to use the SVD basis than the Pauli-error basis: less
memory and less computational time are needed.

APPENDIX C: AVERAGE SQUARE OF STATE FIDELITY

In this section, we present a detailed derivation of an explicit
formula for the squared state fidelity F 2

st, averaged over all pure

initial states, for a quantum operation, represented via Kraus
operators. We follow the same steps as in Ref. [76], where a
closed-form expression for F 2

st in terms of the process matrix
χ was presented. Although our approach is not new, we show
it here for completeness.

We begin by writing the quantum operation as E = U ◦ Ẽ
[see Eq. (A2)], where U corresponds to the ideal (desired)
unitary operation, while the map Ẽ accounts for the errors in
the actual gate. Let

Ẽ(ρ) =
∑

n

AnρA†
n (C1)

be the operator-sum representation of Ẽ , where {An}d2

n=1 are
Kraus operators satisfying the trace-preservation condition∑

n A
†
nAn = I. The Kraus operators can be easily obtained

from the process matrix χαβ describing the operation E .
Note that by diagonalizing χ , i.e., χ = V DV †, where V is
unitary and D = diag(λ1,λ2, . . .) with λn � 0, we can express
the Kraus operators in Eq. (C1) as An = √

λn U † ∑
α EαVαn,

where U is the desired unitary.
Now, the state fidelity Fφ (assuming a pure initial state |φ〉)

can be written in terms of {An} as follows:

Fφ ≡ 〈φ| Ẽ(φ) |φ〉 =
∑

n

〈φ| An |φ〉 〈φ| A†
n |φ〉 . (C2)

Notice that by using the identity Tr(A ⊗ B) = Tr(A) Tr(B),
one can rewrite the above expression for Fφ as

Fφ =
∑

n

Tr [(An ⊗ A†
n)(|φ〉 〈φ|⊗2)], (C3)

where the notation |φ〉 〈φ|⊗k ≡ |φ〉 〈φ| ⊗ |φ〉 〈φ| . . . ⊗ |φ〉 〈φ|︸ ︷︷ ︸
k

means that the state is copied in k identical Hilbert
spaces. Similarly, one can express the squared state fidelity
as

F 2
φ =

∑
n,m

〈φ| An |φ〉 〈φ| A†
n |φ〉 〈φ| Am |φ〉 〈φ| A†

m |φ〉

=
∑
n,m

Tr[(An ⊗ A†
n ⊗ Am ⊗ A†

m)(|φ〉 〈φ|⊗4)]. (C4)

In order to compute the average state fidelity Fst = ∫
Fφ dφ,

the average square of the state fidelity F 2
st = ∫

F 2
φ dφ, and

higher powers of Fst (we assume the normalized integration
over the initial pure states,

∫
dφ = 1), one can use the

following result [77]:∫
|φ〉 〈φ|⊗k dφ = 1(

k+d−1
d−1

) �k, �k ≡ 1

k!

∑
σ∈Sk

Pσ . (C5)

Here, σ is an element of the permutation group Sk (the
k! permutations of k objects) and the operator Pσ is the
representation of σ in H⊗k = H ⊗ . . .H︸ ︷︷ ︸

k

, i.e.,

Pσ (|φ1〉 ⊗ |φ2〉 . . . ⊗ |φk〉) = |φσ (1)〉 ⊗ |φσ (2)〉 . . . ⊗ |φσ (k)〉 .

(C6)
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(The operator Pσ acts on the wave function of kN qubits by
permuting k blocks, each containing N qubits.)

In view of the above discussion, we see that the kth moment
Fk

st ≡ ∫
Fk

φ dφ can be expressed as a sum of (2k)! terms
corresponding to the elements in S2k [note that k in Eqs. (C5)
and (C6) is now replaced with 2k],

Fk
st =

∑
n1...nk

∑
σ∈S2k

Tr
[(

An1 ⊗ A
†
n1 ⊗ . . . Ank

⊗ A
†
nk

)
Pσ

]
(2k+d−1

d−1

)
(2k)!

.

(C7)

For example, the average state fidelity Fst is determined by the
sum over S2,

Tr(An ⊗ A†
n �2) = 1

2

∑
σ∈S2

Tr(An ⊗ A†
nPσ )

= 1

2

∑
σ∈S2

∑
i1,i2

〈i1,i2| An ⊗ A†
n |σ (i1),σ (i2)〉

= 1

2
[Tr(An) Tr(A†

n)︸ ︷︷ ︸
identity

+ Tr(AnA
†
n)]︸ ︷︷ ︸

transposition

, (C8)

which yields the well-known result [74]

Fst = 1

d(d + 1)

( ∑
n

| Tr(An)|2 + d

)
. (C9)

In order to express F 2
st in terms of Kraus operators, it is

convenient to write each element of the group S4 as a product
of disjoint cycles. The 24 elements of the permutation groups
S4 can be grouped as follows (we use the so-called cycle
notation for permutations):

(i) identity (1 element): (1)(2)(3)(4) (this notation means
that no change of position occurs for all numbers in the
sequence 1234);

(ii) transpositions (6 elements): (12), (13), (14), (23), (24),
and (34) (this notation means that only two specified numbers
in the sequence are exchanged);

(iii) 3-cycles (eight elements): (123), (132), (124), (142),
(134), (143), (234), and (243) [here, the notation (123) means
the permutation 1→2→3→1, while the remaining number
does not change];

(iv) products of transpositions (3 elements): (12)(34),
(13)(24), and (14)(23) (two pairs of numbers exchange);

(v) 4-cycles (6 elements): (1234), (1243), (1324), (1342),
(1423), and (1432) [here (1234) means the permutation
1→2→3→4→1].

This classification helps to keep track of the terms Nσ ≡∑
n,m Tr[(An ⊗ A

†
n ⊗ Am ⊗ A

†
m)Pσ ] in Eq. (C7). The corre-

sponding contributions to the sum
∑

σ∈S4
Nσ are the following:

Identity:(∑
n

| Tr(An)|2
)2

.

Transpositions:

2d
∑

n

| Tr(An)|2 + 2
∑
n,m

Tr(AnA
†
m) Tr(A†

n) Tr(Am)

+
∑
n,m

[Tr(AnAm) Tr(A†
n) Tr(A†

m) + H.c.].

3-cycles:

4
∑

n

| Tr(An)|2 + 2
∑
n,m

[Tr(AnA
†
nAm) Tr(A†

m) + H.c.].

Products of transpositions:

d2 +
∑
n,m

[| Tr(AnAm)|2 + | Tr(AnA
†
m)|2].

4-cycles:

3d +
∑
n,m

Tr(AnA
†
nAmA†

m) + 2
∑
n,m

Tr(AnAmA†
nA

†
m).

(We used the trace-preservation condition
∑

n A
†
nAn = I.)

Substituting the above terms in Eq. (C7) (with k = 2), we
finally obtain the average square of the state fidelity:

F 2
st = 1

d(d + 1)(d + 2)(d + 3)

{
d2 + 3d

+ 2(d + 2)
∑

n

| Tr(An)|2 +
[ ∑

n

| Tr(An)|2
]2

+
∑
n,m

[| Tr(AnAm)|2 + | Tr(AnA
†
m)|2]

+ 2
∑
n,m

Tr(AnAmA†
nA

†
m) +

∑
n,m

Tr(AnA
†
nAmA†

m)

+ 2
∑
n,m

Tr(AnA
†
m) Tr(A†

n) Tr(Am)

+ 2
∑
n,m

Re[Tr(AnAm) Tr(A†
n) Tr(A†

m)]

+ 4
∑
n,m

Re[Tr(AnA
†
nA

†
m) Tr(Am)]

}
. (C10)

This is the formula we used in this paper to calculate F 2
st.
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