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We consider the evolution of a qubit (spin 1=2) under the simultaneous continuous measurement of

three noncommuting qubit operators �̂x, �̂y, and �̂z. For identical ideal detectors, the qubit state evolves

by approaching a pure state with a random direction in the Bloch vector space and by undergoing locally

isotropic diffusion in the perpendicular directions. The quantum state conditioned on the complete

detector record is used to assess the fidelity of classically inspired estimates based on running time

averages and discrete time bin detector outputs.
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The needs of quantum computing and communication
[1] are stimulating rapid progress in the control of single
quantum systems. Recent experiments demonstrate coher-
ent manipulation of quantum systems, including Rabi
oscillations and entangling operations with few qubits.
An important direction for advanced quantum control is
to realize continuous monitoring of a quantum system.
Theories of continuous quantum measurement [2–7] and
experiments [8–11] have been carried out on a number of
systems. Quantum monitoring can be used to prepare
highly pure states and entangled states [4,12–16] and for
continuous error correction [17].

A particularly interesting case is when noncommuting
variables are being measured simultaneously. In Ref. [18],
the signal cross correlation for two such detectors of an
evolving qubit was calculated. In Ref. [19], Wei and
Nazarov considered measurement outcomes for three
detectors measuring a qubit in orthogonal directions.
They analyzed the statistics of the integrated outcomes
vk for each detector and showed that if these outcomes
happen to be sufficiently large, then the normalized vector
v=jvj is close to the Bloch vector of the actual qubit state.

In this Letter, we consider simultaneous continuous
measurement of the qubit observables �̂x, �̂y, and �̂z,

illustrated in Fig. 1. The setup can be in principle realized
with a trapped atom probed dispersively by optical cavity
fields. In contrast to Ref. [19], we explicitly take into
account the qubit evolution due to measurement and ana-
lyze the problem of monitoring the qubit state by using the
measurement records. The three Pauli observables are
complementary, but the incremental changes of the quan-
tum state due to the weak measurements carried out in
infinitesimal time intervals commute, and the simultaneous
measurements contribute to purification of the quantum
state 3 times faster than if only a single observable is
measured. While the measurements drive the system
towards the Bloch sphere surface (pure states), they cause
locally isotropic diffusion in angular directions.

If the observer has access only to detector readout
signals integrated over finite time intervals, the backactions
associated with these accumulated signals do not com-
mute, and the state of the qubit can only be approximately
determined. The quality of the state estimate in this case is
thus a measure of the role of complementarity of the
observables detected. Comparing the exact qubit evolution
with simple classically inspired ways of monitoring, we
show that running averages with an exponential window
can provide the fidelity of state monitoring up to 0.94. We
also show that if the available measurement record is
averaged over discrete time steps �t, the monitoring fidel-
ity decreases with �t quite slowly.
Model.—We consider continuous measurement of the

qubit observables �̂x, �̂y, and �̂z by three linear detectors

with output signals IkðtÞ. Let ukðtÞ ¼ IkðtÞ � I0;k, where
I0;k denotes the uniform average of the outcomes of detec-

tor k over the two qubit states, and let �uk denote the
detector responses, i.e., the difference of the mean signal
for the qubit states. We can then write

ukðtÞ ¼ �uk
2

Tr½�̂ðtÞ�̂k� þ �kðtÞ; k ¼ x; y; z: (1)

The Tr½�̂�̂k� expectation values, determined by the time-
dependent qubit density matrix �̂, are in the following
represented as the Bloch vector r ¼ ðx; y; zÞ. In Eq. (1),
�kðtÞ are independent white noises with one-sided spectral
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FIG. 1. A qubit measured by three orthogonal detectors.
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densities Sk: h�k�ldti ¼ �klSk=2. The qubit evolution due
to measurement by a linear detector (amplifier with infinite
gain) can be described by three parameters [6,20]: the
so-called measurement time �meas;k ¼ 2Sk=ð�ukÞ2, which
determines the rate of quantum (informational) backaction,
a factor Kk describing the classical backaction correlated
with the output noise �k, and an ensemble dephasing rate
�k, related to the single-qubit dephasing rate �k as �k ¼
�k þ 1=2�meas;k þ K2

kSk=4. In this Letter, we are interested
in the quantum backaction due to measurements, and we
assume the absence of classical backaction Kk ¼ 0 as well
as the absence of any Hamiltonian driving of the qubit.

If the measurement is performed by only one �̂k detector
(�l ¼ 0 for l � k), then the probability density of its
integrated result �ukð�Þ ¼ ��1

R
�
0 ukðtÞdt is Ptotð �ukÞ ¼P

i�iið0ÞPið �ukÞ, where the qubit density matrix �̂

is written in the �̂k basis (i ¼ 1; 2) and Pið �ukÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�Sk

p
expf�½ �uk þ ð�1Þi�uk=2�2�=Skg are the

Gaussian distributions for the basis states. Then the qubit
evolution is given by the Bayesian quantum filter [6]

�ijð�Þ ¼ �ijð0Þe��k�ð1��ijÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið �ukÞPjð �ukÞ

q
=Ptotð �ukÞ: (2)

In the case of three detectors measuring the qubit in the
orthogonal bases, it is impossible to use the quantum Bayes
rule for a finite � because the measurement backactions do
not commute. Therefore we should apply Eq. (2) in the
differential form (for small dt) in the three orthogonal
bases corresponding to the measured observables and
then sum up the contributions to the qubit evolution. In
this way we obtain the following equation in the
Stratonovich form for the x component of the qubit
Bloch vector rðtÞ given the measurement record ukðtÞ:

_x ¼ ð1� x2Þð�ux=SxÞux � xyð�uy=SyÞuy
� xzð�uz=SzÞuz � ð�y þ �zÞx: (3)

Evolution equations for the components y and z can be
obtained by cyclic permutation of variables in Eq. (3).

Identical detectors.—In what follows we consider the
case of three identical detectors:�uk=Sk ¼ �u=S ¼ a (we
assume a > 0) and �k ¼ � � 0. Then the qubit evolution
(3) can be rewritten in a vector form as

_r ¼ �2�rþ afuð1� r2Þ � ½r� ½r� u��g; (4)

where u � ð�u=2Þrþ �ðtÞ is the vector of results, Eq. (1),
and r ¼ jrj. The evolution (4) is invariant under arbitrary
rotations and can be represented as evolution due to one-
detector measurement along a fluctuating random direction
of u. It is interesting to note that, while measurement of
only single observable �̂k ‘‘attracts’’ the qubit state to one
of the corresponding eigenvectors, the simultaneous
measurement of �̂x, �̂y, and �̂z leads to no preferable

direction in the Bloch space.
The ensemble-averaged evolution is also isotropic: _r ¼

�2�r, which is easier to see from the Itô form [21] of (4):

_r ¼ �2�rþ af�ð1� r2Þ � ½r� ½r� ���g; (5)

where � ¼ �þ �0 is the one-detector ensemble decoher-
ence and �0 ¼ ð�uÞ2=4S ¼ 1=2�meas. We also introduce
the efficiency (ideality) of the measurement � ¼ �0=�.
Transforming Eq. (5) to polar coordinates, we obtain the

following evolution for the radial component r:

_r ¼ 2�0ð1=r� r=�Þ þ að1� r2Þ�r; (6)

where �rðtÞ ¼ er � �ðtÞ is the noise component along rwith
the same spectral density: h�r�rdti ¼ S=2. In directions
perpendicular to r, Eq. (5) leads to a locally isotropic
Brownian diffusion with coefficient a; correspondingly,
the angular evolution has the diffusion coefficient a=r
(this can be shown by using locally geodesic coordinates).
In particular, for an ideal measurement (� ¼ 1)

and a pure initial state, the state remains pure [r ¼ 1;
see Eq. (6)] and the diffusion on the Bloch sphere can
be described by the Fokker-Planck (FP) equation
@pð	; ’Þ=@t ¼ �0�	;’pð	; ’Þ, where �	;’ is the angular

part of the Laplacian. The solution of this equation [22]

at time � is pð�; �Þ ¼ P1
n¼0

2nþ1
4� e�nðnþ1ÞV=4Pnðcos�Þ,

where � is the angle from the initial state, PnðzÞ are
the Legendre polynomials, and V ¼ 4�0� ¼ 2�=�meas is
the variance. Obviously, for � � �meas the initial state
is forgotten, and the distribution pð�; �Þ ! 1=4� becomes
isotropic. We note that, while the average state approaches
the center of the Bloch sphere, the actual monitored qubit
state remains pure, performing a random walk on the
sphere.
Purification dynamics.—We characterize state purity by

P � 2Tr�̂2 � 1 ¼ r2. For an ideal measurement � ¼ 1,
and starting from a nonpure initial state, the qubit will
purify (P ! 1) on a time scale of the order of �meas. For
a nonideal measurement �< 1, purity will continue to
fluctuate around a stationary average value hP ist < 1.
To analyze the purification dynamics we use Eq. (6)

to derive the Itô equation for the purity: dP=dt ¼
2�0½2ð1� P=�Þ þ ð1� P Þ2� þ 2að1� P Þ ffiffiffiffiffi

P
p

�rðtÞ. The
corresponding FP equation [21] is @pðP ;tÞ

@t ¼ � @
@P �

½AðP ÞpðP ; tÞ� þ 1
2

@2

@P 2 ½BðP ÞpðP ; tÞ� with coefficients

AðP Þ ¼ 2�0½2ð1� P=�Þ þ ð1� P Þ2�,BðP Þ¼8�0P ð1�
P Þ2, and initial distribution pðP ; 0Þ ¼ �ðP � P 0Þ. At
t � �meas the purity reaches a stationary distribution

pstðP ; �Þ ¼ N�1

ffiffiffiffiffi
P

p
ð1� P Þ3 exp

�
�P ð1� �Þ

ð1� P Þ�
�
; (7)

where N is the normalization. For � ! 1, pstðP ; �Þ
approaches the � function at P ¼ 1.
In Fig. 2, we show the average purity (solid lines)

hP iFPðtÞ ¼
R
1
0 PpðP ; tÞdP for measurement efficiencies

� ¼ 1, 0.5, and 0.1, calculated by numerically solving
the FP equation starting from the Bloch sphere center
(P 0 ¼ 0). The FP distribution pðP ; tÞ (not shown) has
been also confirmed by the simulations using Eq. (4).
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The purification dynamics can be approximated by using
the ensemble-averaged purification rate [13,14] obtained
from the above Itô equation, starting from a given purity:

hdP i=dt ¼ 2�0½2ð1� P=�Þ þ ð1� P Þ2�: (8)

For ideal detectors (� ¼ 1) this becomes 2�0ð1� P Þ�
ð3� P Þ, which can also be easily obtained from the puri-
fication result [13,23] hdP i=dt ¼ 2�0ð1� P Þð1� z2Þ for
a z detector by adding the contributions from measure-
ments in the x and y directions, so that 1� z2 ! 3� r2.
The purification by three detectors is isotropic, and its rate
hdP i=dt is therefore 3 times faster than for a single detec-
tor averaged over random directions in the Bloch space.
This may be compared with the result of adaptive mea-
surements with a single detector, perpendicular to the
current Bloch vector estimate, which leads to the fastest
purification [13,14]. The performance of nonadaptive
switching between random bases is addressed in
Ref. [16] including an analysis of the purification speedup
as a function of Hilbert space dimension. It is important to
note that the average purity hP iFPðtÞ differs from the naive
integration of Eq. (8) (dotted lines in Fig. 2) because
hdP i � dhP i and the purity distribution pðP ; tÞ is gener-
ally different from the � function. In particular, hP ist is
slightly higher (for � � 0; 1) than the stationary value

ð1þ 1=�Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 1=�Þ2 � 3
p

derived from Eq. (8).
Classically inspired state monitoring.—Exact monitor-

ing of the qubit state is realized by integrating the evolution
equation (4) given the measurement record ukðtÞ. However,
such real-time computation may be a challenge experimen-
tally, and therefore it is interesting to analyze the fidelity of
simplified signal processing algorithms. To decrease the
noise component and reduce the bandwidth of signals
given by Eq. (1), it is natural to average them over a
running time window: ~ukðtÞ �

R
t
�1 gðt� t0Þukðt0Þdt0,

where gð�tÞ is the window profile. We have considered
(i) a rectangular window of duration �: gð�tÞ ¼ ��1 for
�t < � and zero otherwise and (ii) an exponential window
with decay time �: gð�tÞ ¼ ��1 expð��t=�Þ. The

analyzed monitoring algorithm is very simple: At any t
in the stationary regime (t � �, �meas) we estimate the
qubit state as the pure state restðtÞ ¼ ~uðtÞ=j~uðtÞj. The algo-
rithm fidelity is defined as the time-averaged scalar product
of this vector with the actual state rðtÞ:

F � 2hTr�̂est�̂it � 1 ¼ hr � ~u=j~ujit: (9)

In Fig. 3, we show the fidelity F vs the window duration
� for the rectangular (solid lines) and exponential (dashed
lines) windows, calculated by simulating the evolution (4)
for � ¼ 1, 0.5, and 0.1. For � ¼ 1 the fidelity reaches a
maximum of Fmax ¼ 0:94 for the exponential window with
� ¼ 0:6�meas (for the rectangular window Fmax ¼ 0:87 at
� ¼ 0:9�meas). For small � the fidelity is suppressed due to

large fluctuations: j~uj � ��1=2, while for � * ��meas it
decreases because signals from the distant past lose
their relevance to rðtÞ. To analyze the latter effect quanti-
tatively, we have used Eq. (4) to find the signal-qubit
correlations: huzðt��tÞzðtÞi¼ð�u=2Þexpð��t=��measÞ,
huzðt� �tÞxðtÞi ¼ huzðt� �tÞyðtÞi ¼ 0 [24].
Since F ¼ hr cos
it, where 
 is the angle between ~u

and r, the fidelity is bounded from above by the stationary
Bloch vector length hri reached at t ! 1 (Fig. 2, dashed
lines). In Fig. 3, these bounds are shown as horizontal lines:
hri ¼ 0:732 for � ¼ 0:5 and hri ¼ 0:348 for � ¼ 0:1
(obviously, hri ¼ 1 for � ¼ 1). It is interesting to see
that with decreasing �, the exponential window Fmax

approaches hri. This means that at optimal � either ~u
becomes practically aligned with r, hcos
it ! 1, or there
is a significant correlation between fluctuations of rðtÞ and

ðtÞ. This correlation can be checked by comparing F with
the uncorrelated value hrihcos
it shown in Fig. 3 by dotted
lines. We see practically no correlation at the optimal point
for small �, which means that hcos
it ! 1.
Algorithms for time-discretized data.—We consider now

a situation when only the integrated detector signals uðnÞk �
1
�t

Rtn
tn��t ukðt0Þdt0 are available at discrete time moments

tn ¼ n�t, n ¼ 0; 1; . . . , as in the experiment [10].
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Assuming ideal detectors to deal with pure states only, we
have studied four algorithms, which output estimated states
rest at moments tn, and calculated their fidelities (shown in
Fig. 4) defined as F ¼ hr � restin, similar to Eq. (9) but with
averaging over moments tn. The actual evolution rðtÞ in
this case is simulated via Eq. (4), and we have checked that
the fidelity does not depend on the inaccuracy of the initial
state estimate. Algorithm 1 treats the vector of measure-

ment data uðnÞ as a single measurement of the spin compo-
nent along this vector and updates the qubit state using the
quantum Bayes rule (2) in the corresponding basis, chang-
ing at each time step. For small �t the fidelity of this
algorithm is F 	 1–0:14�t=�meas. Somewhat unexpect-
edly, even for �t ’ �meas the fidelity is still quite good.
Algorithm 2 at each step rotates the previous Bloch

vector rðtn�1Þ towards the vector uðnÞ by the angle �
 ¼
ð�u=SÞuðnÞ? �t, which is determined by the component uðnÞ?
of the vector uðnÞ perpendicular to rðtn�1Þ. Even though for
small �t this is very similar to Algorithm 1, the fidelity
decreases more rapidly with increasing �t. Algorithm 3
treats the three measurement outcomes as the results of
sequential measurements of the three spin components and
uses the Bayesian update rule accordingly. For �t ! 0 the
fidelities of all three algorithms approach unity, though
with different slopes. Algorithm 4 treats the data available
at moments tn in the same way as the running rectangular
window (see the upper solid line in Fig. 3) and estimates

the state as uðnÞ=juðnÞj. Algorithm 4 suffers from large
statistical errors for short �t; however, for �t 	 �meas the
fidelities of Algorithms 1 and 4 become practically equal,
and for longer �t Algorithm 4 becomes the best among
considered algorithms.

In conclusion, state monitoring and purification by
simultaneous measurements of noncommuting observables
has been described by a quantum filtering theory. The
shortcomings of simple, effective algorithms reflect the
difficulty of estimating quantum states from incomplete
measurement data. The incompleteness of the time-
averaged or integrated data is due to complementarity

and the noncommuting backaction operations in the
coarse-grained limit of finite sampling times. Our analysis
shows this very clearly, and it quantifies the approach to
perfect state estimation in the limit of continuous measure-
ment and quantum filtering.
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