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I. SAMPLE FABRICATION

The device was fabricated using conventional photolithography and plasma etching on

a multilayered structure. The resonator was made from a sputtered 150 nm-thick super-

conducting aluminum base film on a sapphire substrate. The phase qubit and the super-

conducting quantum interference device (SQUID) in the variable coupler were made using

Al/AlOx/Al Josephson junctions. A low-loss dielectric, hydrogenated amorphous silicon,

was used as the insulator in capacitors and wiring crossovers.

II. EXPERIMENTAL SETUP AND CONTROL ELECTRONICS

A detailed schematic of the resonator control and measurement system is shown in

Fig. S1a. The microwave excitation signal for the resonator is generated by mixing a digitally-

synthesized intermediate frequency (IF) signal with a microwave frequency local oscillator

(LO). The I and Q quadratures of the IF signal were generated using a field-programmable

gate array (FPGA) and a customized 2-channel 14-bit digital-to analog converter (DAC).

The RF output of the mixer was sent into the cryostat and routed through a circulator to

the variable coupler and resonator. Microwave signals from the resonator were routed by

the circulator to a cryogenic amplifier G with 35 dB of gain and a noise temperature of 4 K.

After further room-temperature amplification (60 dB of gain), the output signal was mixed

down with the same local oscillator (LO) signal as the up-converter, generating the same IF

(sideband) frequency. The I and Q quadratures were digitized at 500 megasamples/second

using a 2-channel 8-bit analog-to-digital converter (ADC), and the signal passed to another

FPGA for further processing. In the “oscilloscope mode”, the digitized signals were sent

directly to a computer without further processing, as shown in the time-trace data in Fig.

3 and Fig. 4 in the main text. In the “demodulation mode”, the I and Q signals were mul-

tiplied by sine and cosine waveforms at the sideband frequency and summed in real time.

The continuous summation signal guarantees rapid fast Fourier transform (FFT) processing

once the data acquisition is complete; this was used for the data in Fig. 4b in the main text.

Qubit control used a system similar to that for the resonator. The microwave pulses for

qubit control (x/y rotations) were generated by mixing a continuous microwave signal and

a shaped quasi-d.c. waveform from a 2-channel 14-bit digital-to-analog converter (DAC).
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Another quasi-d.c. pulse generator controls qubit z-axis rotations and measurement.

Figure 1 in the main text shows the circuit for the experiment. The variable coupler is

connected a distance d = 0.3 mm from the grounded end of the λ/4 coplanar waveguide

resonator (4.8 mm long). The coupler consists of a transformer with inductances L1, L2

and a negative mutual inductance M . The positive mutual inductance from the dc SQUID

is Ls = Φ0/4πIc| cos(πΦ/Φ0)|, where Ic = 1.6 µA is the critical current of the junction, Φ

the applied magnetic flux and Φ0 = h/2e the magnetic flux quantum. The characteristic

impedances of the microwave resonator and the transmission line are Zr = 80 Ω and Z0 =

50 Ω respectively.

III. THEORETICAL MODELING OF RESONATOR T1

Using an equivalent electrical circuit for the variable coupling experiment, shown in

Fig. S2a, we calculate the expected resonator T1 due to coupling to the external 50 Ω trans-

mission line. We also calculate the small effect this coupling has on the resonance frequency

of the resonator. Both calculations compare well with experiment.

We replace the short portion (∼ λ/60) of the resonator between the coupler connection

and the resonator ground with an effective inductance Le, and the transformer and coupling

circuit with an equivalent L′
1, L

′
2 and mutual inductanceM ′, with L′

2 connected to an infinite

transmission line with characteristic impedance Z0. We calculate the resonator reflection

and transmission amplitudes r and t.

The effective inductances L′
1, L

′
2 and inductance M ′ are given by

L′
1 = L1 + Ls, L′

2 = L2 + Ls, M ′ = M + Ls. (2)

The coupler is turned off when M ′ = 0. Note that because all the equivalent inductances

include Ls, modulating M ′ by changing Ls modulates L′
1 and L′

2 as well:

L′
1 = (L1 −M) +M ′, L′

2 = (L2 −M) +M ′. (3)

To calculate the inductance Le, which represents the small length of resonator from the

coupling point to ground, we impose a voltage Aeiωt in the resonator traveling from the

open (qubit) end towards the coupler end, and approximate the reflected voltage as −Aeiωt
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(ignoring the portion transmitted into the transmission line). The voltage at distance d from

the grounded end is V = Aeiωt(eiωd/c−e−iωd/c) = 2iAeiωtsin(ωd/c), with c the phase velocity

of light in the resonator. The current at this point is I = Aeiωt(eiωd/c/Zr + e−iωd/c/Zr) =

2(A/Zr)e
iωt cos(ωd/c), so the wave impedance is Z = V/I = iZr tan(ωd/c) = iωLe, yielding

the effective inductance

Le =
Zr

ω
tan

(
ωd

c

)
=

Zr

ω
tan

(
2πd

λ

)
(4)

(note this is evaluated at ω = 2πfr, the resonator frequency).

The calculation of the transmission and reflection amplitudes t and r is similar to the

derivation in [1]. Assume a voltage with amplitude A is incident on the coupler from the left

side of the resonator, with reflected voltage rA and voltage transmitted into the transmission

line tA. The voltage across L′
1 is V = (1 + r)A, while the voltage across L′

2 is denoted by

x = tA. The currents flowing into L′
1 and L′

2 are I1 = (1 − r)A/Zr − V/(iωLe) and

I2 = −x/Z0, respectively. Using currents I1 and I2, we write equations for the voltage

amplitudes x and V :

x = iωM ′
[
(1− r)A

Zr

− (1 + r)A

iωLe

]
− iωL′

2

x

Z0

,

(1 + r)A = iωL′
1

[
(1− r)A

Zr

− (1 + r)A

iωLe

]
− iωM ′ x

Z0

. (5)

From these equations, we can calculate the reflection amplitude r and transmission amplitude

t = x/A (note that |t|2Zr/Z0 + |r|2 = 1):

a ≡1 + r

1− r
=

iωL′
1

Zr
+ ω2M ′2

ZrZ0(1+iωL′
2/Z0)

1 +
L′
1

Le
− iωM ′2

Z0Le(1+iωL′
2/Z0)

,

r =−
(
1− a

1 + a

)
,

t =i
2ωM ′

1 + a

(
1

Zr

+
ia

ωLe

)
1

1 + iωL′
2/Z0

. (6)

In the limit ωLe ≪ Zr and ωM ′ ≪ Z0, which apply here, the reflection and transmission
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amplitudes can be approximated as

r ≈− 1 + 2a ≈ −1 + i
2ωLeL

′
1

Zr(L′
1 + Le)

,

t ≈i
2ωLeM

′

Zr(L′
1 + Le)

1

1 + iωL′
2/Z0

. (7)

The decay time of the resonator is obtained from the transmission amplitude [1]:

1/κc =
Q

ω
≈ π

ω|t|2
Z0

Zr

=
πZrZ0(L

′
1 + Le)

2(1 + ω2L′2
2 /Z

2
0)

4ω3L2
eM

′2 , (8)

where ω = 2πfr is the resonator frequency.

The coupler bias dependence of the resonator T1 is extracted from the data in the main

text and shown in Fig. S2b (blue dots). The predicted T1 from Eq. (8), using the actual

circuit parameters, is also displayed in Fig. S2b (red line), in good agreement with the

data. We note that the inductive coupling changes sign when the coupler strength sweeps

through zero coupling [2, 3], verified by the expected π phase change in a Wigner tomography

measurement (see next section and Fig. S3e).

The resonant frequency of the λ/4 resonator is primarily determined by the resonator

length and characteristic impedance, but is also affected by the variable coupler. The change

in resonance frequency with coupler bias can be measured experimentally, and verified by

the following calculation: Compared to the frequency fr at zero coupling (M ′ = 0), the

resonance frequency shifts by ∆f ,

∆f ≈ − 4fr
2L2

eM
′

π2Zr(Le + L1 −M)(Le + L1 −M +M ′)
. (9)

We compare the coupler bias dependence of fr, measured spectroscopically, with the fre-

quency tuning from Eq. (9), in Fig. S2c. The frequency tunes over ∼ 15 MHz, a very small

fraction of the resonator frequency. Previous experiments have demonstrated resonator fre-

quency tuning using Josephson junctions or SQUIDs embedded in a resonator [4, 5]. Here

the frequency tuning is quite small, and is a by-product of the variable coupler located

outside the resonator.

We have measured the coupling dependence of the one-photon decay in Fig. 2b in the

main text with a fast coupler bias. For comparison, a similar measurement was performed
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using the slow coupler bias, with data shown in Fig. S2d. The bias range is expanded to

show the periodic response of the lifetime to the coupler flux bias.

IV. CHARACTERIZATION OF RESONATOR STATES USING SWAP SPEC-

TROSCOPY AND WIGNER TOMOGRAPHY

We measured the single photon lifetime T1 to characterize the coupling strength, as

discussed in the main text. We also used swap spectroscopy to perform an equivalent

characterization, shown here with the coupler set to two representative coupling strengths.

The pulse sequence is shown in Fig. S3a, starting with the system initialized in the ground

state. The de-tuned qubit was excited by a π pulse to |e⟩ and then tuned close to resonance

with the resonator, using a qubit tuning z-pulse with variable amplitude. The variable

coupler was either left at zero coupling (κzero), or switched to a coupling κc = 1/(30 ns)

immediately after tuning the qubit. In either case, the coupling strength was fixed for

the full qubit-resonator interaction time τ . The qubit excitation probability Pe was then

measured using a triangular measurement pulse.

The qubit excited state probability Pe is plotted versus the interaction time τ and the

qubit z-pulse amplitude in Fig. S3b and c, for weak and strong coupling, respectively. The

chevron pattern due to the qubit-resonator photon swapping is evident in Fig. S3b, from

which we calibrate the iSWAP [6] pulse amplitude and duration. In contrast, the response

in Fig. S3c shows a rapid qubit-resonator relaxation, with energy strongly dissipated into the

transmission line. We also note that the center of the chevron pattern in Fig. S3c shifts in

comparison to Fig. S3b, due to the resonator frequency shift with coupler strength (Fig. S2c).

The coupling strength changes sign when the coupler bias sweeps through the zero cou-

pling point. An indirect phase-sensitive method, Wigner tomography [7], was used to detect

this coupling sign change. The pulse sequence is shown in Fig. S3d. The resonator was

prepared in the superposition (|0⟩+ |1⟩)/
√
2 state, and then driven by a variable-amplitude

classical Gaussian microwave tomography pulse. The coupler was set to two different values

during the tomography pulse, such that the coupling strength ±κc had the same amplitude

but opposite signs. The microwave tomography pulse, passing through the coupler, displaces

and rotates the resonator state in the resonator phase space; the opposite coupling signs give

opposite rotation directions to the resonator state for the same tomography pulse. The qubit
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was then tuned on-resonance with the resonator for a variable time τ , after which the qubit

state was measured. Measurements of the qubit excitation probability Pe(τ) were analyzed

to yield the Fock state probability Pn(α), where α is the complex amplitude and phase of

the tomography pulse. The Wigner quasi-probability distribution W (α) was calculated by

evaluating the parity W (α) =
∑

(−1)nPn(α).

The Wigner functions measured with the two signs of coupling strength ±κc are shown

in Fig. S3e. The Wigner functions clearly show a relative rotation angle of ∼ π. The density

matrices of the resonator states can be calculated from the Wigner functions and projected

onto the number basis ρmn = ⟨m|ρ|n⟩, shown in the lower sub-panel of Fig. S3e. Here,

we represent each element in the density matrix by an arrow, whose length and direction

correspond to the magnitude and phase of ρmn. The direction of the arrow for ρ01 (ρ10)

contains the relevant phase information, showing a ≈ π phase shift with a small phase error

of 9.5◦.

V. CALIBRATION OF TRAPPED COHERENT STATE PHOTONS

When a microwave Gaussian pulse with amplitude α and duration td is used to create a

coherent photon state in the resonator, the state can be probed with a qubit through an on-

resonance interaction, by measuring the qubit excited state probability Pe(τ) as a function

of the interaction time τ . The photon state probability distribution Pn(α) can be resolved

in the Fock number basis |n⟩ by decomposing Pe(τ) into its discrete Fourier components

fn = nf1, where f1 = g/π is the vacuum Rabi frequency [7].

We used this measurement to calibrate the coherent state stored in the resonator for

different coupling strengths and different microwave drive amplitudes α, with a fixed du-

ration. In Fig. S4a we set the coupler strength to one of two values κc ≃ 1/(3000 ns) and

κc ≃ 1/(210 ns), after which we excited the resonator with a variable amplitude Gaussian

microwave pulse, and measured the qubit after a qubit-resonator interaction time τ . The top

sub-panel shows the pulse sequence, the middle sub-panel the qubit excitation probability

Pe as a function of the microwave pulse amplitude and interaction time τ for the smaller

coupler strength, and the bottom sub-panel the same measurement for the larger coupler

strength. A horizontal line cut (not displayed) shows a periodic but low amplitude oscilla-

tion for small drive amplitude α, transforming to a clear ringing-collapse-revival pattern for

7



larger α. When the coupler is set to a small coupling (middle sub-panel of Fig. S4a), it is

hard for the microwave source to excite the resonator but the resonator has a large T1 for

trapped photons. When the coupler is instead set to a large coupling (bottom sub-panel of

Fig. S4a), photons enter the resonator easily yielding a larger excitation amplitude, but the

lifetime is shorter, illustrated by the rapid decay for larger τ .

To achieve both long photon lifetimes and low-power excitation, we instead set the coupler

to a large value during the microwave drive pulse, then set the coupling to zero to trap

the photons during the qubit measurement (Fig. S4b). A representative qubit-resonator

interaction measurement for a coherent resonator state is shown in the middle sub-panel of

Fig. S4b, with the coupler set to κc ≃ 1/(700 ns) during the microwave excitation pulse. We

performed a series of measurements with varying coupling strengths, which were analyzed to

give the photon distribution Pn(α). For a fixed microwave pulse amplitude (α = 1.0 in the

vertical axis of Fig. S4b), we calculated the average photon number ⟨n(α)⟩ =
∑

m nPn(α).

We display ⟨n⟩ as a function of coupler drive amplitude in the bottom sub-panel of Fig. S4b;

this is the calibration method used for the experiment shown in Fig. 3 in the main text.
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FIG. S1. Experimental setup. a, Full schematic for resonator control and measurement electronics.

Qubit q is coupled with coupling strength g to λ/4 resonator with characteristic impedance Zr.

Other end of resonator is grounded, with variable coupler connected a distance λ/60 from grounded

end. Variable coupler comprises two inductances L1 = L2 = 480 pH with a negative mutual

inductance M = −138 pH, and a SQUID with tunable inductance Ls(Φ). Current bias to the flux

line to the SQUID controls the SQUID inductance and thus the variable coupler. The coupler is

connected to a transmission line with characteristic impedance Z0, whose other end is connected

through a circulator to a microwave excitation and measurement system (see text for details). b,

Micrograph of device (top), with details of phase qubit (bottom left) and variable coupler (bottom

right).
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FIG. S2. Modeling of resonator lifetime T1 and resonance frequency fr. a, Simplified schematic

diagram of the variable coupler end of the resonator. The section of the λ/4 resonator between the

coupler and ground is approximated by an inductance Le, and the transformer is replaced by two

effective inductances L′
1, L

′
2 with mutual inductance M ′. When a voltage signal with amplitude A

travels from the left side of the resonator to the coupler, the wave is reflected from the coupler as rA

and transmitted in the transmission line as tA. b, Blue dots are the experimental resonator lifetime

T1 extracted from the data shown in the main text in Fig. 2b. Theoretical evaluation of T1 from

Eq. (8) using the circuit design parameters is displayed as a red line. c, The resonator frequency fr
as a function of coupler bias amplitude from spectroscopic measurements (blue dots) and compared

with the theoretical prediction (Eq. 9). Arrows indicate coupling ±κc used for Wigner tomography

in Fig. S3, with the sign of κ denoting polarity of the inductive coupling. d, One-photon decay

measurement, similar to Fig. 2b in the main text, but using a slow coupler bias. The periodic

response of the lifetime to the coupler current bias is evident.
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FIG. S3. Swap spectroscopy and Wigner tomography at different coupler biases. a, Pulse sequence

for swap spectroscopy at two coupler settings. The qubit is excited to |e⟩ with a π pulse and the

excitation swapped to the resonator. The coupler is either left at zero coupling when the qubit is

tuned on-resonance with the resonator, or switched immediately to κc = 1/(30 ns). After a qubit-

resonator interaction time τ , the qubit excited state probability Pe is measured. b, Measured

qubit probability Pe for swap spectroscopy as a function of qubit z-pulse amplitude (detuning)

and interaction time τ , with the resonator coupling to transmission line set to zero. The chevron

pattern representing qubit-resonator photon swapping is clearly visible. c, In contrast, when the

coupler is set to strong coupling κc = 1/(30 ns), swap spectroscopy shows a rapid energy dissipation

and a slight resonant frequency shift. d, Pulse sequence for Wigner tomography. The box labeled

“prep state” represents resonator preparation in the state (|0⟩ + |1⟩)/
√
2. The coupler is set to

zero coupling during the entire sequence except when the microwave source drives the resonator

for the tomographic analyzer pulse. During the tomographic pulse, the coupler is set to the same

coupling strength but with opposite sign ±κc = ±1/(2000 ns). Following the tomographic pulse

the qubit is used to measure the resonator state. e, Wigner functions W (α) (upper sub-panels)

for the (|0⟩+ |1⟩)/
√
2 resonator state, plotted as a function of the microwave tomography complex

amplitude α in photon number units (51 by 51 pixels). We calculate density matrices (lower sub-

panels) from each Wigner function. The negative sign for the coupling strength introduces a π

phase shift between the tomography pulse-induced state rotations, with a small phase error of 9.5◦.
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FIG. S4. Calibration of coherent state generation for different coupler strengths. a, Top sub-panel:

Pulse sequence to generate a resonator coherent state and then perform a qubit measurement.

This measurement was performed for two different coupling strengths, κc ≃ 1/(3000 ns) and

κc ≃ 1/(210 ns), with the coupler set to this value prior to the excitation pulse and left at this

value during the qubit-resonator interaction. Data in bottom two panels show the qubit excited

state probability Pe versus interaction time τ and microwave drive amplitude. The Gaussian

microwave pulse was 12 ns in duration (6 ns FWHM) for both panels a and b. b, Top sub-panel:

Pulse sequence to generate a resonator coherent state with a coupling strength κc ≃ 1/(700 ns),

with the coupling strength set to zero during the subsequent qubit-resonator interaction. Middle

panel shows the qubit Pe as a function of interaction time τ and microwave drive amplitude. A

population analysis yields the average trapped photon number ⟨n⟩ for different coupling strengths

during the microwave drive pulse, shown in the bottom sub-panel, for a microwave drive amplitude

α = 1.0, the same as 1.0 in the vertical axis of the middle sub-panel. Coupler biases yielding zero

average photon number are marked by arrows.
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